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Abstract: Background: There are few comparative reports on the overall accuracy of neural networks (NN), assessed only 

versus multiple logistic regression (LR), to predict events in cardiovascular surgery studies and none has been performed 

among acute aortic dissection (AAD) Type A patients. 

Objectives: We aimed at investigating the predictive potential of 30-day mortality by a large series of risk factors in AAD 

Type A patients comparing the overall performance of NN versus LR. 

Methods: We investigated 121 plus 87 AAD Type A patients consecutively operated during 7 years in two Centres. 

Forced and stepwise NN and LR solutions were obtained and compared, using receiver operating characteristic area under 

the curve (AUC) and their 95% confidence intervals (CI) and Gini’s coefficients. Both NN and LR models were  

re-applied to data from the second Centre to adhere to a methodological imperative with NN. 

Results: Forced LR solutions provided AUC 87.9±4.1% (CI: 80.7 to 93.2%) and 85.7±5.2% (CI: 78.5 to 91.1%) in the 

first and second Centre, respectively. Stepwise NN solution of the first Centre had AUC 90.5±3.7% (CI: 83.8 to 95.1%). 

The Gini’s coefficients for LR and NN stepwise solutions of the first Centre were 0.712 and 0.816, respectively. When the 

LR and NN stepwise solutions were re-applied to the second Centre data, Gini’s coefficients were, respectively, 0.761 and 

0.850. Few predictors were selected in common by LR and NN models: the presence of pre-operative shock, intubation 

and neurological symptoms, immediate post-operative presence of dialysis in continuous and the quantity of  

post-operative bleeding in the first 24 h. The length of extracorporeal circulation, post-operative chronic renal failure and 

the year of surgery were specifically detected by NN. 

Conclusions: Different from the International Registry of AAD, operative and immediate post-operative factors were seen 

as potential predictors of short-term mortality. We report a higher overall predictive accuracy with NN than with LR. 

However, the list of potential risk factors to predict 30-day mortality after AAD Type A by NN model is not enlarged  

significantly. 
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INTRODUCTION 

 Acute aortic dissection (AAD) is a lethal condition  
requiring emergency surgical therapy, mainly replacing the 
ascending aorta and/or the aortic arch with or without aortic 
valve replacement [1]. Short-term mortality of medically 
treated patients after Type A dissection is high, peaking 
>50% in the first 48 hours following presentation [2].  
In-hospital mortality of operated patients ranges 7-30% in  
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recent series [1-11] and several factors have been considered 
to contribute to mortality risk [1, 2, 5-7, 11]. Among these, 
large lists of pre-operative and intra-operative factors have 
been studied [1-12]. The International Registry of AAD, 
collecting data from 18 referral centres worldwide identified 
a preoperative risk stratification scheme and a real average 
25.1% figure for surgical mortality in AAD Type A in the 
current era by investigating 290 clinical variables and their 
relationship to surgical outcome in 526 of 1032 patients  
enrolled from 1996 to 2001 [2, 11]. Independent preopera-
tive predictors of operative mortality were history of aortic  
valve replacement, migrating chest pain, hypotension as  
sign of AAD Type A, preoperative cardiac tamponade and 
preoperative limb ischemia [11]. In other investigations, 
techniques of surgical procedure have been considered 
among possible risk factors and the impact of retrograde, 
anterograde or selective cerebral perfusion after circulatory 
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arrest was studied [3, 4, 7-9], although the results were  
not clear-cut to define the role of these as risk factors for 
short-term post-operative mortality. 

 When predictive modelling is used to challenge a very 
large database where a quantity of patients with a known 
outcome contributed a long list of variables, the overall  
predictive accuracy rarely exceeds 75% which has been  
repeatedly shown in the surgical domain by logistic regres-
sion (LR) based outcome predictive models after coronary 
artery bypass grafts (CABG) [13-15]. More recently,  
artificial neural networks (NN) were used for risk factor 
identification and mortality prediction in CABG surgery  
[16-18], aimed at ameliorating overall predictive accuracy in 
comparison to LR [18]. 

 We investigated 121 patients consecutively operated  
during 7 years at a single Cardiac Surgical University Centre 
and run for the first time a NN model aimed at assessing  
the predictive potential of 30-day mortality by a large series 
of previously proposed risk factors, including surgical  
techniques, also comparing the performance of this model 
with standard LR results, using a well accepted metric [16, 
17]. According to what has recently been reported with  
outcome predictive models following CABG surgery [18], 
NN model performance was comparatively better here than 
LR model performance. Moreover, when NN model was  
re-applied [19, 20] to data from a second Regional Hospital 
Centre where 87 patients were operated during a similar time 
period, there was a further increase in the performance.  
We therefore propose a list of potential risk factors to predict 
30-day mortality after AAD Type A by NN model, tested on 
two independent series of patients, as methodology dictates 
in case of NN modelling, which now waits being confirmed 
also outside Italy for larger widespread use. 

METHODS 

Cohorts and Risk Factors 

 There were 121 patients undergoing surgical repair  
of AAD between January 2001 and early 2008 at the  
Cardiac Surgical Department of the University of Rome  
“La Sapienza”. Diagnosis was made in emergency with 
computer tomographic (CT) scan and/or trans-esophageal 
echocardiography. Anesthesia was induced by propofol  
(1-1.8 /ml) and sufentanil (0.35-1 /kg) and maintained  
by propofol 1-1.8 /ml/hr and sufentanil 0.35-0.51 /kg/hr. 
For each patient there were 37 potential predictors including 
demographic characteristics and pre-, operative and  
post-operative variables, selected by considering what  
had been previously analysed in the Literature (Table 1). 
However, for later inclusion in multivariable statistics,  
the criterion was that significant differences (p<0.05) by 
univariate analysis were seen in this patient series between 
dead patients and survivors at 30-day post-operation. 

