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Abstract: Melanoma is the deadliest form of skin cancer in the United States with an increasing prevalence. However, the 
development of melanoma from a melanocyte precursor is still poorly defined. Understanding the molecules responsible 
for melanoma progression may lead to improved targeted therapy. One potential molecule is the paired box-3 (PAX-3) 
protein, which has been implicated in the development of melanocytes and malignant melanoma. In melanoma, the 
expression of PAX-3 is believed to be differentially regulated, and has been linked with malignancies and staging of the 
disease. The loss of PAX-3 regulation has also been associated with the loss of transforming growth factor-beta (TGF-β) 
activity, but its effect on PAX-3 in differentiated melanocytes as well as metastatic melanoma remains unclear. 
Understanding PAX-3 regulation could potentially shift melanoma to a less aggressive and less metastatic disease. This 
review summarizes our current knowledge on PAX-3 during melanocyte development, its regulation, and its implications 
in the development of novel chemo-immunotherapeutics against metastatic melanoma. 
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INTRODUCTION 

 Melanoma is an aggressive skin cancer that has an 
occurrence rate of approximately 1 in every 50 Americans 
[1]. It is the 6th most common cancer with a lifetime risk of 
2.04% for men and 1.38% for women [2, 3]. According to 
the American Cancer Society, in 2009 the number of new 
cases of melanoma rose to 68,720 with 8,650 new deaths 
attributed to the disease [4]. There are many known factors 
that contribute to the formation of melanoma. One major 
factor influencing the increase in melanoma cases is 
increased exposure to ultra-violet radiation (UVR); exposure 
resulting in severe sunburns leads to an increased incidence 
of melanoma [3]. Other risk factors include skin type, 
hair/eye color, the presence of dysplastic nevi and/or 
increased nevi, and a family history of melanoma [3]. Also, 
genetic mutations in BRAF, CDKN2A, and CDK4 have all 
been attributed to melanoma development. BRAF mutations 
have been found in 70% of all melanomas and greater than 
90% of these mutations carry a single missense mutation [5, 
6]. CDKN2A is a gene involved in melanoma pathogenesis 
and is a germline mutation found in younger patients [7]. 
CDK4 is involved in cell-cycle arrest and has been identified 
in 10% of observed melanomas [8]. These mutations are 
mostly detected in non-Chronic Sun-induced Damage 
melanomas, while Chronic Sun-induced Damage melanomas 
are more commonly observed. 
 When melanoma arises, early diagnosis is crucial to 
survival. With early diagnosis, more than 80% of cases can 
be treated successfully with surgery [9]. Surgery includes  
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excision of the tumor and surrounding tissue; lymph nodes 
near the tumor may also be removed if the cancer has meta-
stasized. Other treatments for melanoma include radiation, 
used particularly in cases of metastasis, and chemotherapy, 
given when the cancer is highly aggressive and metastatic 
[4]. Side effects from these treatments include fatigue, 
malaise, and an increased susceptibility to non-melanoma 
cancers [10]. Also, these therapies are severely toxic to the 
patients, suggesting a need for improved and less toxic 
treatment options that specifically target melanoma tumors. 
Immunotherapy, such as IL-2 administration and adoptive T 
cell transfer, looks promising in filling this gap in treating 
metastatic melanoma [11]. Whole cell vaccines using 
melanoma antigens have also been studied in many forms 
with varied success [12-14]. But problems may occur with 
these Ags due to spontaneous cysteinylation of Ags, and 
disruption of HLA class II presentation [15-17]. Adoptive T 
cell transfer consists of an ex vivo expansion of autologous 
tumor reactive lymphocytes followed by re-infusion of these 
cells into the patient [18]. Adoptive T cell transfer has been 
successful in treating stage II melanoma, but not late stage 
melanoma [19]. Immunostimulating drug therapies have 
provided recent advances in targeting malignant melanoma. 
Ipilimumab is a human monoclonal antibody (IgG1) that 
targets CTLA-4 to promote antitumor immunity, and has 
shown improved outcome in metastatic melanoma patients 
[20]. Even with all of the current immunotherapy treatments, 
other potential targets that can be used to fight and treat late 
stage melanoma remain unknown.  
 One potential target may be the paired box-3 (PAX-3) 
protein, which is a member of the paired box family and an 
important regulator in melanocyte development. PAX-3 is a 
key transcription factor that plays a vital role in embryo-
genesis, but is also implicated in tumorigenesis [21]. It is 
expressed in early development, but inhibited in adult 
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melanocytes. PAX-3 has been recognized as a key compo-
nent in melanocyte development, yet its role in adult melano-
cytes and in melanoma remains unclear. In this review, we 
will discuss the nature of PAX-3 during the development and 
differentiation of melanocytes. We will also focus on the role 
of major regulators of PAX-3 in different stages of 
melanoma and its potential as a target for future therapies. 

