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Abstract: Temperature effect on quantum tunneling in a Cooper-pair-box coupled to a quantum
oscillator is studied by both numerical and analytical calculations. It is found that, in strong
coupling regions, coherent tunneling of a Cooper-pair-box can be destroyed by its coupling to a
quantum oscillator and the tunneling becomes thermally activated as the temperature rises, leading
to failure of the Cooper-pair-box. The transition temperature between the coherent tunneling and
thermo-activated hopping is determined and physics analysis based on small polaron theory is also
provided.

I. INTRODUCTION

Since the experimental realization of the single-electron transistor (SET) in 1987 [1, 2], the SET has become an
important element in both extremely precise measurement [3–6] and quantum information processing [7–9]. The
development of the so-called radio-frequency SET electrometer is considered as the electrostatic “dual” of the well
known superconducting quantum interference devices (SQUIDs) and has shown its power of fast and ultrasensitive
measurement [10, 11]. On the other hand, the direct observation of the coherent oscillation in superconducting SET
(SSET, or the so-called Cooper-pair-box (CPB)) shows the SSET can be served as a physical realization of a coherent
two-state system [12, 13], and since then the SSET or the SSET-based circuit has been considered as a candidate of
a qubit in a solid state device and a read-out device of a qubit [7–9].

The high frequency (up to 1 GHz) and high quality factor (Q ∼ 103) nano-mechanical resonator (NR) was firstly
fabricated from bulk silicon crystal in 1996 [14], and therefore it brought a lot of interest in demonstrating the quantum
nature of this small mechanical device [15–19]. A nano-mechanical resonator capacitively coupled to a SSET forms the
so-called nano-electromechanical system (NEMS), a system shows promises for fast and ultrasensitive force microscopy
[6, 20]. Especially, displacement-detection approaching the quantum limit by this system has been demonstrated [6].
From a view point of theoretical study, NEMS can be interesting in their own right. In fact, NEMS provides a
physical realization of a simple quantum system: a two-level system (TLS) coupled to a single phonon mode, which
has basic relation to some important models in solid state physics and quantum optics. First of all, it represents
an oversimplified spin-boson model [21, 28], i.e., the spin-boson model in a single-phonon mode case, also it can be
considered as the Einstein model in a two-site problem in the exciton-phonon (or polaron-phonon) system [22]. By
taking the analog of the resonator as the single mode cavity, it is the Jaynes-Cummings model in quantum optics
[17, 23–25].

To be a physical realization of a TLS, the SSET needs to work in severe constrains. It is well known that both
thermal and quantum fluctuations from the environment can destroy the Coulomb blockade of tunneling and lead
to the failure of the SET [26, 27]. Additional conditions are needed for a SSET [27], and one important factor is to
maintain the coherent tunneling. The study on polaron-phonon system shows that the coherent motion of the electron
can be destroyed by its coupling to the phonon and a transition from band motion to hopping motion happens as the
temperature rises [29]. By analogy, it is important to know if the coherent tunneling of the SSET in NEMS can be
destroyed by its coupling to a NR, leading to failure of the SSET. We shall state such a phonon-induced transition as
coherent-incoherent transition and this is the main interest of the present paper.

The coherent-incoherent transition in NEMS will be studied by both numerical and analytical analyses. It is shown
that the coherent-incoherent transition exists for some frequency ranges with strong coupling parameters. The rest of
the present paper is organized as follows. In Sec. II, we explain the model and the way to trace out the environment,
the results from adiabatic approximation is also discussed. The coherent-incoherent transition is studied in Sec. III
and conclusion and discussion are presented in Sec. IV.

II. THE MODEL AND EXPLANATION OF THE APPROXIMATION

The Hamiltonian of the NEMS, i.e., a TLS + a NR, is given by (setting � = 1) [8, 19]

Ĥ0 =
1
2
ε0σ̂z − 1

2
Δ0σ̂x + Ωâ†â + λσ̂z(â† + â), (1)
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where ε0 = EC(1−2ng) and EC is the charging energy of a Cooper pair, ng = CgVg/(2e) with Cg and Vg are the gate
capacity and gate voltage, respectively. Δ0 = EJ = Ic/(2e) and Ic is the critical current of the Josephson junction. σ̂i