 Thus, year of surgery, age, sex and NYHA class,  
presence of clinically diagnosed diabetes, atherosclerosis, 
high blood pressure and Marfan syndrome were considered. 
Moreover, among AAD onset symptoms we coded: shock, 
syncope, pericardial effusion, pain, pulselessness, and  
type and localization of ischemia. Whether intubation and 
hemodynamic instability were present at arrival or free blood 
was present in the pericardium were coded. Neurological 

deficits, main ischemic presentation, time delay from  
symptoms presentation (whether < or > 24 hours) and  
previous cardiac surgery were also coded. Among  
intra-operative coded variables there were: site of canulation, 
whether femoral vein or artery, right atrium and ascending 
aorta, right atrium and axillary artery by-pass, cross-
clamping and total circulatory arrest time in min after  
extracorporeal perfusion started. Moreover, we coded 
whether cerebral perfusion was anterograde or retrograde 
and the temperature in Celsius degrees. Post-operative  
complications were noted for each patient and included: total 
bleeding in ml, limb ischemia, by clinical and CT documen-
tation, renal complications, including oligo-anuria and con-
tinuous hemodialysis, gastrointestinal complications such as 
bleeding and ischemia, and other complication requiring 
medical or surgical treatment and cerebral accidents, neuro-
logical deficits and coma, by clinical and CT documentation. 
Finally, we considered total intubation time in min and 
whether tracheostomy occurred. For the definition of the 
analysed variables we followed those reported in previous 
studies [1-9] when available. Time and causes of death at 30-
day following surgery were considered and if patients were 
alive at 720 hours after surgery they were censored. 

 There were also 87 patients undergoing surgical repair of 
AAD between January 2002 and early 2008 at the Cardiac 
Surgical Department of the Sant’Anna Hospital, Cardiac 
Surgical Department. Diagnosis was made in emergency 
with computer tomographic (CT) scan and/or trans-
esophageal echocardiography and anesthesia was performed 
similarly. Covariates were obtained from this series of  
patients with superposable methods adopted for the Rome 
series. 

Multivariable Statistics and Analysis 

 There are excellent recent books to have covered  
multiple logistic function analysis and its use to assess  
the relationship between covariates and events including 
mortality [21-25]. On the other hand, multilayers feed-
forward networks were demonstrated by Hornik et al. with 
appropriate internal parameters (weights) to approximate an 
arbitrary nonlinear function [26]. Because prediction can be 
restated as a function approximation problem, it follows that 
artificial neural networks have the potential to solve major 
problems in a wide range of applications where their use has 
been reviewed to show advantages and disadvantages versus 
logistic regression for predicting medical outcomes [19, 20]. 
Dayhoff and De Leo [20] have recently reviewed what is 
inside the black box of neural network models in describing 
the most popular squashing function (also known as activa-
tion function) whereby the multilayered perceptron (MLP) 
actually operates (see Appendix 1 for further details). 

 With all modelling methods an important part is the  
selection (and the number) of prognostic variables to be  
included in the model. The selection may be done a priori 

based on previous knowledge, as it was done in the present 
investigation, to prevent the data driven method used more 
often that not, which leads to a different set of variables  
being selected each time [27]. Also the methods used to run 
the predictive models is important, since when covariates  
are numerous as in the present study, one may obtain not 
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directly comparable solutions among different cohorts, if the 
selected procedure is stepwise. 

 Data are expressed as means ± SD or SE (when appro- 
priate). Follow-up data, during 30 days, were investigated by 
modelling the presence (coded 1) or absence (coded 0) of 
post-operative mortality using logistic function [y=1/ 
(1+Exp(-1*coeff)] with all 22 explored covariates included 
(forced) in the model. NCSS software version 2007 (released 
August 14, 2007 by J Hintze, Kaysville, Utah; see www. 
ncss.com) and MedCalc software (version 9.6.3.0; see 
www.medcalcsoftware.com) were used. Although solutions 
were identical, the latter also calculates the area under  
the ROC curve (AUC) with 95% confidence intervals (CI) 
and makes comparisons by a well known method [28-33]. 
Tiberius Data Mining © software (version 5.4.3; see 
www.tiberius.biz) was used to obtain MLP neural network 
solutions. These were from a 3-layer network, including the 
hidden unit containing 2 neurons (one linear and the second 
non-linear), with 22 input nodes (corresponding to the 22 
risk factors selected for logistic function solutions) and  
one output unit, modelling the dichotomous risk outcome 
(see Appendix 1). MLPs were trained on all patterns but  
preventing over-fitting [20]. The MLP output of Tiberius 
software consists of an Excel file where, for each of the  
cohort-specific individuals (apart from those with missing 
values) the following are calculated: modelled outcome, 
model error (versus actual outcome), calculated values for 
each neuron, a constant and a strength value based on a scale 
from -1 to +1, where 0 is a borderline case and +1 is the best 
true case and -1 is the best false case on the training data. 
The higher the absolute value of the strength, the stronger 
the classification. Fitted MLP after training were obtained 
for the Rome Center. Then the model was re-run on  
the Sant’Anna Hospital cohort data, running the procedure 
“predict/validate using a saved model on a new data set” as 
provided by Tiberius software. Corrado Gini’s coefficient 
and graph [34] were produced for both LR and NN models 
by Tiberius software. A Gini coefficient is the area under  
the diagonal and the curve whereas the AUC is the total  
area under an ROC. Therefore it is easy to obtain: 
AUC=(Gini*0.5)+0.5. AUC were compared between models 
and among solutions obtained from the 2 cohorts by  
MedCalc software. Tabulations of weights derived from 
trained MLP [35, 36] are not shown. A value of p<0.05 was 
considered statistically significant in all cases. 

RESULTS 

 Table 2 shows univariate differences between survivors 
and 30-day post-operative deaths following AAD Type A 
among the grouped 208 patients operated in the 2 Centres of 
the present study. The comparison with Table 1 illustrates a 
frequent situation in the Literature whereby out of a series of 
22 potential risk factors selected from a larger series of 37 
assessed previously (Table 1), based on a significant  
criterion defined in one Centre, the simple merging of data 
with those from a second Centre, decreased the number of 
significant univariate potential predictors from 22 to 9. 