MELANOCYTE DEVELOPMENT 

 Melanocytes are derived from the neural crest during 
embryonic development and act as specialized pigment pro-
ducing cells that are also the progenitor cells of melanoma 
[22, 23]. During embryogenesis, melanocytic precursor cells 
emerge in the neural crest. From there, they migrate to 
populate various sites including the epidermis, hair follicles, 
the uveal tract of the eye, and the cochlea [6]. Wnt signaling 
is responsible for the promotion of neural crest cells into 
pigment cells and thus decides the fate of the unpigmented 
precursor melanoblast to mature into a melanocyte [24]. 
Melanocytes reside in the dermal layer of the skin and 
produce secretory vesicles called melanosomes, where con-
centrated and synthesized melanins are contained [25]. 
Melanins are then exported to the epidermal layer and 
surround the existing keratinocytes to form a protective layer 
[26]. The migration of melanin is responsible for the color 
and pigmentation of the skin. However, with excess UVR 
exposure, keratinocytes respond by signaling to nearby 
melanocytes, thus driving a cascade of signals toward 
differentiation [27]. PAX-3 plays an important role in this 
signaling cascade ultimately leading to the differentiation of 
melanocytes [28, 29]. However, specific pathways involved 
and the direct role of PAX-3 on the signaling of 
keratinocytes and melanocytes remains unknown. 

PAX-3 AND MELANOCYTOGENESIS 

 PAX-3 is a crucial factor in the regulation of melanocytes 
during embryonic development [21, 30]. PAX-3 contains 
four domains: the paired domain, the homeodomain, the 
octapeptide, and the transactivation domain. The paired 
domain contains two helix-turn-helix (HTH) sub-domains 
named PAI and RED. The paired domain helps to facilitate 
protein-protein interactions and DNA binding [31]. The 
homeodomain, which contains three HTH motifs, may 
function to regulate the DNA binding ability of the paired 
domain [29, 32]. The octapeptide is comprised of eight 
amino acids, where it functions as a protein interaction 
epitope, linking the paired domain with the homeodomain 
[29]. The transactivation domain is located at the carboxyl-
terminal end and acts as a mediator of PAX-3-DNA 
interactions. Neural crest cells are the first to express Pax-3 
(italicized for gene expression), and expression continues 
when melanoblasts develop and migrate from the neural 
crest to hair follicles [33]. Also, when melanoblasts migrate 
from the neural crest to the epidermal/dermal border, they 
mature into melanocytes, having Pax-3, Sox10, Mitf, Dct, 
Tyr, and TRP-1 gene expression, which may also play roles 
in melanocyte development [34, 35]. PAX-3 is also 
important in neural crest specification, and later in the 
expansion of committed melanoblasts formed early in 
development [36, 37]. Mutations in Pax-3 result in a disease 