(i = x, y, z) are the Pauli matrices and â† (â) is the creation (annihilation) operator of the phonon mode with energy
Ω, while λ is the coupling parameter. The above Hamiltonian indeed is a special case (i.e., the single mode case) of
the spin-boson model, an important toy model in dissipative quantum systems [21, 28]. The first two terms in Eq.(1)
represent the TLS. The ε0 and Δ0 are the bias and the “bare” tunneling matrix element, respectively. The third term
represents the NR system and the final term is the coupling between the TLS and NR. Despite of its simple-looking
form, the exact solution to model (1) has not yet been found even in the case of T = 0. This model has been treated
by various treatments using different approximations, including the famous rotation-wave-approximation(RWA) and
the adiabatic approximations. The RWA is known to be valid in the so-called resonance condition in weak coupling
limit and the adiabatic approximation is only valid in the high frequency regime with Δ0/Ω � 1 [16]. Temperature
effect on quantum tunneling in this system has not been addressed so far and that is the main interest of the present
work. We shall concentrate in the case when the SSET is closed to the degeneracy point [8, 19].

The main problem for the case of T �= 0 comes from the fact that the system described by the above Hamiltonian
is not a thermodynamical system, a true thermodynamical system should include the environment, which is modelled
as a collection of harmonic oscillators [21, 28]. The whole Hamiltonian can be written as

Ĥ = Ĥ0 + Ĥe, Ĥe =
∑

k

ωk b̂†k b̂k + Ĥint, (2)

where Ĥint represents the coupling between the environment and NEMS. In the present paper, we shall assume that
the effect of the environment is just to keep the NEMS in equilibrium. Here we apply the concept of reduced density
matrix to explain the approximation. The density matrix of the whole system is

ρ = ρ0 ⊗ ρe, (3)

where ρ0 and ρe are the density matrix of the NEMS and environment, respectively. In general, the state of the
whole system can be expressed as |Ψ〉|φ〉, here |Ψ〉 and |φ〉 represent respectively the state of the environment and
the NEMS. The expectation value of any operator Q̂ that acts only on the variables of the NEMS in quantum state
|φ〉 can be found by [30]

〈Q̂〉 = Trρr(φ)〈φ|Q̂|φ〉, ρr = Trbathρ, (4)

where ρr is the reduced density matrix and “Trbath” means the trace operation over the environment. Our approxi-
mation means that the above expression can be rewritten as

〈Q̂〉 � 1
Z

∑
i

e−βEi〈φi|Q̂|φi〉, Ĥ0|φi〉 = Ei|φi〉, (5)

with Z =
∑

i e−βEi is the partition function of the NEMS and β = 1/(kBT ) (setting kB = 1), {|φi〉} is any orthonormal
set of basis vectors. In previous treatments [16, 17], the effect of the environment is just to keep the NR in equilibrium.
The present treatment, taking a small step further, suggests that the NEMS is in equilibrium with the environmental
bath.

By taking this approximation, thermodynamical properties of the NEMS can be known, and therefore the eigen-
value problem of Ĥ0 in Eq. (1) can be solved. The eigenvalues of Ĥ0 can be obtained by the standard numerical
diagonalization technique. In a practical treatment, the number of eigenvalues treated must be finite. We truncate
the eigenspectrum by just taking the first smallest N eigenvalues, i.e.,

〈Q̂〉 � 1
Z

∑
i

e−βEi〈φi|Q̂|φi〉 � 1
Z

N∑
i=1

e−βEi〈φi|Q̂|φi〉, (6)

with Z � ∑N
i=1 e−βEi , while N is determined by the following condition

β(EN − E1) ≥ L, (7)

where L is a fixed number to control the calculation error and in the present paper we have L ≥ 20. Accordingly, one
can find the interested physical quantities from the numerical results, for example, the free energy of the NEMS is

F (T ) � −T ln

(
N∑

i=1

e−βEi

)
, (8)

from which all the thermodynamical quantities of the NEMS can be found. In our numerical calculation, we have
randomly checked the dependence of the results on the value of L. We found no observable dependence on L for
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L ≥ 20 by extending L to 50 or even 100. It should be noted that, for calculating the temperature dependence of
tunneling splitting, Eq. (5) should be modified as

Δ(T ) � 1
Z

N∑
i=1

e−βEi |〈φi|σ̂x|φi〉|, (9)

this is because the sign of 〈φi|σ̂x|φi〉 is not relevant in the calculation of Δ(T ).
Before going to numerical results, we shall first discuss the adiabatic approximation in the case of ε0 = 0 which

is shown to be a good approximation for Δ0/Ω ≤ 1 [16]. In the adiabatic approximation, the eigenvalues of Ĥ0 are
characterized by pairs of energies that are given by [16]