 Of the 208 overall patients operated in the 2 Centres  
(respectively Rome and Sant’Anna Hospital) between 2001 
and early 2008, the most frequently interventions performed 
were those on ascending aorta (respectively 56 and 38  

patients) followed by those on ascending aorta and aortic 
valve (respectively 21 and 11 patients), those on ascending 
aorta and hemiarch (respectively 15 and 7 patients) and those 
on ascending aorta and arch (respectively 10 and 12  
patients). There were relatively few Cabrol (respectively 3 
and 1 patients) as compared to Bentall (respectively 16 and 
17 patients) surgery. There was a notable difference (see also 
Table 3 for the coded significant difference) between the 2 
Centres in the proportion of anterograde brain perfusion  
performed (47 of 121 versus 67 of 87) versus the proportion 
of retrograde brain protection (respectively 73 of 121 versus 
14 of 87). However, the duration of extracorporeal circula-
tion was similar (respectively 211±81 versus 216±76 min) in 
spite of significantly shorter circulatory arrest time in 
Sant’Anna Hospital (25±23 min) than in Rome (53±34 min, 
p<0.001). On the other hand, 24-hour postoperative bleeding 
was only moderately higher in Rome (1022±986 ml) than  
in Sant’Anna Hospital (768±638 ml, p<0.05), which was 
unrelated to the type of intervention performed (data not 
shown). Table 3 also shows other slight differences between 
data obtained in the 2 Centres. 

 Tables 3 and 4 present respectively for the Rome and the 
Sant’Anna Hospital Centres, the forced LR results whereby 
the 22 potential factors were assessed to see which was a 
multivariable predictor of 30-day post-operative mortality. 
Interestingly enough, these tables show that the forced  
LR solutions did not present in the Rome and Sant’Anna 
Hospital Centres the same significant covariates to predict 
30-day post-operative mortality. Thus in the Rome Centre, 
previous cardiac surgery (p=0.0246) and type of brain  
protection (anterograde vs retrograde: p=0.0443) were  
predictors whereas in the Sant’Anna Hospital Centre only 
the pre-operative presence of shock was a predictor 
(p=0.0082), respectively among 120 and 87 patients with 
complete data. The forced LR solution of Table 3 provided 
an AUC 87.9±4.1% with 95% CI from 80.7 to 93.2% which 
was not statistically different from the AUC obtained by the 
forced LR solution of Table 4 (85.7±5.2% with 95% CI from 
78.5 to 91.1%). 

 By Tiberius software it was then ascertained whether 
stepwise solutions of LR or NN models might differ. Fig. (1) 
shows in a compact way that these predictive models do  
not select the same predictors neither are they ranked  
similarly. In fact, among significant predictors to be kept in 
stepwise solutions among the 120 AAD Type A operated 
patients from the Rome Centre, LR model selected in  
rank order: immediate post-operative presence of dialysis in 
continuous, renal complications, chronic renal failure, coded 
operative brain protection (anterograde better than retrograde 
perfusion), pre-operative neurological symptoms, age, previ-
ous cardiac surgery, the length of extracorporeal circulation, 
the operative presence of hemopericardium and post-
operative enterological complications. On the other hand, 
NN model selected in rank order: immediate post-operative 
presence of chronic renal failure, coded operative brain  
protection (anterograde better than retrograde perfusion), 
post-operative presence of dialysis in continuous,  
pre-operative neurological symptoms, post-operative renal 
complications, the length of extracorporeal circulation, age, 
the operative presence of hemopericardium, pre-operative 
presence of intubation, post-operative limb ischemia and 
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Table 1. Potential Predictors of AAD Type A Investigated in the Literature Between 2000 and 2008 

Variables 2000 

Ref1 

2000 

Ref2 

2000 

Ref3
§
 

2001 

Ref4
§
 

2004 

Ref5 

2006 

Ref6 

2006 

Ref7 

2008 

Ref8
§
 

2008 

Ref9
§
 

Rome 

Study 

 

P< 

Demographic 

Year of surgery +  +       + * 

Age + +  + + + + + + + * 

Sex + +  + + + + + + + * 

NYHA class +   +        

Pre-operative 

Diabetes  +    +    +  

Atherosclerosis  +        +  

High blood pressare + +   + +  + + + * 

Marfan syndrome  +  + +  +  + + * 

Shock + + +  +    + + * 

Syncope  +        +  

Intubated         + + * 

Pericardial effusion         + +  

Pain + +    +    +  

Pulselessness +         +  

Neurological symptoms   +      + + * 

Ischemic complications +        + +  

Onset symptoms    +      +  

Previous cardiac surgery + +  + + +    + * 

Diagnosis + +        +  

Coronary artery disease +     +      

COPD     + +      

Ejection fraction    + +       

Operative 

Canulation site +      + + + +  

Extracorporeal circulation (min)   + +    +  + * 

Circulatory arrest (min) +       + + + * 

Clamping time (min)    +    +  +  

Temperature (°C)        + + +  

Brain protection (coded)       + + + + * 

Bicuspid aortic valve    +      + * 

Aortic insufficiency    +   +   +  

Hemopericardium +         + * 

Type of surgery (coded) +   + + + +  + + * 

Coronary bypass +     +    +  

Aortic ropture +   +        
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Table 1. contd…. 

Variables 2000 

Ref1 

2000 

Ref2 

2000 

Ref3
§
 

2001 

Ref4
§
 

2004 

Ref5 

2006 

Ref6 

2006 

Ref7 

2008 

Ref8
§
 

2008 

Ref9
§
 

Rome 

Study 

 

P< 

Immediate Post-operative 

Bleeding in the first 24 h (ml)    + + +   + + * 

Limb ischemia          + * 

Renal complications       +   + * 

Dialysis in continuous      + +   + * 

Chronic renal failure   +  +    + + * 

Enterological complications      + +   + * 

Neurological deficits    + + + + + + + * 

Tracheosthomy     + +    +  

Respiratory insufficiency     + +      

Malperfusion syndrome    +  +      

Variables Studied (N) 18 11 5 16 14 17 11 10 17 37 22 

Table 1. Apart the variable named “limb ischemia”, only potential predictors considered by at least 2 Studies, including our own, were considered. AAD: ascending aortic dissection; 
COPD: chronic obstructive pulmonary disease. 

§ : marked references are technical reports rather than investigations purposely undertaken to assess the potential predictors of AAD Type A. 
*: p<0.05 when comparing 30-day post-operative deaths versus patients alive, by univariate analysis, after Type A acute aortic dissection among 121 patients operated at the  

University of Rome “La Sapienza”, Cardiac Surgical Department: of the 37 variables investigated in our own Study, 22 showed significant differences and were therefore considered 
for multivariate analyses. 
 