called Waardenburg syndrome that includes abnormalities of 
the nervous system, eye, nose, as well as pigmentation 
defects affecting the skin, hair, and otic pigment cells [38, 
39]. Many mutations within Pax-3 can result in 
Waardenburg syndrome, but the most common mutation is 
in the paired domain [40]. 
 Despite the effect of PAX-3 on neural crest specification, 
its main and best described role is in the regulation of 
melanocyte differentiation [29, 37]. PAX-3 acts as both a 
transcriptional activator and repressor, and functions with 
other cofactors enhancing activation and repression [40]. The 
protein Sry-like HMG box 10 (SOX10) helps to enhance 
PAX-3’s transcriptional activity by direct interaction [41, 
42]. SOX10 is a member of the Sox family of transcription 
factors, and it contains an HMG DNA binding domain that 
directly interacts with the PAI sub-domain of the paired 
domain in the PAX-3 protein [32, 42]. SOX10 is expressed 
in melanoblasts and melanocytes and its main function is in 
regulation of neural crest and melanocyte differentiation. 
PAX-3 directly interacts with SOX10, forming a complex 
which then binds to the promoter of Microphthalmia trans-
cription factor (MITF). MITF is essential for melanoblast 
survival during and immediately following migration and is 
considered the major regulator during melanocytogenesis 
[37]. MITF activation is observed when the melanoblasts 
migrate to the epidermis [43]. In the melanoblasts, MITF 
activates the transcription of Dopachrome Tautomerase 
(Dct), Tyrosinase (Tyr), and Tyrosine related protein-1 
(TRP-1), which may aid in early melanoblast differentiation. 
Taken together, PAX-3, SOX10, and MITF determine the 
stages of melanocyte differentiation, and regulate the main-
tenance of melanoblasts and melanocyte stem cells [34]. 
 Not only does PAX-3 activate and regulate multiple pro-
teins but it also represses certain proteins during melano-
cytogenesis (Fig. 1). As previously stated, PAX-3 binds with  
 

 
Fig. (1). Possible role of PAX-3 in melanocytogenesis. (A) During 
melanocytogenesis, PAX-3 forms a complex with SOX10 to 
activate MITF. MITF then binds to the Dct promoter to allow the 
melanocyte to differentiate. However, PAX-3 can also compete 
with MITF in binding to Dct, and thus inhibiting it. (B) In the 
presence of β-catenin, the action of PAX-3 to block Dct 
transcription is lost. Dct then contributes to melanocyte 
differentiation. 
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SOX10 and together these activate MITF. MITF then acti-
vates Dct which encodes a melanogenic enzyme for melano-
blasts [44]. However, PAX-3 can also block Dct expression, 
which then inhibits MITF to bind to the promoter of Dct 
[44]. This prevents terminal differentiation in the melano-
blast, as PAX-3 and MITF share the same binding site on the 
Dct promoter and compete for binding [34]. Conversely, 
when beta-catenin is present, PAX-3 is displaced from the 
promoter of Dct [45]. This allows MITF to continuously 
activate Dct allowing melanocytes to fully differentiate. β-
catenin is signaled by Wnt proteins whose function is in 
neural crest migration, proliferation, and differentiation [46]. 
Some of the ability of β-catenin to drive cells toward diffe-
rentiation is through varying the function of PAX-3 and 
MITF [34, 47]. This may also explain PAX-3’s role in 
melanoblast regulation and how PAX-3 is absent or signi-
ficantly reduced in adult melanocytes.  

REGULATION OF PAX-3 IN ADULT 
MELANOCYTES 

 PAX-3 expression is observed in early development, but 
not in adult melanocytes, as previously stated [21]. Regu-
lation of PAX-3 is essential when melanocytes have diffe-
rentiated into adult cells. One regulator of PAX-3 is TGF-β, 
a cytokine that controls numerous functions in multiple cells 
[48, 49]. These functions include cellular behavior, differen-
tiation, survival, migration, proliferation, and/or adhesion 
[50]. TGF-β also protects homeostasis by acting as a tumor 
suppressor [51]. In melanoma cells, high levels of TGF-β are 
secreted within the tumor microenvironment, but tumor cells 
fail to respond and growth inhibition is prevented [49]. 
While there are other regulators of PAX-3, TGF-β has an 
important role in the maintenance of PAX-3 in adult 
melanocytes (Fig. 2). With limited UVR, keratinocytes 
residing in the epidermal layer of the skin secrete moderate 