E±
a (n) = nΩ ± Δa(n) − λ2

Ω
, Δa(n) =

Δ0

2
〈n+|n−〉, (10)

where |n±〉 = exp{∓(λ/Ω)(a+−a)}|n〉 are the displaced-oscillator states and n = 0, 1, 2, · · · . Taking these eigenvalues,
one can find the temperature dependence of the tunneling splitting according to Eq. (9) and the result is

Δa(T ) � 1
Za

∞∑
n=0

Δa(n)e−βnΩ 2 cosh(βΔa(n)), (11)

where Za =
∑∞

n=0 e−βnΩ 2 cosh(βΔa(n)). In the limit of Δa(n) � Ω, it can be found that

Δa(T ) �
∞∑

n=0

Δa(n)pth(n), pth(n) = e−βnΩ(1 − e−βΩ), (12)

a result that is used in the previous treatments [16, 17].

III. COHERENT-INCOHERENT TRANSITION

To perform numerical diagonalization, one needs to represent the Hamiltonian Ĥ0 with a suitable basis. In the
treatment of Ref. 16, the basis of | ↑, ↓〉⊗ |n±〉 is applied, where | ↑〉 and | ↓〉 are the eigenstates of σz. However, with
this basis, the elements of the Hamiltonian matrix are filled with the overlap terms between different states |n±〉 as
shown in the Eq. (8) of Ref. 16. Such overlap terms are rather complicated to compute and therefore the generation
of the Hamiltonian matrix is slow. In our treatment, for convenient, we use a very simple basis that consist of the
eigenstates of σz and â†â to represent the Hamiltonian, i.e., a basis of | ↑, ↓〉 ⊗ |n〉. Hence, we represent the TLS
terms with | ↑, ↓〉 and the NR terms with |n〉 and do a tensor product, the matrix of Ĥ0 is generated. Of course, both
schemes give the same results. The diagonalization can give the eigenvalues of Ĥ0, i.e., {Ei}, and the corresponding
eigenvectors {φi}, from which the tunneling splitting 〈φi|σ̂x|φi〉 can be found. Noted that, to reach the accuracy
condition (7), the matrix size is Ω-dependent, the lower the frequency, the larger the matrix size. In the following, we
shall firstly concentrate our interest on the unbiased case of ε0 = 0 and the biased case will be discussed in the end
of this section. The eigenvalues in the case of ε0 = 0 we found are in good agreement with the results in Ref. 16, i.e.,
the results of the adiabatic approximation given in Eq. (10) work well for Ω/Δ0 ≥ 1. The corresponding tunneling
splitting of the eigenstates for λ/Ω = 0.5 and some typical values of Δ0/Ω are shown in Fig. 1, where the results of
the adiabatic approximation are also given for comparison.

It can be found that the sketches of both curves show good agreement for Δ0/Ω ≤ 1 and the higher the excited
states the better the agreement. However, a closed look at the curves reveals that obvious discrepancy appears for
both the ground state and the first excited state even when Δ0/Ω = 1/3. Figure 2 shows the details of the discrepancy.
We found that the discrepancy begins to appear even when Δ0/Ω = 0.1 and becomes obvious when Δ0/Ω = 1/3.
The present results show that, if one compares the eigenvalues of the adiabatic approximation with the numerical
diagonalization, the adiabatic approximation seems to work pretty well for Δ0/Ω ≤ 1; however, if one measures the
tunneling splitting, the adiabatic approximation works well only for Δ0/Ω ≤ 0.1.

After finding out the eigenvalues and the corresponding tunneling splitting, one can calculate temperature depen-
dence of the tunneling splitting according to Eq. (8). For all the frequencies we studied (down to Δ0/Ω = 50),
the tunneling splitting decreases with temperature at the beginning in low temperature regions. However, when
the coupling strength λ/Ω increases to some critical value, Δ(T ) has a “upturn” at some temperature Tt, which is
λ/Ω-dependent. Typical results are shown in Fig. 3.