Table 2. Univariate Differences Between Survivors and 30-Day Post-Operative Deaths Following Type A Acute Aortic Dissection 

among 208 Patients Operated, Between 2001 and Early 2008, at the University of Rome “La Sapienza” or Sant’Anna  

Hospital, Cardiac Surgical Departments 

Covariates Survivors (n=155) 30-day Deaths
 #
 (n=53, 25.5%) F p< 

Demographic 

Year of surgery 2005±2 2005±2 1.37  

Age (years) 61±12 66±10 9.32 ** 

Sex (0=female; 1=male) 0.63 0.66 0.10  

Pre-operative 

High blood pressure 0.86 0.84 0.15  

Marfan syndrome 0.07 0.05 0.45  

Shock 0.15 0.41 17.97 *** 

Intubated 0.05 0.23 14.83 ** 

Neurological symptoms 0.10 0.08 0.20  

Previous cardiac surgery 0.02 0.12 8.65 * 

Operative 

Extracorporeal circulation (min) 199±57 248±111 17.31 ** 

Circulatory arrest (min) 37±28 53±39 10.74 ** 

Brain protection (coded)a 1.47±0.59 1.77±0.62 10.52 ** 

Bicuspid aortic valve 0.03 0.02 0.21  

Hemopericardium 0.39 0.49 1.67  

Type of surgery (coded)b 3.43±2.47 3.64±2.30 0.31  
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Table 2. contd…. 

Covariates Survivors (n=155) 30-day Deaths
 #
 (n=53, 25.5%) F p< 

Immediate Post-perative 

Bleeding in the first 24 hours (ml) 976±817 765±964 2.55  

Limb ischemia 0.09 0.10 0.05  

Renal complications 0.17 0.38 10.85 ** 

Dialysis (continuous) 0.11 0.33 15.38 ** 

Chronic renal failure 0.01 0.20 30.13 *** 

Enterological complications 0.03 0.08 3.14  

Neurological deficits 0.14 0.39 9.52 * 

Table 2. Data are mean±standard deviation unless for discrete variables where only proportions are given. # : rates were 33 of 121 (27,3%) and 20 of 87 (22.9%) in Rome and S. Anna 
Hospital, Catanzaro (NS), respectively. 

F= values for the analysis of variance: *:p<0.05; **:p<0.01; ***:p<0.001. 
 

Table 3. Forced (All Covariates Entered) Logistic Regression Model to Predict 30-Day Post-Operative Status after Type A Acute 

Aortic Dissection among 121 Patients Operated, Between 2001 and Early 2007, at the University of Rome “La Sapienza”, 

Cardiac Surgical Department 

Covariates Mean ±SD F Coeff SE t p= OR ±95%CI 

Demographic 

Year of surgery 2004±2 * -0.1016 0.1976 -0.51 0.6071 0.90 0.61-1.33 

Age (years) 63±11  0.0141 0.0313 0.45 0.6527 1.01 0.95-1.08 

Sex (0=female; 1=male) 0.67  -0.4593 0.6420 -0.71 0.4743 0.63 0.18-2.22 

Pre-operative 

High blood pressure 0.82  -0.3895 0.8409 -0.46 0.6432 0.67 0.13-3.52 

Marfan syndrome 0.03 ** -15.9883 975.2700 -0.00 0.9869 0.00 0.00-0.00 

Shock 0.15 ** 0.7515 0.9802 0.77 0.4433 2.12 0.31-14.47 

Intubated 0.14  1.4199 1.0819 1.31 0.1894 4.13 0.50-34.48 

Neurological symptoms 0.14 ** -3.1865 1.7932 -1.78 0.0756 0.04 0.00-1.39 

Previous cardiac surgery 0.03  3.1338 1.3942 2.45 0.0246 22.96 1.49-352.95 

Operative 

Extracorporeal circulation (min) 211±81  0.0034 0.0032 1.06 0.2889 1.01 1.00-1.01 

Circulatory arrest (min) 53±34 *** 0.0078 0.0092 0.85 0.3965 1.01 0.99-1.03 

Brain protection (coded)a 1.45±0.60 ** 1.0478 0.5210 2.01 0.0443 2.85 1.02-7.92 

Bicuspid aortic valve 0.03  -0.7811 1.7660 -0.44 0.6583 0.46 0.01-14.59 

Hemopericardium 0.24 *** 0.7868 0.6535 1.20 0.2286 2.20 0.61-7.90 

Type of surgery (coded)b 2.46±1.62 *** 0.0203 0.2025 0.10 0.9203 1.02 0.69-1.52 

Immediate Post-perative 

Bleeding in the first 24 hours (ml) 1022±986 * 0.0000 0.0002 0.00 0.9871 1.00 0.99-1.00 

Limb ischemia 0.14 ** -0.9928 1.1412 -0.87 0.3843 0.37 0.04-3.47 

Renal complications 0.26  -16.3139 809.7974 -0.02 0.9839 0.00 0.00-0.00 

Dialysis in continuous 0.25 ** 15.9259 809.7979 0.02 0.9843 0.00 0.00-0.00 

Chronic renal failure 0.07  4.1363 1.5620 2.65 0.0080 62.57 2.93-1336.62 

Enterological complications 0.05  0.9715 1.6152 0.60 0.5475 2.64 0.11-62.63 

Neurological deficits 0.31 ** -0.0429 0.4881 -0.09 0.9299 0.96 0.37-2.49 

Constant   199.1009      

Table 3. There were 120 patients with data complete for all 22 covariates considered and 33 were 30-day deaths (27.5%). The forced logistic model classified correctly 57.58% of 
patients who died and 91.95% of survivors (82.5% of overall cases were thus correctly classified) with a global chi-square equal to 50.56 (p<0.0005). 

Only proportions are given when data are discrete. In case of continuous and coded covariates, summary statistics are given as mean±standard deviation (SD). 
a : codes are 1 = retrograde; 2 = anterograde; 3 = anterograde and retrograde. 
b : codes are 1 = ascending aorta; 2 = ascending aorta plus hemiarch; 3 = ascending aorta plus arch; 4 = ascending aorta plus aortic valve; or surgery according to: 5 = Bentall; 6 = 
Cabrol. 

