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Abstract: Background: Sodium/hydrogen exchanger-1 (NHE-1) contributes to maintaining intracellular pH (pHi). We  

assessed the effect of glucose, insulin, leptin and adrenaline on NHE-1 activity in human monocytes in vitro. These cells 

play a role in atherogenesis and disturbances in the hormones evaluated are associated with obesity and diabetes.  

Methods and Results: Monocytes were isolated from 16 healthy obese and 10 lean healthy subjects. NHE-1 activity was 

estimated by measuring pHi with a fluorescent dye. pHi was assessed pre- and post-incubation with glucose, insulin, 

leptin and adrenaline. Experiments were repeated after adding a NHE-1 inhibitor (cariporide) or an inhibitor of protein 

kinase C (PKC), nitric oxide synthase (NOS), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, phosphoi-

nositide 3-kinases (PI3K) or actin polymerization. Within the whole study population, glucose enhanced NHE-1 activity 

by a processes involving PKC, NOS, PI3K and actin polymerization (p = 0.0006 to 0.01). Insulin-mediated activation of 

NHE-1 (p = <0.0001 to 0.02) required the classical isoforms of PKC, NOS, NADPH oxidase and PI3K. Leptin increased 

NHE-1 activity (p = 0.0004 to 0.04) through the involvement of PKC and actin polymerization. Adrenaline activated 

NHE-1 (p = <0.0001 to 0.01) by a process involving the classical isoforms of PKC, NOS and actin polymerization. There 

were also some differences in responses when lean and obese subjects were compared. Incubation with cariporide attenu-

ated the observed increase in NHE-1 activity.  

Conclusions: Selective inhibition of NHE-1 in monocytes could become a target for drug action in atherosclerotic  

vascular disease.  
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INTRODUCTION 

 The sodium/hydrogen exchanger-1 (NHE-1) is a ubiqui-
tous integral membrane protein expressed in mammalian 
cells [1]. Its main role is intracellular pH (pHi) maintenance, 
achieved by exchanging 1 intracellular H

+
 for 1 extracellular 

Na
+
 [1]. It is also important in cell volume maintenance and 

cytoskeletal reorganization. Furthermore, it takes part in cell 
proliferation, apoptosis and migration [1]. NHE-1 is stimu-
lated by intracellular acidosis, hormones and growth factors 
and inhibited by amiloride derivatives [2].  

 The role of NHE-1 inhibitors in cardiovascular disease 
has been investigated during the past decade. In animal  
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models, cariporide in combination with metoprolol decreased 
myocardial infarction size [3]. However, human clinical  
trials did not show clinical benefit of NHE-1 inhibition [4].  

 NHE-1 overactivity is documented in overweight and 
obese subjects and correlated well with body mass index 
(BMI) but not with plasma insulin levels [5]. In obese animal 
models inhibition of NHE-1 improved insulin sensitivity and 
endothelial function [6]. Furthermore, human erythrocytes 
obtained from obese subjects NHE-1 were activated by insu-
lin [7], leptin [8] and adrenaline [9] and by glucose [10] in 
healthy individuals. In monocytes obtained from healthy 
subjects, NHE-1 was activated by glucose [11] and leptin 
[12]. However, the influence of obesity on NHE-1 activity 
and its signaling pathway in human monocytes remains 
poorly documented. NHE-1 is involved in monocyte adhesion, 
migration and oxidized low density lipoprotein (oxLDL) 
phagocytosis under the influence of mediators such as  
glucose, insulin, leptin and adrenaline [13-17]. In addition to 
obesity, NHE-1 activation could contribute to the increased 
cardiovascular risk associated with insulin resistance and 
type 2 diabetes mellitus [18, 19]. 
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 We investigated the effect of high concentrations of glu-
cose, insulin, leptin and adrenaline on the activity of NHE-1 
by measuring the pHi in monocytes obtained from lean and 
obese healthy subjects. Furthermore, we investigated the role 
of protein kinase C (PKC), nitric oxide (NO) synthase (NOS), 
nicotinamide adenine dinucleotide phosphate (NADPH) oxi-
dase, phosphoinositide 3-kinases (PI3K) and actin polymeri-
zation on NHE-1 activity. 