The curves shown in Fig. 3 indicate that, for a given value of Δ0/Ω and in the low temperature region, the main effect
of the NR on quantum tunneling is to decreases the tunneling splitting in the weak coupling regions. The situation
is more or less the same as that in the polaron-phonon (or exciton-phonon) system, say, coupling to phonons makes
the electron become a “dressed” one and lowers the hopping rate of the electron. However, as the coupling strength
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FIG. 1: Tunneling splitting for eigenstates of Ĥ0 in the case of λ/Ω = 0.5 and ε0 = 0 for some typical values of Δ0/Ω by
numerical calculation (shown as triangles). The results of the adiabatic approximation (shown as “∗”) are also shown for
comparison. The sketches of both curves show good agreement for Δ0/Ω ≤ 1 and the higher the excited states the better the
agreement. However, obvious discrepancy appears for both the ground state and the first excited state even when Δ0/Ω = 1/3.
The results of the adiabatic approximation show large discrepancy with the numerical results in low frequency region with
Δ0/Ω > 1.

increases, the effect of the NR on quantum tunneling changes as temperature increases to Tt, e.g., the tunneling
splitting is enhanced by a NR as temperature increases further. The result is reminiscent of the transition from
Bloch-type band motion to phonon-activated hopping motion in the polaron-phonon (or exciton-phonon) system.[29]
Moreover, Δa(T ) obtained from Eq. (11) does not show such “upturn” for the frequency regions we studied. This
implies that the “up-turn” is a non-adiabatic effect.

As we have mentioned in Sec. I, the present model can be considered as an analog to the polaron-phonon system
of Einstein model [29]. We therefore employ the small polaron theory to analyze the temperature dependence of the
tunneling splitting. At the beginning of the low temperature regions, the expectation value of phonon number is small,
and the main contribution to the tunneling splitting is the so-called diagonal transitions. The diagonal transition rate
can be found by following the way given in Ref. 29. Firstly, a canonical transformation is applied to the Hamiltonian
in Eq.(2), i.e.,

Ĥ ′ = eSĤe−S = Ĥ0 + V̂ +
∑

k

ωk b̂†k b̂k + Ĥ ′
int, (13)

where S = (λ/Ω)σ̂z(â† − â),

Ĥ0 =
ε0
2

σ̂z + Ωâ†â − λ2

Ω
, (14)

V̂ =
Δ0

4
(σ̂+e(λ/Ω)(â−â†) + h.c.), (15)
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FIG. 2: Comparison of the tunneling splitting of both the ground state and the first excited state by numerical calculation with
adiabatic approximation in the case of ε0 = 0 for some typical values of Δ0/Ω. It should be noted that the result by adiabatic
approximation is Δ0/Ω-independent, which is shown as solid and dash lines (dash line is the ground state). Numerical results
are shown in different patterns for different values of Δ0/Ω (the hollow patterns are for the ground state).

Ĥ ′
int = eSĤinte

−S and σ̂± = σ̂x ± iσ̂y. The diagonal transition rate is given by

wd(T ) = Trbath〈i|V̂ |i〉 =
Δ0

2
e−ST , (16)

where ST = (2λ/Ω)2(n + 1/2) and n = (eβΩ − 1)−1 is the expectation value of phonon number. Here, we have
employed the approximation elucidated in Sec. II, i.e., the effect of

∑
k ωk b̂†k b̂k + Ĥ ′

int is just to keep the NEMS in
equilibrium. wd and hence the tunneling splitting will decrease with increasing temperature. On the other hand, the
main contribution to tunneling splitting, at higher temperature, is the so-called non-diagonal transitions. One can
calculate the correlation function in the way given in Ref. 29, e.g.,

W (t) = Trbath[〈i|V̂ (t)V̂ (0)|i〉 − |〈i|V̂ |i〉|2], (17)

with V̂ (t) = eiĤ0tV̂ e−iĤ0t and the result is

W (t) = (Δ0/2)2e−2ST [eϕ(t) − I0(ε)], (18)

where I0(x) is a Bessel function and

ϕ(t) = ε cos[Ω(t + iβ�/2)], ε = 2(2λ/Ω)2[n(n + 1)]1/2. (19)

It is interesting to note that, in the present case, the factor I0(ε) still survives after taking thermodynamical limit, a
situation that is different from the small polaron theory of the Einstein model [29]. This is because only one phonon
mode coupled to the TLS in the present case and all the other modes just serve as the bath. This result can also help
to get rid of the delta function problem shown in Ref. 29. The non-diagonal transition rate can be found by using the
saddle-point integration

wn(T ) =
∫ ∞

−∞
W (t)dt � (Δ0/2)2(π/γ)1/2e−2ST +ε, (20)

where γ = λ2[n(n + 1)]1/2. It can be easily verified that wn shows opposite temperature dependence to wd and the
transition temperature Tt is determined by wd = wn, which leads to

Δ0

2
[π/γ(Tt)]1/2eε(Tt)−ST (Tt) = 1. (21)
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FIG. 3: Temperature dependence on the tunneling splitting in the case of ε0 = 0 for some typical values of Δ0/Ω. At the
beginning, Δ(T ) decreases with temperature, but as the coupling parameter λ/Ω increases, Δ(T ) shows a “up-turn” at some
temperature Tt, which is λ/Ω-dependent.