 
Fig. (2). Ultra-violet radiation and melanocyte differentiation. During normal melanocyte function, keratinocytes in the dermal layer of the 
skin produce TGF-β that binds to the RI-RII receptor on the surface of melanocytes. This binding may signal phosphorylated R-Smad to 
form a complex with Smad4 and Ski, which inhibits the transcription of PAX-3. However, when UV radiation stimulates keratinocytes, both 
JNK and phosphorylated p53 respond by activating AP-1, which negatively regulates TGF-β. Phosphorylated p53 also induces POMC/MSH 
expression that allows αMSH to be secreted for binding to the MC1R on the cell surface of melanocytes. MC1R, with the aid of adenylate 
cyclase, activates the cAMP pathway to phosphorylate CREB, which allows PAX-3 and SOX10 to bind together and induce MITF 
transcription. MITF then induces the transcription of the downstream targets TYR, TRP-1, and Dct, which are indications of melanocyte 
differentiation. Both MITF and PAX-3 can also activate MET, a protein that has been implicated in melanoma metastasis. 
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levels of TGF-β, which signals through serine/threonine 
kinase receptor complexes (RI-RII) on the surface of 
melanocyte [52]. This binding at the cell membrane activates 
the Smad proteins to accumulate in the nucleus, which then 
controls targets of the TGF-β/Smad complex [26, 53]. Once 
TGF-β is bound to the RI-RII receptor, R-Smad is phos-
phorylated and forms a complex with Smad4 and Ski [54]. 
Ski forms this complex in melanocytes and directly inhibits 
the transcription of PAX-3 [55]. A recent study also showed 
that treating melanocytes with varying concentrations of 
TGF-β lead to the down-regulation of PAX-3 mRNA and 
protein expression [55]. This relationship between TGF-β 
and PAX-3 will be further investigated in this review.  

PAX-3 AND MELANOMA  

 Studies suggest that PAX-3 plays a critical role in 
melanocytogenesis [29, 34, 37, 47, 55]. However, it is not 
clear whether PAX-3 is involved in differentiated melano-
cytes and in melanoma. The expression of PAX-3 has been 
found in healthy melanocytes, in benign nevi, and in 
melanoma tumors [45, 56-58]. Because it is found in both 
benign and malignant lesions, the re-occurrence of PAX-3 
expression may be involved in the transformation of normal 
melanocytes into malignant melanoma. PAX-3 expression in 
melanocytes of normal skin has been observed, which may 
result from TGF-β activity loss in keratinocytes. 
Interestingly, PAX-3 has been used as a staging marker for 
melanoma and in the detection of circulating melanoma cells 
[37, 59]. PAX-3 is also recognized as an immunogenic 
protein in melanoma [60, 61]. It has also been found in 
primary tumors as well as in distinct stages of metastatic 
melanomas such as stages I and IV [62, 63]. This indicates 
that the regulation of PAX-3 could be a key factor in 
melanoma initiation, progression, and metastasis.  
 PAX-3 molecules could be involved in the progression of 
melanoma because of its role in cellular resistance to 
apoptosis. It has been shown that PAX-3 directly regulates 
the tumor suppressor protein PTEN, at least in myogenesis 
[64]. PTEN is involved in the progression through the G1 
cell cycle check point by negatively regulating the 
PI3K/AKT signal transduction pathway [65]. This signaling 
pathway is responsible for regulating cell proliferation and 
resistance to apoptosis [29]. PAX-3 interacts with an alleged 
homeodomain binding motif within the PTEN promoter, 
which provides an opportunity for PAX-3 to modulate PTEN 
expression and ultimately allow for resistance to apoptosis 
[64]. This may be significant because PAX-3 expression in 
melanoma could induce resistance to apoptosis observed in 
highly malignant melanoma.  
 The loss of PAX-3 can also be linked with the loss of 
TGF-β activity (Fig. 2). Levels of TGF-β are reduced when 
keratinocytes are stimulated with UVR. Studies suggest that 
TGF-β expression is also suppressed at both the transcrip-
tional and protein level following UVR of the skin [55, 66]. 
The repression of TGF-β was caused by the UVR-induced 
expression of both Jun N-terminal kinase (JNK) and the 
tumor suppressor p53. Collectively, JNK and p53 activate 
the transcription of activating protein 1 (AP-1) [67, 68]. This 
allows p53 to stimulate the production of pro-opiomelano-
cortin/melanocyte stimulating hormone (POMC/MSH) in 