MATERIALS AND METHODS 

Materials 

 Source of reagents were described elsewhere [13, 14] 
apart from the following: 2',7'-bis-(carboxyethyl)-5(6)-
carboxyfluoresceinacetoxymethyl ester (BCECF/AM) was 
purchased from AppliChem (Darmstadt, Hesse, Germany). 
4,4 -di-isothiocyanato stilbene-2,2 -disulfonic acid (DIDS), 
nigericin, methazolamide, iodoacetic acid, DPI (diphenyle-
neiodonium chloride), L-NAME (N -Nitro-L_arginine methyl 
ester hydrochloride) were obtained from Sigma (St. Louis, 

MO, USA). GF109203X and Gö6976 were purchased by 
Alexis (Lausen, Switzerland). Cytochalasin-D was obtained 
by Fluka (Seelze, Germany). All other reagents were of ana-
lytical grade and were obtained from commercial sources.  

Subjects 

 Healthy obese [n = 16; BMI 30 Kg/m
2
] subjects aged 

between 18-35 years (13 female) attending the obesity outpa-
tient clinic and 10 healthy lean (BMI <25 Kg/m

2
) age-

matched subjects from the hospital staff (8 female), were 
enrolled in the study. None of the participants were taking 
any medication. All participants gave their written informed 
consent in accordance with the Declaration of Helsinki. This 
patient population was used in a previous study to assess the 
effect of leptin, adrenaline, insulin and glucose on monocyte 
function (adhesion, migration, CD36 expression, oxidized 
low density lipoproteins phagocytosis) [13, 14, 17]. 

 Anthropometric measurements (body weight, height  
and waist circumference) and blood pressure were recorded 

 

 

 

 

 

 

 

Fig. (1). Intracellular pH (pHi) in human monocytes. Glucose was added and pHi was estimated. Monocytes were pre-incubated with cari-

poride or one of the inhibitors (Gö6976 inhibits ,  and  isoforms of PKC, GF109203X inhibits all isoforms of the PKC, L-NAME inhibits 

NOS, DPI inhibits NADPH oxidase, wortmannin inhibits PI3K, cytochalasin D inhibits actin polymerization) and then glucose was added. 

Error bars indicate standard deviation (SD).  

* p < 0.05 vs the respective baseline sample (control sample) 

 # p < 0.05 vs the respective glucose sample 

 

 

 

 

 

 

 

 

Fig. (2). Intracellular pH (pHi) in human monocytes. Insulin was added and pHi was estimated. Monocytes were pre-incubated with cari-

poride or one of the inhibitors (Gö6976 inhibits ,  and  isoforms of PKC, GF109203X inhibits all isoforms of the PKC, L-NAME inhibits 

NOS, DPI inhibits NADPH oxidase, wortmannin inhibits PI3K, cytochalasin D inhibits actin polymerization) and then insulin was added. 

Error bars indicate standard deviation (SD).  

* p < 0.05 vs the respective baseline sample (control sample) 

# p < 0.05 vs the respective insulin sample 
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by the same examiner and were reported elsewhere [13, 14, 
17].  

Study Protocol 

 Blood was collected after an overnight fast and distrib-
uted as previously described [13, 14, 17]. Measurement of 
pHi (as an estimate of NHE-1 activity) was assayed in iso-
lated monocytes pre- and post- incubation with glucose, in-
sulin, leptin or adrenaline. The glucose (20 mmol/l), insulin 
(50 μU/ml), leptin (160 ng/ml) and adrenaline (520 pmol/l) 
concentrations used were similar to those in previous studies 
[11, 13, 14, 16, 17]. All experiments were repeated after  
adding cariporide, a NHE-1 inhibitor. In order to investigate 
the signaling molecules involved the experiments were  
repeated after adding inhibitors of classical isoforms of  
PKC (Gö6976), all isoforms of PKC (GF10923X), NOS  
(L-NAME), NADPH oxidase (DPI), PI3K (wortmannin)  
and actin polymerization (cytochalasin-D). 