The above equation can be solved numerically and the transition temperatures obtained are shown in Fig. 4, where
the transition temperatures determined from Δ(T ) by numerical calculation (i.e., curves shown in Fig. 3) are also
presented for comparison.

In Fig. 4, the transition temperatures by numerical calculations are always lower than the analytical ones. In the
high frequency region with Δ0/Ω < 1, both obtained transition temperatures show similar λ/Ω dependence, i.e., Tt

increases as λ/Ω decreases. However, the transition temperature obtained by analytical calculation shows opposite
coupling parameter dependence in the low frequency region with Δ0/Ω < 1, a result that is in confliction with an
intuitive picture. It is clear that, as shown in the inset of Fig. 4, analytical calculation predicts a transition for
coupling strength as low as λ/Ω ∼ 0.2 for Δ0/Ω ≤ 1/3; however, numerical result shows that there is no transitions
for coupling strength λ/Ω lower than 0.7. Figure 5 draws the the transition boundary as a function of λ/Ω and Δ0/Ω
obtained by the numerical calculation.

We believe that the discrepancy mainly comes from the approximation made in the analytical calculation of the
diagonal transition rate. It can be shown that

wd(T ) =
∞∑

n=0

Δa(n)pth(n) � Δa(T ), (22)

which indicates that effectively the diagonal transition rate is found by adiabatic approximation, an approximation
is good for finding the tunneling splitting only when Δ0/Ω ≤ 0.1 as demonstrated above. Figure 6 shows the details
of how the discrepancy comes from the adiabatic approximation.

It turns out that, as the temperature increases, the descending rate of wd(T )/wd(0) is much lower than Δ(T )/Δ(0)
from the numerical calculation. Such a result has two consequences. The first one is the transition temperature by
analytical calculation is higher than the numerical result since a slower descending wd(T )/wd(0) will lead to a higher
crosspoint with a given wn(T ); still another one is the extremely high transition temperature in the weak coupling
regions shown in the inset of Fig. 4. In the weak coupling regions, the slow descending wd(T )/wd(0) can still survive to
some high temperature, at where Δ(T ) from the numerical calculation is already died out, bringing about an artifact
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FIG. 4: Transition temperatures obtained by analytical (from Eq.(21)) and numerical calculations in the case of ε0 = 0 for
some typical values of Δ0/Ω. The analytical results are always higher than the numerical ones. For Δ0/Ω < 1, both transition
temperatures show similar λ/Ω dependence, i.e., Tt decreases with increasing λ/Ω. However, opposite λ/Ω dependence is found
for λ/Ω ≥ 1, showing that the analytical results are invalid in the low frequency regions. The inset of the lefttop figure shows
the whole transition temperature curve obtained by the analytical calculation.

high transition temperature. On the other hand, as one can see from Fig. 1 and Fig. 2, tunneling splitting from the
adiabatic approximation shows large discrepancy with the numerical result when Δ0/Ω ≥ 1. This implies that wd(T )
is a bad approximation to calculate the diagonal transition rate in low frequency regions with Δ0/Ω ≥ 1. Numerical
analysis indicates that wd(T ) shows different (λ/Ω)-dependence from Δ(T ), leading to different λ/Ω-dependence of
Tt. In other words, the break-down of the adiabatic approximation in the low frequency region with Δ0/Ω ≥ 1 leads
to an abnormal λ/Ω-dependence of the transition temperature in the low frequency regions.

Now we turn to see the effect of bias on the coherent-incoherent transition. In the case of ε0 �= 0, intuitively, the
hopping between the TLS needs the assistance of the phonon unless the bias is very small comparing with Δ0, i.e.,
the bias can be overcome by the quantum fluctuation. Accordingly, the diagonal transition is still possible and hence
the coherent-incoherent transition is expected to survive only when ε0/Δ0 � 1. Nevertheless, the appearance of the
non-zero bias will weaken the diagonal transition rate. As ε0 increases to some value, at where tunneling becomes
impossible without the assistance of phonon, then the diagonal transition makes no contribution to tunneling and
coherent-incoherent transition disappears. Numerical calculation in the case of ε0 �= 0 is the same as ε = 0 and
some typical results obtained by the numerical calculation are shown in Fig. 7. As ε0/Δ0 increases, the transition
temperature decreases and the transition disappears when ε0/Δ0 reaches some critical value which is a function of
λ/Ω and ε0/Ω. Obviously, the numerical result is in accord with the analysis presented above.

