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Abstract: The electronic properties of two-dimensional double-quantum dots in the presence of external magnetic fields 

are investigated by a variational Monte Carlo method with s and s-p trial wavefunctions. We compute the exchange en-

ergy between two electrons as well as the two-electron total Coulomb energy for the singlet and triplet states in both 

strongly and weakly coupled quantum dots, and compare our data with the results of the numerically exact diagonalization 

of the Schrödinger Equation. In both systems, the singlet Coulomb energy decreases in magnetic fields as a consequence 

of magnetic localization, whereas the triplet Coulomb energy reaches a maximum value at intermediate magnetic fields 

before decreasing. Overall, good agreement between the two methods is obtained with s-p orbital trial wavefunction in 
strongly and weakly coupled quantum dots. 

1. INTRODUCTION 

 Recent works indicate that coupled quantum dots (QD) 

are promising nanostructures for realizing quantum gates 

that are the basic elements of a quantum computer [1, 2]. In 

QDs, fundamental quantum logic operations (e.g. control-

NOT operation) can be achieved in a quantum gate by con-

trolling the entanglement between two electron spins by 

means of external electric and magnetic fields [3]. The en-

tanglement between the spins or qubits can be quantified by 

calculating the exchange energy J, which is the energy dif-

ference between the lowest triplet and the singlet states [1]. 

Proper operation of a quantum gate largely depends on the 

ability to control and to modulate the exchange energy with 

external voltages and magnetic fields. Recently, the coherent 

manipulation of the two-electron spin state in coupled quan-

tum dots has been demonstrated, which is an important mile-

stone toward the realization of a quantum gate with solid-

state systems [4]. However, measuring and controlling the 

exchange energy between two spins still remains a formida-

ble task in experimental coupled QDs. In this context nu-

merical simulations provide a valuable tool to gain insights 

into the complexity of the basic physical effects at play in 

the QD and their manipulation in a device environment. 

 Among various theoretical modeling approaches, quan-

tum Monte Carlo techniques offer simple yet accurate ways 

to simulate many-particle quantum systems [5, 6]. In particu-

lar, variational Monte Carlo method (VMC) relies on a set of 

trial wavefunctions with adjustable parameters to derive by 

variational technique the total energy of the system; the latter 

being estimated by random number generation. The benefits 

of using VMC include (1) relatively simple implementation, 

(2) low memory requirement in the numerical method, and  
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(3) easy parallelization due to the inherent parallel nature of 

Monte Carlo. In our work, we use the variational Monte 

Carlo method to compute the exchange and Coulomb ener-

gies of two electrons in coupled QD systems in presence of 

magnetic fields, thereby extending the previous works on 

single QDs [7, 8] and double QDs in zero magnetic fields 

[9]. For comparison purposes, we also include results ob-

tained from numerical diagonalization of the many-body 

Schrödinger Equation (exact diagonalization or ED method) 

[10]. 

 The paper is divided into four sections. In Sec. II, we 

describe the computational approach used to solve the many-

body Schrödinger Equation. In Sec. III, we provide results of 

our simulations for both the strongly coupled and weakly 

coupled QDs and analyze the important differences between 

the two cases. Finally, in Sec. IV, we summarize the impor-

tant points mentioned in the paper. 

2. MATERIALS AND METHODOLOGY 

 The general model Hamiltonian for N electrons in cou-

pled QDs can be written as follows 

  

H =

( i j

e

c
Aj )

2

2m *
+Vext (rj ) +

e2

rj rkj<k

N

j=1

N

        (1) 

where we use the effective-mass approximation to describe 

the many-body effects among the electrons in the conduction 

band in the two-dimensional (2D) xy-plane, and neglect the 

extension of the wavefunction along the z-direction in a first 

approximation [11]. Here 
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is the 2D external potential of the double QD, which we 

model as a double parabola with two minima located at x = ± 

a along the x-axis for the sake of simplicity. The radial fre-
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quency 
0

 indicates the confinement strength, which we set 

3
0
=  meV to be consistent with experimental data for 

gated QDs [12]. The GaAs effective mass is set to be 

  
m* = 0.067m

0
, with m0 being the free electron mass, and the 

dielectric constant is  = 12.7 .   A  is the vector potential 

experienced by each electron, which is expressed as 

  

A =
B

2
(y, x)             (3) 

in the 2D symmetric gauge, where B is the magnetic field 

oriented along the z-direction. We ignore Zeeman splitting in 

the current analysis. 