 Each experiment included 10 lean subjects and 12 obese 
subjects. The 12 obese subjects were randomly selected from 

the 16 available for each experiment. In the obese group, 8 
subjects were insulin sensitive and 8 were insulin resistant  
as defined by euglycemic hyperinsulinemic clamp [14]. In 
order to investigate the influence of obesity, we performed a 
subgroup analysis of the lean (n = 10) and obese (n = 12) 
subjects.  

Monocyte Isolation 

 Monocytes were isolated as previously described [13, 14] 
(Ficoll-Paque Plus followed by 46% iso-osmotic Percoll in 
CM). Monocyte purity measured using a Beckman Coulter 
(Brea, California, USA) EPICS XL-MCL flow cytometer 
and CD14 antibody was > 85%.  

Measurement of pHi  

 pHi was measured using BCECF-AM [10, 11, 20]. 
Monocytes were washed 3 times with PBS (phosphate buffer 
solution) and then suspended in HCO3

- 
free buffer NaCl (135 

mM NaCl, 5 mM KCl, 1 mM CaCl2, 1 mM MgCl2, 5 mM 
glucose, 20 mM HEPES; pH 7.3) to deplete them of HCO3

-
. 

 

 

 

 

 

 

 

Fig. (3). Intracellular pH (pHi) in human monocytes. Leptin was added and pHi was estimated. Monocytes were pre-incubated with cari-

poride or one of the inhibitors (Gö6976 inhibits ,  and  isoforms of PKC, GF109203X inhibits all isoforms of the PKC, L-NAME inhibits 

NOS, DPI inhibits NADPH oxidase, wortmannin inhibits PI3K, cytochalasin D inhibits actin polymerization) and then leptin was added. 

Error bars indicate standard deviation (SD).  

* p < 0.05 vs the respective baseline sample (control sample) 

 # p < 0.05 vs the respective leptin sample 

 

 

 

 

 

 

 

Fig. (4). Intracellular pH (pHi) in human monocytes. Adrenaline was added and pHi was estimated. Monocytes were pre-incubated with 

cariporide or one of the inhibitors (Gö6976 inhibits ,  and  isoforms of PKC, GF109203X inhibits all isoforms of the PKC, L-NAME 

inhibits NOS, DPI inhibits NADPH oxidase, wortmannin inhibits PI3K, cytochalasin D inhibits actin polymerization) and then adrenaline 

was added. Error bars indicate standard deviation (SD).  

* p < 0.05 vs the respective baseline sample (control sample) 

# p < 0.05 vs the respective adrenaline sample 
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This buffer was used for all determinations of pH unless oth-
erwise stated. The monocytes were then loaded with 
BCECF-AM (1 mg/ml per 10

6
 cells) and incubated for 30 

min at 37
o
C in the dark. After incubation with the fluorescent 

dye monocytes were washed 5 times at room temperature at 
1500 rpm with NaCl medium in order to remove the un-
bound fluorescent dye and suspended to the desired concen-
tration (10

6 
cells/ml). DIDS (0.125 mM) and methazolamide 

(0.4 mM) were added in order to avoid HCO3
-
/Cl

-
 anion ex-

changer interference. Iodoxic Na (1 mM) was added to sup-
press glycolysis. The 10 μl of the inhibitor [Gö6976 (500 
nM) inhibits ,  and  isoforms of PKC, GF109203X (10 
μM) inhibits all isoforms of the PKC, L-NAME (100 μM) 
inhibits NOS, DPI (10 μM) inhibits NADPH oxidase, wort-
mannin (50 nM) inhibits PI3K, cytochalasin D (2 μM) inhib-
its actin polymerization, cariporide (20 nM) inhibits the ac-
tion of NHE-1] were added, when appropriate. An incuba-
tion for 30 min at 37

o
C in the dark followed. Then 10 μl of 

the mediactors [glucose (20 mmol/l), insulin (50 μU/ml), 
leptin (160 ng/ml) and adrenaline (520 pmol/l)] were added 
and incubated for 15 min at 37

o
C. Fluorescence was meas-

ured in a FL WINLab luminescence spectrometer (Perki-
nElmer, Waltham, MA, USA) in a 96-well black polystyrene 
plate with excitation and emission wavelengths set at 495 
and 530 nm respectively, using 2.5 nm slit. Routinely,  
fluorescence was also measured with excitation wavelength 
set at 440 nm. At this wavelength fluorescence is propor-
tional to intracellular dye concentration and is relatively pH-
insensitive. Data were obtained as the ratio of the fluores-
cence at pH-sensitive excitation wavelength 495 nm and  
the fluorescence at the pH-insensitive excitation wavelength 
440 nm. 