F= analysis of variance compared to data from Table 4: *:p<0.05; **:p<0.01; ***:p<0.001; Coeff: logistic regression coefficient; SE= standard error; A value of t (coeff/SE) t>|1.96| 
was considered statistically significant (p<0.05). OR = odds ratio ± 95%CI (lower and upper 95% confidence limits). 
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Table 4. Forced (All Covariates Entered) Logistic Regression Model to Predict 30-Day Post-Operative Status after Type A Acute 

Aortic Dissection among 87 Patients Operated, Between 2002 and Early 2008, at Sant’Anna Hospital, Cardiac Surgical 

Department 

Covariates Mean ±SD Coeff SE t p= OR ±95%CI 

Demographic 

Year of surgery 2005±2 0.1559 0.3548 0.44 0.6603 1.17 0.58-2.34 

Age (years) 63±12 -0.0183 0.0582 -0.31 0.7534 0.98 0.88-1.10 

Sex (0=female; 1=male) 0.60 0.0997 1.0592 0.09 0.9250 1.10 0.14-8.81 

Pre-operative 

High blood pressure 0.90 -2.7545 1.7825 -1.54 0.1223 0.07 0.00-2.09 

Marfan syndrome 0.13 -0.4687 1.7302 -0.27 0.7865 0.63 0.02-18.59 

Shock 0.33 3.5944 1.3587 2.64 0.0082 36.39 2.54-521.87 

Intubated 0.06 79.9123 5007.2077 0.02 0.9873 0.00 0.00-0.00 

Neurological symptoms 0.03 -63.1073 4023.8080 -0.02 0.9875 0.00 0.00-0.00 

Previous cardiac surgery 0.07 17.2228 1389.1579 0.02 0.9901 0.00 0.00-0.00 

Operative 

Extracorporeal circulation (min) 216±76 0.0109 0.0071 1.54 0.1225 1.01 1.00-1.03 

Circulatory arrest (min) 25±23 -0.0278 0.0308 -0.90 0.3667 0.97 0.92-1.03 

Brain protection (coded)a 1.70±0.59 -0.4011 0.8997 -0.45 0.6557 0.67 0.11-3.90 

Bicuspid aortic valve 0.01 -16.4768 10209.3636 -0.00 0.9987 0.00 0.00-0.00 

Hemopericardium 0.68 1.5558 1.3749 1.13 0.2578 4.74 0.32-70.14 

Type of surgery (coded)b 4.93±2.60 0.2358 0.2563 0.92 0.3576 1.027 0.77-2.09 

Immediate Post-perative 

Bleeding in the first 24 hours (ml) 768±638 -0.0019 0.0012 -1.58 0.1304 1.00 0.99-1.00 

Limb ischemia 0.02 -14.2374 7265.5683 -0.02 0.9994 0.00 0.00-0.00 

Renal complications 0.18 -30.2771 2059.4766 -0.01 0.9883 0.00 0.00-0.00 

Dialysis in continuous 0.07 46.3386 3549.8350 0.01 0.9896 0.00 0.00-0.00 

Chronic renal failure 0.05 49.2799 3570.6862 0.01 0.9890 0.00 0.00-0.00 

Enterological complications 0.03 -28.2509 11745.4953 -0.00 0.9981 0.00 0.00-0.00 

Neurological deficits 0.08 47.9856 2880.9335 0.02 0.9867 0.00 0.00-0.00 

Constant  -314.7065      

Table 4. There were 87 patients with data complete for all 22 covariates considered and 20 were 30-day deaths (22.9%). The forced logistic model classified correctly 80% of patients 

who died and 100% of survivors (94.05% of overall cases were thus correctly classified) with a global chi-square equal to 70.23 (p<0.0001). Other specifications as in Table 3.  

enterological complications and the year of surgery. There 
were 9 predictors selected by both models although with 
different rank order, whereas previous cardiac surgery was 
selected among significant stepwise predictors by LR only, 
and NN model detected the pre-operative presence of intuba-
tion, post-operative limb ischemia and the year of surgery as 
further significant predictors. 

 Since out of the Rome Centre experience forced and 
stepwise LR solutions did select similar potential risk factors 
for 30-day mortality, and post-operative chronic renal failure 
was defined as a significant predictor by both forced LR and 
stepwise NN model, it was further ascertained whether the 
overall accuracies of these latter solutions might differ. 
There was no significant difference (p=0.553) between  
the AUC of the forced LR solution of Table 3 and the AUC  
 

obtained by the stepwise NN solution shown in Fig. (1) 
(90.5±3.7% with 95% CI from 83.8 to 95.1%). On the other 
hand, the Gini’s coefficients obtained from the Rome Centre 
data with stepwise models were different, the larger being by 
NN than LR model (0.816 versus 0.712). This means that 
using the 12 covariates selected by the stepwise NN model 
enabled a more accurate prediction of 30-day mortality, 
compared with that seen after the stepwise LR model  
selection which used 10 covariates, out of 22 covariates 
measured among 120 patients from the Rome Centre. 

 Fig. (2) shows the re-application to Sant’Anna Hospital 
data of the LR and NN models constructed on the Rome 
Centre data. LR model selected in rank order: immediate 
post-operative presence of dialysis in continuous, neurologi-
cal deficits, pre-operative presence of intubation, the quantity  
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of post-operative bleeding in the first 24 h, the presence of 
pre-operative shock and neurological symptoms. NN model 
selected in rank order: the presence of pre-operative shock, 
the length of extracorporeal circulation, post-operative 
chronic renal failure, the year of surgery, pre-operative pres-
ence of intubation, immediate post-operative presence of 
dialysis in continuous, the quantity of post-operative bleed-
ing in the first 24 h, and the presence of pre-operative neuro-
logical symptoms. Interestingly, 5 predictors were selected 
by both models, when re-applied to Sant’Anna Hospital data, 
although with different rank order, whereas post-operative 
neurological deficits was presented among significant step-
wise predictors by LR only, and NN model detected the 
length of extracorporeal circulation, post-operative chronic 
renal failure and the year of surgery as further significant 
predictors. Again, the Gini’s coefficients obtained from the 
Rome Centre model applied to Sant’Anna Hospital data with 
stepwise models were different, the largest being by NN 
(0.850 versus 0.761 of the LR re-applied model). 