 In VMC the most commonly used trial wavefunction has 

a Slater-Jastrow form [13], which is a product of Slater de-

terminants consisting of single-particle orbitals for spin up 

and spin down electrons ( D  and D  respectively) com-

bined with a Jastrow term, (rij )  to account for electron cor-

relations, i.e. 

 

T
= D D (rij )

i< j

N

,           (4) 

where 
 
rij = ri rj . 

 In our simulations, we focus on the special case N = 2 

electrons and set the two-body Jastrow term to be 

(r12 ) = e

a1r12
1+b1r12   

where a1 is fixed by the “cusp” condition to be 0.5 for singlet 

and 0.25 for triplet [14]. We neglect three-body and higher 

correlation terms in the Jastrow term. We replace the Slater 

determinants with the following expressions for the lowest 

singlet and the triplet trial wavefunctions of two electrons, 

respectively. 

 

(D D )
S
= ij ( i (r1 ) j (r2 ) + j (r1 ) i (r2 ))

i, j

        (5) 

 

(D D )
T
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        (6) 

 Here, we use the following expressions for single particle 

s orbitals 
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and for single particle p orbitals  
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where ij, x, y, d, d2, and b are treated as variational pa-

rameters, and rk = xk , yk( ) . The single particle orbitals (Eq. 

(7) and Eq. (8)), are the two lowest states of circular single 

dot eigenstates (Fock-Darwin states) localized in the left and 

right quantum dots. For some sets of simulations, we only 

vary ij, the coefficients in front of the single particle orbi-

tals, while keeping other variational parameters fixed [15]. 

 

x = y =
q2B2 / 4 + o

2m *2 c24

c
, 

 d = d2 = a , 
 

b =
aq2B2

2 c
.           (9) 

 For the singlet wavefunction with just the s orbitals (Eq. 

(5) and Eq. (7)), 11 and 22 are the variational parameters 

that determine the electron double occupation probability 

(situation in which two electrons occupy the same quantum 

dot) [16]. It is also seen that when (rij )= 1, double occupa-

tion is zero at 11 = 22 = 0 as the wavefunction represents a 

Heitler-London state. The VMC triplet wavefunction for s 

orbitals (Eq. (6) and Eq. (7)) formally coincides with Hund-

Mulliken wavefunction when (rij )  = 1 [16]. 

 To numerically optimize the expectation value of the 

energy, we use the Steepest Descent method [17] in which 

variational parameters k
'
 are updated as k k + tfk  at 

each iteration, where 

fk =
E

k

=

Ok
*H + HOk + k

H
+

Ok H
+

Ok
* Ok

      (10) 

with  being the trial wavefunction,  

Ok =

k

ln , and Ok
*
=

k

ln *
, and 

 

E = 
H

 

is the total energy. t  is chosen such that after an adequate 
number of changes in the sign of fk, it becomes inversely 
proportional to the total number of iterations, allowing the 
variational parameters to converge numerically. By using a 
sufficiently large number of random walkers Nw, we solve 
for the expectation values of all the observables in Eq. (10) 
by utilizing the Monte Carlo integration 

 

E =
H

 
1

N
W

EL (Ri )         (11) 

where EL is the local energy and Ri is ith electron positions 

from the probability distribution, which is derived from the 

Metropolis algorithm. 

3. RESULTS 

 We calculated the total energy of the N = 2 electrons sys-

tem for both the singlet (ES) and the triplet (ET) states in the 

coupled QD with nine different approaches: (1) by using the 

ED method described in Ref. [11], (2) by using VMC with 
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the Jastrow term and s orbitals, (3) by using VMC with s 