 Routinely calibration of fluorescence to pH was carried 
out by suspending the cells in K

+
 solutions (KCl 130 nM, 

MgCl2 1 mM, HEPES 30 mM) at 3 different pH values (6.7, 
7 and 7.3) [21].The concentration of cells was 10

6 
cells/ml. 

The cells were then washed with the same buffer and ni-
gericin (13 μM) was added to each well. Nigericin promotes 
ion-channel opening equalizing pHi to the extracellular pH. 
Fluorescence was measured 5 min after nigericin addition. 
The curve obtained between the ratio of fluorescence and pH 
was linear. The pH of each solution was measured by a pH 
meter (Accumet, Fischer Scientific, Hampton, New Hamp-
shire, USA).  

Statistical Analysis 

 Statistical analysis was performed using SPSS v 15.0 for 
Windows (SPSS Inc., Chicago, Illinois). All values are ex-
pressed as mean ± standard deviation (SD), unless otherwise 
noted. Normality was tested with the Shapiro-Wilk test. Dif-
ferences in continuous variables were assessed by means of 
1-way analysis of variance, Student’s t-test or paired t-test 
where appropriate. When necessary, non-parametric tests 
were used. A 2-tailed p < 0.05 was considered significant. 

RESULTS 

Anthropometric Characteristics 
 

 As previously described [13, 14], the mean age of the 
subjects was 29 ± 3 years; there was no difference between 
the lean (n = 10) and the obese group (n = 16) (p > 0.1). The 
BMI was 23.8 ± 0.9 kg/m

2
 for the lean and 37.9 ± 7.1 kg/m

2
 

for the obese subjects. The mean waist circumference was 86 
± 2 cm for the lean and 112 ± 13 cm for the obese subjects.  

Measurement of pHi  

Incubation with Glucose in the Overall Population  

 Glucose significantly increased pHi (p <0.0001). Cari-
poride inhibited glucose-induced increase in pHi (p = 0.003). 
Monocyte incubation with Gö6976, GF109203X, L-NAME, 
wortmannin or cytochalasin-D inhibited the glucose-induced 
increase in pHi (p = 0.008, p = 0.002, p = 0.0006, p= 0.01 
and p = 0.001, respectively). The addition of DPI inhibited 
the glucose-induced increase in pHi but this was not signifi-
cant (p = 0.056). 

Incubation with Glucose: Subgroup Analysis, Lean and 
Obese 

 Glucose significantly increased pHi in both groups (p = 
0.003 in lean and p = 0.006 in obese subjects). Cariporide 
inhibited glucose-induced increase in pHi in both groups (p 
= 0.005 in lean and p = 0.03 in obese subjects). Monocyte 
incubation with GF109203X, L-NAME or cytochalasin-D 
inhibited the glucose-induced increase in pHi in both groups 
(p <0.04). However, after adding Gö6976 or wortmannin the 
glucose-induced increase in pHi was significantly attenuated 
only in lean subjects (p = 0.008 and p = 0.034, respectively). 
The addition of DPI inhibited the glucose-induced increase 
in pHi only in obese subjects but this was not significant (p = 
0.061). 

Incubation with Insulin in the Overall Population 

 Insulin significantly increased pHi (p <0.0001). Cari-
poride inhibited insulin-induced increase in pHi (p = 0.002). 
Monocyte incubation with Gö6976, L-NAME, DPI or wort-
mannin inhibited insulin-induced increase in pHi (p = 0.002, 
p = 0.008, p = 0.02 and p = 0.005, respectively). Cytochala-
sin-D inhibited insulin-induced increase in pHi but this was 
not significant (p = 0.07). The addition of GF109203X had 
no effect on pHi. 