DISCUSSION 

 The incidence of AAD has been estimated at from 5 to 30 
per million people per year in the United States, which is 880 
to 147 times less than the incidence of acute myocardial in-
farction (AMI), but still provides an important clinical prob-
lem and sometimes a dilemma for the differentiating difficul-
ties between these presentations [2]. In addition, since AAD 
and AMI advocate for very distinct therapeutic strategies, 
risk profiling may be important for the former and might 
rapidly dictate surgical treatment aimed at offering the 
chance of decreasing short-term mortality from as high  
as 58% in medically treated patients to the current average 
figure of 25.1% (and sometimes less) when surgery is  
performed [2]. The International Registry of AAD [2, 11] 
confirmed that patient selection plays an important role  
in determining surgical outcomes in patients with Type A 
presentation and that knowledge of significant risk factors 
for operative mortality may contribute to better management 

 

 

 

 

 

 

 

Variable Training data Keep 

LOGISTIC RUN TO ROME DATA 

Dialysis in continuous ||||||||||||||||||||||||||||||||||||||||||||||||||| 1 
Renal complications ||||||||||||||||||||||||||||||||||||| 1 
Chronic renal failure |||||||||||||||||||||||||| 1 
Brain protection (coded) ||||||||||||||| 1 
Neurological symptoms ||||||||||||| 1 
Age ||||||||||| 1 
Previous cardiac surgery |||||| 1 

Extracorporeal circulation |||||| 1 
Hemopericardium ||||| 1 
Enterological complications || 1 
NEURAL RUN TO ROME DATA 

Chronic renal failure ||||||||||||||||||||||||||||||||||||||||||||||||||| 1 
Brain protection (coded) |||||||||||||||||||||||||||||||||||||||||| 1 
Dialysis in continuous ||||||||||||||||||||||||||||||||||||| 1 
Neurological symptoms ||||||||||||||||||||||||||| 1 
Renal complications |||||||||||||||||||||||||| 1 

Extracorporeal circulation ||||||||||||||||||||||| 1 
Age |||||||||||||||||||||| 1 
Hemopericardium ||||||||||||||||||||| 1 
Intubated |||||||||||||||| 1 
Limb ischemia |||||||||||| 1 
Enterological complications ||||||||| 1 
Year of surgery ||||||| 1 

Fig. (1). ROC plots are given in the top graphs, as derived from the Rome data, respectively by logistic and neural network models with a 

semiquantitative graphic presentation of the model-specific relevance of the covariates, always among Rome patients (training data). Keep=1 

means the covariate may stay in the model. Note that Gini’s coefficients are 0.712 and 0.816 for logistic and neural network model,  

respectively. 
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and a more defined risk assessment in affected patients.  
Indeed, the overall in-hospital mortality was as high as 
31.4% in unstable patients categorized in presence of cardiac 
tamponade, shock, congestive heart failure, cerebro-vascular 
accident, stroke, coma, acute myocardial and/or mesenteric 
ischemia and acute renal failure at the time of operation, 
which contrasts with 16.7% in stable patients. 

 Nevertheless, it is important to underline that the global 
overall accuracy with the abovementioned series of covari-
ates, explored by standard LR, while useful to define high 
risk individuals, was relatively unsatisfactory, similar to 
what seen in protocols investigating high risk in CABG  
surgery where ROC AUC around 0.75 or less were in  
general reported [13-15]. This prompted to look after differ-
ent methods such as neural networks [16-18], which were 
however not previously, studied in AAD Type A patients. 

 We have analyzed a series of 22 demographic, pre-

operative, operative and post-operative characteristics,  

selected from 37 such variables that previous investigations 
have considered (Table 1) as potential predictors of 30-day 

mortality after AAD Type A among 208 patients operated in 

2 Italian Centres. By forced and stepwise LR model along 

with by stepwise NN model we defined several covariates 

which may help predict 30-day mortality among operated 

patients, depending on the model’s type and method and on  

 

the Centre where the patients were treated (Tables 3 and 4; 

Figs. 1 and 2). When models were produced in one Centre 

and applied in a second Centre there were predictors which 

were selected in common. These include (Fig. 2): the  

presence of pre-operative shock, intubation and neurological 
symptoms, immediate post-operative presence of dialysis  

in continuous and the quantity of post-operative bleeding in 

the first 24 h. By NN model, the length of extracorporeal 

circulation, post-operative chronic renal failure and the year 

of surgery were specifically detected. Our data confirm  

and extend the results of the International Registry of AAD 

[2, 11] since also operative and immediate post-operative 

factors were observed as potential predictors of short-term 

mortality. Furthermore, a quite accurate overall prediction 

was observed in our study, based on AUC and Gini’s coeffi-

cients results, pointing to the applicability of NN model  

prediction of post-operative mortality after AAD Type A, 
which extends the results obtained with this method in 

CABG surgery [16-19]. 

 The predictive power of risk factors with multivariable 

models such as the multiple logistic function, the propor-

tional hazards life table Cox model, the Poisson model, and 

the Weibull life table model, all of which are now standard 

methods [21-25], is an important aspect of risk stratification 

after surgery [14, 15]. More recently, other methods have  

 

 

 

 

 

 

 

 

Variable Validation data Keep 

ROME LOGISTIC RE-APPLIED TO SANT’ANNA HOSPITAL (CZ) DATA 
Dialysis in continuous ||||||||||||||||||||||||||||||||||||||||||||||||||| 1 

Neurological deficits ||||||||||||||||||||| 1 
Intubated ||||||||||||||||||| 1 
Bleeding in the first 24 hours ||||||||||||||||| 1 

Shock ||||||||||| 1 
Neurological symptoms |||||||| 1 
ROME NEURAL RE-APPLIED TO SANT’ANNA HOSPITA (CZ) DATA 

Shock ||||||||||||||||||||||||||||||||||||||||||||||||||| 1 
Extracorporeal circulation ||||||||||||||||||||||||| 1 
Chronic renal failure |||||||||||||||| 1 

Year of surgery |||||||||||| 1 
Intubated ||||||||| 1 
Dialysis in continuous |||||||| 1 

Bleeding in the first 24 hours |||| 1 
Neurological symptoms |||| 1 

Fig. (2). ROC plots are given in the top graphs, as derived from the Rome models, respectively logistic and neural network. A semiquantita-

tive graphic presentation is provided for Training/Validation data relevance when re-applied to S. Anna Hospital, Catanzaro (CZ) data. 