orbitals but setting the Jastrow term = 1 , (4) by using 

VMC with the Jastrow term and s-p orbitals, (5) by using 

VMC with s-p orbitals with the Jastrow term = 1 , (6) by 

using VMC with the Jastrow term, s orbitals, and fixed varia-

tional parameters (Eq. 9), (7) by using VMC with = 1 , s 

orbitals, and fixed variational parameters, (8) by using VMC 

with the Jastrow term, s-p orbitals, and fixed variational pa-

rameters, and (9) by using VMC with s-p orbitals with 

= 1 , and fixed variational parameters. In Fig. (1a), we 

display the ED results, J = ET – ES, at various magnetic 

fields, for which the separation between the two potential 

minima in Eq. (3) along the x-axis is 2a = 30 nm (strongly 

coupled case). In Fig. (1b), we plot the difference in total 

energies obtained from various VMC trial wavefunctions 

from the ED results from Fig. (1a) to compare the various 

different VMC approaches. Comparing all VMC results with 

those obtained by ED method, we can see that the presence 

of the Jastrow term improves the accuracy of the VMC tech-

nique as expected. In Fig. (1b) for B = 0 T, the accuracy im-

proves from 202.4 to 17.6 μeV, from -12.23 to -2.49 μeV, 

from 747.1 to 86.05 μeV, and from 110.5 to 41.88 μeV for 

VMC using s orbitals, s-p orbitals, fixed variational s orbi-

tals, and fixed variational s-p orbitals, respectively. How-

ever, at higher magnetic field values, the improvement is less 

pronounced or even negligible depending on the specific 

regime and the specific trial wavefunctions. This can be eas-

ily explained by noting that since  accounts for correlation 

effects between electrons, we expect it to have a weaker ef-

fect at high magnetic fields where the two electrons are more 

decoupled. 

 In Fig. (1b), we see that the two s orbital curves look 

similar to one another from B = 2 to 6 T, which is expected 

since the effect of  diminishes with higher magnetic fields 

as mentioned earlier. We see that in both curves, the error 

increases when B > 2 T with a peak value occurring at 3.5T 

(73.9 μeV for s orbital without Jastrow term and 61.8 μeV 

for s orbital with Jastrow). It turns out that at magnetic fields 

around 3 to 5 T, higher energy single-particle orbitals con-

tribute significantly to the singlet two-electron wavefunc-

tions [11]. Because such states are omitted in the s orbital 

VMC trial wavefunctions, deviations from the actual results 

are accentuated at this field range. Unlike the singlet state in 

this interval of magnetic fields, the true triplet state is actu-

ally relatively well described by wavefunction that does not 

include other high energy orbitals. Overall, the two effects 

result in lower than expected VMC exchange energies over 

this magnetic field range. Upon including the p orbitals, we  

 

see the accuracy of the VMC results improves significantly 

at this magnetic field range. We also note that even with the 

inclusion of p orbitals, the Jastrow term does play a role in 

improving accuracy at low magnetic fields (B = 0 to 2 T). 

Finally, trial wavefunctions with fixed variational parameters 

give inaccurate results, showing the importance of optimiz-

ing these parameters in strongly coupled QDs. 

 

Fig. (1). Simulated exchange energy versus magnetic fields in 

strongly coupled QDs (potential minima separated by 30 nm). (a) 

ED method and (b) difference between the energies obtained from 
ED and the different VMC trial wavefunctions. 

 In Fig. (2a,b), we plot the total Coulomb energy (TCE)  

 
e2

r12
  

between the two electrons for the singlet and triplet states. 

Both the direct Coulomb interaction and the exchange interac-

tion contribute to the TCE, so its behavior depends on the in-

terplay between these two terms: in the singlet state, both are 

positive, while in the triplet state, the exchange interaction is  

negative. We observe that the singlet TCE given by s orbital 

VMC calculations decreases monotonically with increasing 

magnetic fields, while the ED and the s-p orbital VMC results 

indicate a minimum at around 3 T (Fig. 2a). Physically, at 

small magnetic fields, the singlet TCE decreases as the elec-

trons gradually localize in each QD, and the overlap between 

them diminishes. However, in strongly coupled QDs, higher  
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Fig. (2). Total Coulomb energy vs magnetic field in strongly cou-

pled QDs. (a) singlet state and (b) triplet state. ‘o’-symbols: VMC 

(s orbital); ‘+’-symbols: VMC (s-p orbital); ‘ ’- symbols: ED calcu-

lations. 

energy single-particle orbitals (neglected in s orbital VMC) 

contribute to the many-body state as the system strives to de-

crease its total energy (at around ~3 T in our simulation) [11] 

as electrons effectively become more localized. In this case, 

even though the orbital energy increases with magnetic field, 

the TCE decreases (this effect is reminiscent of the energy 

behavior of a two-electron pair in single circular QDs [11]). 

Hence, at low magnetic fields, the ED and the s-p orbital Cou-

lomb expectation values decrease faster than the VMC values 

calculated with only the two lowest single-particle orbitals. As 

the magnetic field increases further, the Coulomb expectation 

values approach to the same values in all three cases as the 

increasing magnetic field just localizes electrons in separate 

QDs in a configuration similar to Heitler-London state. In the 

triplet state, the TCE calculated by VMC and ED, exhibits a 

maximum around B = 3 T, and decreases afterward (Fig. 2b). 

Unlike the singlet state, this behavior arises from the differ-

ence between the direct repulsion between electrons and the 

exchange interaction in the TCE. Hence, while both terms 

decrease with magnetic fields the faster decay of the latter 

results in the TCE rise at low magnetic fields [18]. 