Incubation with Insulin: Subgroup Analysis, Lean and 

Obese 

 Insulin significantly increased pHi in both groups (p = 
0.02 in lean and p = 0.003 in obese subjects). Cariporide 
inhibited insulin-induced increase in pHi in both groups (p = 
0.03 in lean and p = 0.039 in obese subjects). Monocyte in-
cubation with Gö6976 or L-NAME inhibited the insulin-
induced increase in pHi in both groups (p <0.05). After add-
ing wortmannin insulin-induced increase in pHi was signifi-
cantly attenuated only in lean subjects (p = 0.04). Incubation 
with DPI inhibited insulin-induced increase in pHi only in 
obese subjects (p = 0.037). The addition of GF109203X or 
cytochalasin-D had no effect on pHi. 

Incubation with Leptin in the Overall Population 

 Leptin significantly increased pHi (p = 0.0004). Cari-
poride inhibited leptin-induced increase in pHi (p = 0.001). 
Monocyte incubation with Gö6976 or cytochalasin-D inhib-
ited leptin-induced increase in pHi (p = 0.003 and p = 0.04, 
respectively). The addition of GF109203X, L-NAME, DPI 
or wortmannin had no effect on pHi. 
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Incubation with Leptin: Subgroup Analysis, Lean and 

Obese 

 Leptin significantly increased pHi in both groups (p = 
0.016 in lean and p = 0.04 in obese subjects). Cariporide 
inhibited leptin-induced increase in pHi in both groups (p = 
0.03 in lean and p = 0.02 in obese subjects). Monocyte incu-
bation with Gö6976 inhibited leptin-induced increase in pHi 
in both groups (p = 0.001 in lean and p = 0.033 in obese sub-
jects). However, after adding cytochalasin-D leptin-induced 
increase in pHi was attenuated only in obese subjects (p = 
0.032). The addition of GF109203X or L-NAME did not 
significantly inhibit leptin-induced increase in pHi only in 
obese subjects (p = 0.052 and p = 0.058, respectively). The 
addition of DPI or wortmannin had no effect on pHi. 

Incubation with Adrenaline in the Overall Population 

 Adrenaline significantly increased pHi (p <0.0001). 
Cariporide inhibited adrenaline-induced increase in pHi (p = 
0.0004). Monocyte incubation with Gö6976, L-NAME or 
cytochalasin-D inhibited adrenaline-induced increase in (p = 
0.001, p = 0.01 and p = 0.01, respectively). The addition of 
GF109203X, DPI or wortmannin had no effect on pHi.  

Incubation with Adrenaline: Subgroup Analysis, Lean 

and Obese 

 Adrenaline significantly increased pHi in both groups (p 
= 0.006). Cariporide inhibited adrenaline-induced increase in 
pHi in both groups (p = 0.01 in lean and p = 0.047 in obese 
subjects). Monocyte incubation with Gö6976 inhibited 
adrenaline-induced increase in pHi in both groups (p = 0.024 
in lean and p = 0.017 in obese subjects). However, adding L-
NAME, wortmannin or cytochalasin-D significantly attenu-
ated adrenaline-induced increase in pHi only in lean subjects 
(p = 0.004, p = 0.003 and p = 0.031, respectively). The addi-
tion of GF109203X or DPI had no effect on pHi.  

DISCUSSION 

 Similar to our findings, high concentrations of glucose 
increased NHE-1 activity in human umbilical vein endothe-
lial cells [22] and in human monocytes [11]. There is evi-
dence that a higher level of glucose (5 vs 20 mM) results in 
significantly (p < 0.001) greater increase in pHi in mono-
cytes obtained from healthy subjects [11]. This effect was 
assessed by inhibition of ethylisopropyl amiloride (EIPA) 
[11]. Furthermore, glucose induced hypertrophy of cardio-
myocytes through the involvement of NHE-1 [23].  

 Inhibition of NHE-1 prevented insulin-induced glucose 
uptake by rat ventricular cardiomyocytes [24]. In contrast, in 
insulin resistant whole animal models cariporide improved 
insulin sensitivity [6]. Furthermore, insulin phosphorylated 
NHE-1 in 3T3-L1 adipocytes [25] and increased its activity 
in cardiomyocytes [24] and in human erythrocytes [7]. A 
controversial finding was reported in vascular endothelial 
and smooth muscle cells, where insulin inhibited NHE 
(mainly NHE-1) activity [26]. In our study, insulin activated 
NHE-1 and was inhibited by cariporide. 