Keep=1 means the covariate may stay in the model. Note that Gini’s coefficients are 0.761 and 0.850 for logistic and neural network model, 

respectively, which is much better than what seen in Fig. (1). 
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arisen to perform multivariable predictions of bins, including 

multilayer feed-forward networks [26]. Artificial NN have 

become popular in medical applications [16-20], due to  

relatively widespread availability of free-, share-, and  

commercial-ware [see: http://neuralnetworks.ai-depot.com/ 

Software.html] and the recent increase of personal computer 

power. There has been an effort to cope with the limitations 

of methods such as logistic regression [24], whose predictive 

accuracy rarely exceeded 75% when appropriately tested  

by ROC curves and comparisons [28-32], in the majority  

of epidemiological or clinical cardiovascular investigations 

[13-18, 36-41]. 

 When the performance and/or reliability of predictive 

models is limited, or of low sensitivity and specificity, their 

capability may be hampered to identify high risk subjects 

who deserve individualized treatment [27]. The neural  

network method stems [19, 20] from its potential for  

improved predictive performance by exploring, hidden  

layers to find nonlinearities, interactions and nonlinear  

interactions among predictors. The attraction of neural  

networks is quite evident from the impressive growth of  

results published with these methods in the last 18 years 

[20]. However, there are relatively few comparative reports 

on the performance and accuracy of neural networks, which 

was assessed only versus multiple logistic function, to  

predict events in clinical [18] or epidemiological [36]  

cardiovascular studies and none has been performed on  

different populations once the respective predictive models 

were produced out of an index cohort, which may be seen  

as a critical deficiency [27]. 

 What we have shown here for the first time is that a NN 

model was apt at assessing the 30-day mortality predictive 

potential of a large series of previously proposed risk factors 

[1,2,5-7,11], including surgical techniques, and this better 

than by standard LR, as far as the ROC AUC metric is  

concerned [16,17], similar to outcome reports after CABG 

surgery [13-18]. When NN model was re-applied to data 

from a second Regional Hospital Centre, which is a specific 

imperative of NN methodology [19, 20] that in a different 

context was not performed previously [18], there was a  

further increase in the performance. However, the list of  

potential risk factors to predict 30-day mortality after AAD 

Type A by NN model, tested on two independent and large 

series of patients, might be lacking of more sensitive factors, 

similar to The International Registry of AAD [2,11]. Among 

these, anatomo-surgical covariates [12] need certainly further 

study. Therefore, adoption of NN model and the list of  

predictive covariates selected here need a test outside Italy 

before larger widespread use. 

 Some limitations have to be considered here. Although 

we applied NN methodology of selecting a model in a  

first group of patients and then applied this into a second 

independent group of patients from the same nation-based 

population, both with similar 30-day mortality (Table 2 27.3 

and 22.9% in Rome and Catanzaro, respectively), the overall 

208 patients included in this investigation may represent a 

relatively small sample size. This calls for the assessment, 

among larger samples recruited in Italy or abroad, to confirm 

the reproducibility of our results. It might be important  

to extend the censoring from 30 to 90 days since several  

patients, alive by 30 days, may continue to vegetate in  

care centres, due to neurological damage. Whereas this may 

further cooperate to the validity of the predictive models to 

be then produced, no doubt that longer-term (1- to 5- year or 

more) survival prediction may also be important. However, it 

is at present unknown whether similar risk factor may apply 

as in case of short-term prediction. Finally, there might  

be different options to consider and take care of covariates, 

specifically those considered here as coded variables.  

However, whereas this may further extend the covariates 

number (which will demand a much larger sample to  

be studied), it is not clear, based on a preliminary but  

unreported evidence from these data, whether this is strictly 

needed for NN model to fit adequately. 

 In conclusion, an important take-home message for  

clinicians should be that with neural networks a globally 

more accurate prediction might be obtained, which deserves 

further study, although the list of potentially important  

predictive factors in AAD Type A patients is still elusive and 

more data from anatomo pathohysiological sources may 

probably still be needed and demand further investigations. 
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APPENDIX 1 

 The most popular architecture currently adopted for artificial NN is the multilayered perceptron (MLP), which can  

be trained by back-propagation and typically is organized as a set of interconnected layers of artificial neurons. Each artificial 

neuron has an associated output activation level, which changes during the many computations that are performed during  

training. Each neuron receives inputs from multiple sources, and performs a weighted sum and a squashing function. Typically 

there are 3 layers of nodes, there are 2 layers of weights [20]. The weights on all the interconnections are initially set to  

be small random numbers and the artificial neural network is untrained at this stage. Then the network is presented with a  

training data set which provides inputs and desired (or known) outputs to the network. This is the stage whereby weights are 

adjusted in such a way that the likelihood the network will compute the desired output at its output level does increase.  

Therefore, training means many presentations of data to the neural network and the adjustment (often performed by a gradient  
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descent computation) of its internal weights, until appropriate results are output from the network. This happens by searching a 

minimum error that can be attained during computations. After these error values are known, weights on the incoming connec-

tions to each output neuron then can be updated, which is proportional to a learning rate parameter used to update an error value 

for each hidden node [20]. 

 It is quite clear that results with artificial neural networks depend on the data with which they are trained, to the extent  

that these methods are excellent at identifying and learning patterns that are in data. In more general terms, there have to  

be patterns present in the data before the neural network can learn the patterns successfully. If the data contain no predictive 

factors, then the neural network performance cannot be high. The informative content present in the data is accordingly a major 

limiting factor of artificial neural network performance. Under this perspective, these models represent a set of equations, 

linked together, through shared variables, in a format of interconnected nodes. Equations are not “new”, since they were in  

existence (like the sigmoid function) before they were labelled “neural networks”. What is important here is that the equations 

form a system with powerful and far-reaching learning capabilities, whereby complex relations (especially when the inputs  

are numerous) can be learned during training and recalled later with different data, possessing however a comparable general  

structure. Moreover, the network’s diagram, such as shown in Fig. (3) may show how those equations are related, indicating the 

inputs, outputs, and desired outputs and intuitively is easier to conceptualize compared with methods that involve equations 

alone [20]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Neural network’s diagram shows how the equations are related, indicating the inputs, outputs, and desired outputs which is intui-

tively easier to conceptualize compared with methods that involve equations alone. 