keratinocytes [27, 69], which releases the αMSH ligand that 
binds to the melanocortin-1 receptor (MC1R) on the 
melanocyte cell surface [69]. Once the αMSH ligand binds to 
MC1R, a signal cascade that works with adenylate cyclase 
leads to the production of cyclic adenosine monophosphate 
(cAMP) [6]. As levels of cAMP reach a certain threshold, 
the phosphorylation of cAMP response element binding 
transcription factor (CREB) occurs via protein kinase A [69]. 
CREB stimulates both PAX-3 and SOX10 which together 
form a complex to activate MITF. MITF, the master regu-
lator of melanocyte differentiation, plays multiple roles in 
melanoma. Loss of MITF results in cell cycle arrest and 
apoptosis, moderate levels lead to proliferation and survival, 
and increased expression results in differentiation [70, 71]. 
MITF and PAX-3 can also independently initiate the 
expression of receptor tyrosine kinase MET, which plays a 
role in cell migration and growth, and in cancer progression 
and metastasis [72]. 
 TGF-β plays an important role on PAX-3 in melanocytes, 
but loses its effect on melanoma cells that ultimately leads to 
melanocyte differentiation, metastasis, and survival [55]. 
However, the cause of the lost effect of TGF-β on PAX-3 in 
melanoma is currently unknown. It has been suggested that 
when Ski localizes to the cytoplasm in melanocytes, effects 
of TGF-β on the Smad complex are restricted and nuclear 
localization is prevented [51, 73]. Further study may 
determine the role of TGF-β in regulating PAX-3 in 
melanocytes and melanoma. The direct role that PAX-3 
plays during intermediate stages of melanoma (i.e., stages II 
and III), must be identified to better understand the process 
of melanoma progression. Given PAX-3’s expression in late 
stage metastatic melanoma but absence of intermediate 
stages, targeting PAX-3 could potentially shift the nature of 
melanoma tumors to a less aggressive, less metastatic form.  

CONCLUSIONS  

 Melanoma is a deadly skin cancer that is becoming inc-
reasingly common. Treatments such as surgery, radiation, 
and chemotherapy have failed in curbing late stage 
metastatic disease. Immunotherapy has emerged to fill this 
void by providing a novel approach to treating metastatic 
melanoma [11]. Treatments such as IL-2 administration, 
whole cell vaccines, adoptive T cell transfer, and immuno-
stimulating drug treatment have had some success in treating 
melanoma, but a standard of care remains elusive. The 
improved targeting of metastatic melanoma is needed for any 
of these techniques to be fully effective. The melanocyte 
protein PAX-3 is important in the regulation of melanocyte 
differentiation and is a potential target in melanoma. It has 
been implicated as a differentiation factor in melanoma, and 
has been increasingly used as a staging marker, with 
expression in stages I and IV. TGF-β regulates PAX-3 
through the activation of the Smad pathway. However, upon 
increased UVR exposure, TGF-β functions are blocked, 
allowing PAX-3 molecules to activate downstream targets 
for melanocyte differentiation. In malignant melanoma, 
TGF-β is still produced, but its effect is lost on PAX-3, 
allowing the protein to remain active. The targeting of PAX-
3 could potentially shift melanoma tumors to less aggressive 
and less metastatic form of the disease. PAX-3 siRNA could 
also block the differentiation, progression, and survival of 
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the melanoma allowing a secondary treatment, such as 
immunotherapy or a combination of chemotherapy and 
immunotherapy to more successfully destroy the cancer. 
This review suggests that both in vitro and in vivo studies are 
needed to determine the specific activity of PAX-3 in the 
differentiation of melanocytes, and staging of malignant 
melanoma. Another direction of study could focus on the 
signaling pathways of TGF-β and how its effect on PAX-3 is 
lost. Understanding the regulation of PAX-3 in the 
development of melanocytes and melanoma could provide 
an opportunity for drug targeting and advancement in the 
treatment of metastatic melanoma. 
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ABBREVIATIONS  

TGF-β = Transforming growth factor-beta 
UVR = Ultraviolet radiation 
CTLA-4 = Cytotoxic T lymphocyte-associated antigen 4  
PAX-3 = Paired box 3 
SOX10 = Sry-like HMG box 10 
HTH = Helix-turn-helix 
MITF = Microphthalmia transcription factor 
Dct = Dopachrome tautomerase 
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