IV. CONCLUSION AND DISCUSSION

In conclusion, we have presented a study on the quantum tunneling of a nanomechanical resonator in the scheme
of a Cooper-pair-box coupling to a NR. We found that the coherent tunneling of a Cooper-pair-box can be destroyed
by the coupling to a NR at a temperature much lower than the coupling energy EJ of the Josephson junction. The
present analysis shows that, for a NEMS to work well, one additional condition, e.g., T � Tt, is needed. The coherent-
incoherent transition boundary as a function of Δ0/Ω and λ/Ω is calculated. It turns out that the transition happens
only for λ/Ω > 0.7, and the lower the Δ0/Ω, the larger the λ/Ω is needed for the transition. We also found that
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FIG. 5: Transition boundary obtained by the numerical calculation in the case of ε0 = 0. The larger the Δ0/Ω (i.e., the lower
frequency for a given Δ0), the larger the coupling strength λ/Ω is needed for the transition to happens, indicating the SSET
is more stable when coupling to a lower frequency NR.

FIG. 6: Illustration of how the discrepancy comes from wd(T ) obtained by the adiabatic approximation in the case of ε0 = 0,
Δ0/Ω = 1/3, and λ/Ω = 1. As the temperature increases, the descending rate of wd(T )/wd(0) is much lower than Δ(T )/Δ(0)
from the numerical calculation, leading to a higher transition temperature. The “up-turn” of wn(T ) in the low temperature

regions is due to the factor γ−1/2 which diverges as T → 0.

the transition temperature is a monotonic descending function of λ/Ω. The present result implies that experimental
observation on the coherent-incoherent transition is still impossible since the corresponding coupling parameter cannot
be achieved in the present stage. Taking some typical experimental parameters [15]: Δ0 = 4μeV and �Ω = 1.2μeV,
the coupling parameter needed for the transition is λ/Ω � 1.4, which is larger than the strong coupling limit possible
to achieve in experiment (λ/�ω0 ∼ 1) [16]. To achieve the transition in experiment, the result shown in Fig. 5 tells
Δ0/Ω should lower than 1, i.e., the frequency of the NR should be as high as 1GHz, which is almost the limitation
in the present stage. Nevertheless, it is believed that, in a real system, the transition can be seen in a lower coupling
parameter regions since the coupling of the NR to the environment can help the transition to happen. It is also found
that other thermodynamical quantities, such as specific heat, vary smoothly over the transition point, showing that
the transition is not a thermodynamical transition.

Coherent-incoherent transition is an important issue in the spin-boson model and analysis on the transition at
T �= 0 was also provided in Ref. 21. However, the starting point in Ref. 21 is different from the present analysis. In
the present analysis, the key element is the temperature dependence on the tunneling splitting, while in the previous
analysis, it is the relaxation behavior, i.e., the time dependence on transition rate P (t) [21]. As a matter of fact,
the present analytic calculation is similar to the calculation provided in Sec. III D of Ref. 21, and accordingly the
transition rate we found here is related to P (∞) (or 1−P (∞)), which was predicted to have a monotonic temperature
dependence in their analysis. It seems that this result is suitable for the case with large bias while the “up-turn”
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FIG. 7: The effect of bias on the coherent-incoherent transition for some typical values of λ/Ω and Δ0/Ω. The transition
temperature decreases with increasing ε0/Ω and the transition disappears when ε0/Ω reaches some critical value which depends
on both λ/Ω and Δ0/Ω.

of Δ(T ) for small (or zero) bias cannot be explained. Nevertheless, the present result can help to understand the
coherent-incoherent transition at T �= 0 in the spin-boson model with small bias. To the first order approximation (i.e.,
omitting the cooperative effect between different phonon modes), the combined contribution of all the phonon modes
with a frequency-dependent weight for 0 < ω < ωc is approximately the contribution of the whole bath, accordingly
a coherent-incoherent transition is expected to exist in the spin-boson model since the coupling of the TLS to all the
phonon modes can lead to the transition when the coupling strength exceeds some value.
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CPB: Cooper-pair-box;
NEMS: nano-electromechanical system;
NR: nano-mechanical resonator;
RWA: rotation-wave-approximation;
SET: single-electron transistor;
SQUID: superconducting quantum interference devices;
SSET: superconducting single-electron transistor;
TLS: two-level-system.
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