 Although tabulations of weights derived from trained MLP have been occasionally published [35,36], these weights are not 

immediately as useful as are regression coefficients in case of logistic models. This is due to the difficulties of immediate 

weight re-application and the complexity of formulae needed to calculate risk [36], which is instead mathematically easy with 

multiple logistic function whereby logit transform enables risk calculations [21-24]. With NN a cross entropy error function to 

adjust the weights and to minimize the network fit criterion has been used by Voss et al. [36]. The cross entropy function can 

be derived from the likelihood of the underlying Bernoulli distribution of the entire training set and it is specially designed for 

classification problems, in combination with the logistic activation function which maps all its arguments to values between 0 

and 1, in the output layer of the network, yet being cumbersome to calculate. 

 With Tiberius software, model estimate probabilities are calculated versus actual probabilities, which is exemplified in  

Figs. (4 and 5), respectively for multiple logistic function and for MLP. These graphs relate to post-operative mortality risk  

in 30 days among 120 patients with complete data out after AAD Type A in the Rome Centre. To exemplify how does this  

software operates, here are the codes and a summary report, whereby the relative importance of each risk factor might be  

evaluated: 
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Fig. (4). Model estimate probabilities calculated by Tiberius software versus actual probabilities for multiple logistic function. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Model estimate probabilities calculated by Tiberius software versus actual probabilities for multilayered perceptron. 

 This SAS® code is a neural network with tanh hidden units and a logistic output unit. 

*/ 

 /* normalise variables */ 

 var_1 = 2.0 * ((Annint - 2001,0) / (2007,0 - 2001,0) - 0.5) ; 

 var_2 = 2.0 * ((Age - 36,0) / (84,0 - 36,0) - 0.5) ; 

 var_3 = PoTOT_0_ ; 

 var_4 = PoDN_0_ ; 

 var_5 = 2.0 * ((TCEC - 24,0) / (682,0 - 24,0) - 0.5) ; 

 var_6 = 2.0 * ((PerBR - 1,0) / (3,0 - 1,0) - 0.5) ; 

 var_7 = 2.0 * ((HP - 0,0) / (1,0 - 0,0) - 0.5) ; 

 var_8 = 2.0 * ((IscL - 0,0) / (1,0 - 0,0) - 0.5) ; 

 var_9 = 2.0 * ((Cren - 0,0) / (1,0 - 0,0) - 0.5) ; 

 var_10 = Cvvh_Missing ; 

 var_11 = 2.0 * ((Cvvh - 0,0) / (1,0 - 0,0) - 0.5) ; 

 var_12 = 2.0 * ((IRC - 0,0) / (1,0 - 0,0) - 0.5) ; 

 var_13 = 2.0 * ((Cint - 0,0) / (1,0 - 0,0) - 0.5) ; 
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 var_14 = DN_Missing ; 

 /* logistic neural net */ 

 coeff = 

 -0,71746772444572 

 + 

 (tanh(-1,03378999611555 +  

 (var_1 * -0,122396259300735) +  

 (var_2 * -1,08891152847242) +  

 (var_3 * 2,56914360487484) +  

 (var_4 * -2,95929882538653) +  

 (var_5 * -1,63217880467112) +  

 (var_6 * 0,184137494160511) +  

 (var_7 * -0,328420046906812) +  

 (var_8 * -0,357489898481089) +  

 (var_9 * 1,30026233578302) +  

 (var_10 * -1,19387587038731) +  

 (var_11 * -0,219295729085299) +  

 (var_12 * -1,92345769540069) +  

 (var_13 * 0,343212977003628) +  

 (var_14 * -1,30537814371111)  

 ) * -0,854296015154336) 

 + 

 (tanh(1,18706945329681 +  

 (var_1 * -0,921782211205017) +  

 (var_2 * 1,60855837301232) +  

 (var_3 * 1,66480319629646) +  

 (var_4 * 2,94832098096511) +  

 (var_5 * 2,79703317268372) +  

 (var_6 * 3,25890038252281) +  

 (var_7 * 1,21715272855026) +  

 (var_8 * -2,05399109642943) +  

 (var_9 * -0,715935246925439) +  

 (var_10 * 1,7007972826595) +  

 (var_11 * 1,86063852463387) +  

 (var_12 * 3,16591755002935) +  

 (var_13 * 1,22926857839774) +  

 (var_14 * 1,91695213087242)  

 ) * 1,31269499306821) 

 ; 

 coeff = coeff * 1,5607729965579 ; 

 Prob_Status = 1 / (1 + Exp(-1 * coeff)); 

 RUN ; 
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DATA SUMMARY 
---------------------------------- 

 Generation Date: 

  giovedì, 9 ott 2008, 1.09.52  

 Data Source: 

  C:\Macrina\disRM.xls 

 Table: 

  Foglio1$ 

 Target: 

  Status 

  True = 1 

  False = 0 

 Prob = count(True) / [count(True) + count(False)] 

 Filter: 

  None 

TRAIN/VALIDATION BREAKDOWN 
------------------------------------------ 

 Training patterns = 124  (100%) Gini = 0,81609  RMS Error = 0,30970 

VARIABLE IMPORTANCE 
------------------------------------------ 

 The average model gini when the input is randomised 3 times (see options menu to vary this setting). 

Rank Gini Variable 

1 0,57275 IRC 

2 0,61665 PerBR 

3 0,63985 Cvvh 

4 0,68852 PoDN_0_ 

5 0,69204 Cren 

6 0,70757 TCEC 

7 0,71523 Age 

8 0,72062 HP 

9 0,74443 PoTOT_0_ 

10 0,76162 IscL 

11 0,77695 Cint 

12 0,78523 Annint 

13 0,79207 DN_Missing 

14 0,80325 Cvvh_Missing 

 We will provide, on request, cohort-specific and/or grouped html files whereby the individual 30-day post-operative  
mortality risk after AAD Type A intervention may be calculated based on NN models and risk factors values digitized in the 
ranges of those measured in the cohorts whereby the models were obtained. 
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