 In Fig. (3a), we plot the ED exchange energy for a 

weakly coupled quantum dot system, for which we set the 

separation between the two potential minima to be 60 nm, 

while keeping 0 at 3 meV. Because the confining potential 

is quadratic in 0 (Eq. 2) an alternative way to decouple the 

QDs is to increase the confinement strength. Similarly to the 

strongly coupled QD case, we plot the difference in total 

energies obtained from various VMC trial wavefunctions  

 

 

Fig. (3). Same as in Fig. (1a,b) but for the weakly coupled QDs 
(potential minima separated by 60 nm). 

from the ED results in Fig. (3b). In Fig. (3b) at B = 0 T, we 

notice the exchange energies are about one order of magni-

tude smaller than in strongly coupled QDs (Fig. 1), which is 

expected since the wavefunction overlap between the two 

electrons strongly decreases with the dot separation. Com-
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paring Figs. (1b) and (3b), we see closer agreement between 

all of the VMC and the ED results in weakly coupled dots 

with noticeable improvements in the s orbital VMC wave-

function cases. This can be explained by the fact that upon 

increasing the distance between the QDs, the contribution of 

the high energy single-particle orbitals to the singlet wave-

functions, which are omitted in the s orbital VMC simula-

tions, becomes negligible. Also, we observe the weaker role 

of the  in the weakly coupled dots. In fact, there isn’t any 

statistically significant difference in accuracy between the 

two s-p orbital cases (one with Jastrow term and the other 

without) since correlation between electrons, which is ac-

counted for by the Jastrow term, becomes less important as 

the dots become more decoupled. 

 Finally, in Fig. (4a), we observe a general behavior of the 

evolution of the singlet Coulomb energies different from the 

strongly coupled QDs. Specifically, the local minimum in 

the TCE, which was found in strongly coupled QDs with the 

ED calculations, disappears thereby reconciling both the s 

orbital VMC and the ED approaches. Also, from B = 0 to B 

= 4 T, the total reduction in the singlet TCE is ~0.08 meV, a 

value much smaller than ~0.5 meV calculated in strongly 

coupled QDs, which again reflects the decoupled nature of 

the electrons in the weakly coupled QDs. In the triplet state 

(Fig. 4b), the TCE calculated by VMC and ED, exhibits a 

maximum around B = 1.5 to 2 T, and decreases afterward, 

showing similar behavior as in the strongly coupled case. 

4. DISCUSSION AND CONCLUSION 

 We have computed the Coulomb and exchange energies 

between two electrons in a double quantum dot system as a 

function of magnetic fields by using both variational Monte 

Carlo and exact diagonalization methods. The utilization of 

simple trial wavefunctions (with s orbitals only) in VMC 

have lead to good agreement with the ED method, when 

electrons are decoupled, which validates two-level ap-

proaches such as the Heitler-London approximation in 

weakly coupled QDs. By analyzing the differences between 

the two methods, we have explicitly demonstrated influence 

of higher energy single-particle orbitals in the singlet state of 

the double QDs for strongly coupled systems. We have 

shown that addition of p orbitals are sufficient enough to 

accurately describe the system in both the strongly and the 

weakly coupled QDs. We have also shown that the total 

Coulomb energies for the singlet and the triplet states behave 

differently with respect to magnetic field. As indicated by 

ED and the s-p orbital VMC results, the singlet Coulomb 

energy in strongly coupled QDs exhibits a minimum in its 

decrease with magnetic fields because of the strong quench-

ing of the exchange interaction with magnetic localization, 

whereas this behavior is absent in weakly coupled QDs. The 

triplet Coulomb energy, however, peaks at intermediate 

magnetic fields for the same reason, in both strongly coupled 

and weakly coupled QDs. 

ACKNOWLEDGEMENTS 

 We are grateful to R. M. Martin and M. Casula for help-

ful discussion. This work was supported by ARO Grant No. 

DAAD 19-01-1-0659 under the DARPA-QUIST program 

and the Material Computational Center. The work performed 

at the Materials Computation Center was supported by the 

National Science Foundation under grant no. DMR-03 25939 

ITR, with additional support through the Frederick Seitz 

Materials Research Laboratory (U.S. Dept. of Energy grant 

no. DEFG02-91ER45439) at the University of Illinois Ur-

bana-Champaign. 

 

Fig. (4). Total Coulomb energy vs magnetic field in weakly coupled 

QDs. (a) singlet state and (b) triplet state. ‘o’-symbols: VMC (s 

orbital); ‘+’-symbols: VMC (s-p orbital); ‘ ’- symbols: ED calcula-

tions. 
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