 Leptin increased NHE-1 activity, a finding supported by 
previous studies in human erythrocytes [8]. In human mono-
cytes obtained from healthy donors, leptin-induced increase 
in adhesion, migration, CD36 expression and oxLDL phago-

cytosis was mediated by NHE-1 (i.e. inhibited by cariporide) 
[16]. In the latter study, the role of several signaling mole-
cules was also assessed. However, pHi was not measured. In 
another study, leptin-induced increase in pHi showed a dose-
response pattern [12]. However, the role of signaling mole-
cules was not assessed [12].  

 Another hormone that activated NHE-1 is adrenaline, 
which was also reported to increase NHE-1 activity in eryth-
rocytes [9] and in cardiomyocytes [27]. 

 We have previously shown that cariporide (a NHE-1 in-
hibitor) eliminated leptin-, adrenaline- glucose- and insulin-
induced increase in adhesion, migration of monocytes, CD36 
expression and monocyte phagocytosis of oxidized-LDL in 
some patient groups [11, 13-17]. Furthermore, cariporide 
may exert anti-atherogenic effects [15, 28] by inhibiting 
monocyte adhesion and expression of intercellular adhesion 
molecule (ICAM) [29]. The potential effect of cariporide on 
monocytes could be mediated through NHE-1 inhibition [13, 
14, 17] or another action. However, these promising experi-
mental results were not supported by the findings of a clini-
cal trial. In the EXPEDITION (for Na

+
/H

+
 Exchange inhibi-

tion to Prevent coronary Events in acute cardiac condition) 
trial cariporide administration to coronary artery bypass graft 
patients (n = 5761) resulted in significantly less death + 
myocardial infarction compared with the placebo group 
(20.3% vs 16.6%; p = 0.0002) [4]. However, there was a 
significant increase in mortality mainly due to cerebrovascu-
lar events [1.5% in the placebo group vs 2.2% with cari-
poride (p = 0.02)] [4]. Therefore, it is unlikely that cariporide 
will be further investigated [4].  

 We found that PKC and NOS were involved in the NHE-
1 signaling pathway in all subjects. Similarly, PKC inhibi-
tion decreased NHE-1activity in bovine neutrophils [30]. 
Furthermore, in animal cardiomyocytes, PKC was involved 
in NHE-1 inhibition [31]. Ex vivo studies in human mono-
cytes and erythrocytes indicate an involvement of PKC in 
NHE-1 activation by glucose [10] and insulin [7]. An inter-
action between NOS and NHE-1 is supported by a previous 
animal study where inhibition of NHE-1 resulted in de-
creased activity of neuronal NOS [32]. In contrast, inhibition 
of NOS was associated with increased NHE-3 mRNA and 
protein in other cells [33]. However, monocytes do not ex-
press NHE-3 [34]. Therefore, different isoforms of NHE 
may be inhibited/stimulated by the same mediator. The re-
sponse may also depend on the location of the NHE.  

 PI3K was involved in NHE-1 activation by glucose, insu-
lin and adrenaline only in lean subjects which could reflect a 
dysfunction of this kinase in the obese subjects. PI3K was 
involved in NHE-1 activation pathway in monocytes [16] 
and its activity was decreased in human skeletal muscle cells 
from insulin resistant obese subjects [35]. Furthermore, there 
is a regulatory disruption between the subunits of PI3K in 
obesity resulting in alteration of PI3K function [36]. The 
disrupted function of PI3K was also found in animal models 
of diet-induced obesity [37]. Alternatively, our findings may 
reflect the low numbers of subjects in the subgroup analysis. 

 Actin polymerization is involved in NHE-1 activation by 
leptin. The interaction of NHE-1 with cytoskeleton is well 
established [38] and seems to be bidirectional. NHE-1 is 
important for de novo assembly of actin filaments [39, 40] 
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and its activation may contribute to actin-filaments organiza-
tion [41, 42]. On the other hand, NHE-1 localization in the 
plasma membrane requires an intact actin cytoskeleton [43]. 
The cytoskeleton may differ in obese subjects since in ani-
mal models a high fat meal decreased the mRNA of cy-
toskeleton [44]. Furthermore, obesity commonly coexists 
with insulin resistance and hyperinsulinemia. Altered struc-
ture of F-actin was found in insulin resistance [45] and expo-
sure to insulin led to actin filament rearrangement in skeletal 
muscle cells [46] and 3T3-L1 adipocytes [47].  

 Leptin is another hormone that is increased in obesity and 
it influences actin cytoskeletal dynamics in hippocampal 
neurons [48] and in vascular tissue [49]. It is therefore of 
interest that in our subgroup analysis, the leptin-induced in-
crease in NHE-1 activity was reduced by cytochalasin-D 
only in the obese patients. 

 NADPH oxidase is involved in NHE-1 activation by in-
sulin. It is known that NHE-1 and NADPH oxidase interact 
in a reciprocal way. NADPH oxidase stimulation produces 
acid thus activating NHE-1 which alkalinizes the pH [50]. 
Furthermore, in animal models pH neutralization is essential 
for NADPH oxidase action [51]. DPI inhibited NADPH oxi-
dase and the activity of NHE-1 [52]. NADPH oxidase activ-
ity could be different in obese subjects since obese animal 
models exhibit increased NADPH oxidase-production of 
superoxide [53]. Furthermore, in monocytes obtained from 
obese subjects a prolonged production of reactive oxygen 
species was reported [54].  

 The differences we observed between lean and obese 
subjects suggest that obese subjects could have signaling 
defects in NHE-1 activation pathways. Alternatively, these 
differences could reflect the small sample size and the fact 
that among the obese group some individuals were insulin 
sensitive while others were insulin resistant. This is a limita-
tion of our study but our findings allow power calculations 
for future studies. 

 In previous studies we found that rosiglitazone inhibited 
some NHE-1-mediated actions in monocytes. It was sug-
gested that rosiglitazone could have an ion-transport action 
[55] and act on NHE-1 [13]. Furthermore, there is a perox-
isome proliferator-activated receptor  (PPAR ) element in 
the promoter region of NHE-1 [56] indicating a possible 
interaction between them. It would also be of interest in fu-
ture studies to investigate whether rosiglitazone can directly 
influence NHE-1 activity.  

 It would be of interest to assess the effect of other media-
tors that are abnormal in obesity (e.g. adiponectin, resistin, 
ghrelin and visfatin) [57, 58] on NHE-1 activity.  

 Glucose, insulin, leptin and adrenaline may be increased 
in obese subjects [59, 60] and monocytes are involved in 
atherogenesis [61]. Inhibition of the action of these media-
tors on NHE-1 in lean and obese subjects may be beneficial 
in the prevention and treatment of atherogenesis. NHE-1 and 
the signaling molecules involved in its activation are poten-
tial therapeutic targets in obesity.  
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ABBREVIATIONS 

BCECF-AM = 2',7'-Bis-(Carboxyethyl)-5(6)-Carboxy- 
fluoresceinacetoxymethyl Ester 

BMI = Body Mass Index 

CM = Culture Medium 

CPDA = Citrate Phosphate Dextrose Adenine 

DIDS = 4,4 -Di-Isothiocyanatostilbene-2,2 - Disul-
fonic Acid  

DPI = Diphenyleneiodonium Chloride 

DTPA = Diethylenetriamine-Pentaacetic Acids 

FCS = Fetal Calf Serum 

HDL-C = High Density Lipoprotein Cholesterol 

HEPES = N-2-Hydroxyethylpiperazine-N -2 
Ethanesulfonic Acid 

IMDM = Iscove’s Modified Dulbecco’s Medium 

L-NAME = N -Nitro-L_Arginine Methyl Ester Hy-
drochloride 

NADPH = Nicotinamide Adenine Dinucleotide 
Phosphate 

NHE-1 = Na
+
/H

+
 Exchanger-1 

PBS = Phosphate Buffered Saline 

PI3K = Phosphoinositide 3-Kinases 

PKC = Protein Kinase C 
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