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1. INTRODUCTION 

 The electronic and structural properties of tin are very 

sensitive to pressure conditions [1]. The ground state, grey 

tin ( Sn) , has the diamond structure and is known to be a 

semiconductor with zero band gap (semi-metal). Tin also 

exists in the Sn  structure (white tin) at atmospheric 

pressure above 13
o
C. The metallic Sn  phase is a 

tetragonal distortion of diamond with two atoms per unit 

cell. This phase is stable up to 9.5 GPa at room temperature, 

where it transforms to a bct form, followed by a 

transformation to the cubic bcc structure [2]. These 

temperature and pressure-driven phase transformations have 

caused tin to be of considerable experimental and theoretical 

interest [2-11]. 

 The electronic and structural properties of complex 

systems like tin require a fully quantum-mechanical 

description. Accurate full first-principles calculations such as 

Hartree-Fock with correlation correction [12] and the local 

density approximation [13, 14] are extremely demanding 

from the computational point of view. The development of 

simpler yet reliable approximate methods of calculations is 

therefore crucial to progress in this field. 

 An alternative to first principle methods, which has 

already provided numerous significant results, is the so 

called the large unit cell-intermediate neglect of differential 

overlap (LUC-INDO) [15-18]. The semi-empirical LUC-

INDO method is capable of simulating real crystals because 

it takes into account the property of periodicity. Due to its 

semi-empirical character and a specific parameterization  
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scheme, the computer program is not cumbersome and time 

consuming (about 1 hour for each process cycle) in the 

treatment of the electronic and spatial structure of simple 

systems as in our case. Also, it is suitable for analyzing 

complex systems [19-22]. 

 A lot of studies have been carried out on the properties of 

tin and its phase transitions [1-11]. However, there are 

comparatively fewer studies on the pressure and temperature 

dependence of these properties. The aim of the present work 

is to investigate the effect of pressure on the electronic and 

structural properties of Sn  using the LUC-INDO 

formalism which will be outlined in the next section. 

2. CALCULATION METHOD 

 A quantum-chemical semi-empirical INDO method 

developed especially for crystals [23] is used in the present 

work. This quantum computational formalism has been used 

with great success especially exploiting the so-called LUC 

(Large Unit Cell) model [18]. Within the method each 

molecular orbital is constructed as a linear combination of 

atomic orbitals [23] in order to express the wave function of 

the system. Each energy value is calculated by the HF self-

consistent field method and the total energy of the system is 

obtained. The basic idea of LUC is in computing the 

electronic structure of the unit cell extended in a special 

manner at k=0 in the reduced Brillouin zone. This equivalent 

to a band structure calculation at those k points; which 

transform to the Brillouin zone center on extending the unit 

cell [18]. 

 The crystal wave function in the LUC-INDO formalism 

is written in the following form: 

(k,r) =  NL
1/2 Cp (k) p (r Tv )

p
 exp(ik .Tv )

v

          (1) 



Effect of Pressure on the Electronic Structure of Grey Tin The Open Condensed Matter Physics Journal, 2009, Volume 2    31 

where NL is the number of LUCs in the crystal, Cp(k) denotes 

the combination coefficients of the hybridized orbitals,  is 

the atomic wave function, k is the wave vector, and Tv 

denotes the lattice translation vector. The Hartree-Fock 

equation in this case ( Roothaan-Hall equation ) can be 

written as [24]: 

p
Fpq (k)  (k) Spq (k)( )  Cp (k) =  0           (2) 

where the summation index p goes over all the atomic states 

of the LUC, Fpq(k) represents the Fock Hamiltonian which is 

given by 

Fpq (k) =   p r To( )  
v

 HT  q r Tv( )   exp ik .Tv( )    (3) 

and Spq(k) is the overlap integral defined by 

Spq (k) =  p (r To )   q (r Tv )  exp(ik .Tv )
v

        (4) 

where H
T
 in Eq.(3) represents the Hamiltonian operator of 

the total energy E
T
 which is defined as 

ET =
ZAZB
RAB

+
1

2
P (Fμv + Hμv

core )
vμB<AA

         (5) 

where the first term of the right side of Eq.(5) represents the 

inter-nuclear potential energy, and P is the density matrix 

which has the following expression: 

P = 2 C i
* (k) 

i.k

occ

C i (k) exp ik .(Tv T )( )          (6) 

 The summation is over the occupied (occ) orbitals only. 

Hμv
core

 refers to the matrix element of the Hamiltonian of a 

single electron in the field of the nuclei, and its operator 

representation is 

H core
=

1

2
2 ZA

rA

           (7) 

where ZA is the core charge, and the summation is over all 

nuclei. It should be pointed out that our calculations are 

carried out at k=0, so k value in eqs.(1,3,4,6) is set to zero. 

For more details of LUC-INDO formalism and the final form 

of the Fock matrix elements at k=0, see Refs [15-18, 23-26]. 

The Roothaan-Hall equation are solved by first assuming an 

initial set of the linear expansion coefficient (C p (k)), 

generating the density matrix (P ), and computing the 

overlap integral and the first guess of the Fock matrix 

elements (F pq (k)). Then one can calculate the electronic 

energy (E e ), and a new matrix of C p (k) coefficients can be 

obtained. This procedure is continued until there is no 

significant variation between the calculated value of C p (k) 

and E of the successive iterations. 

 An initial guess of the wave function is predicted using 

the basis set and adopting Slater-type orbitals [23]. The 

initial guess of the wave function is important since an 

optimum guess reduces the number of iterations performed 

to obtain the converged electronic energy. A large number of 

iterations will result in an accumulation of the computational 

errors. The sp
3
 initial guess of the wave function is given as 

an expected linear combination of the atomic states of one 

cell. The tolerance of convergence of the total electronic 

energy adopted in our calculations is 10
8

 eV. A large unit 

cell of 8 atoms, which is the conventional Bravais lattice of 

the diamond structure, has been used. Interactions of the 

atoms in the central Bravais lattice with the surrounding 

atoms up to the fourth neighbors are included. It should be 

pointed out that the increase of the LUC size will result in an 

increase of the results accuracy [27], but this complicates the 

calculations and needs very long time in comparison with the 

time needed for 8-atom LUC calculations. 

3. RESULTS AND DISCUSSION 

3.1. Choice of Empirical Parameters 

 The empirical parameters included in the LUC-INDO 

method are the orbital exponent , the bonding 

parameter
0

, 
1

2
(Is + As ) , and 

1

2
(I p + Ap ) . The symbols I 

and A refer to the ionization potential and the electron 

affinity respectively. The optimum values of these empirical 

parameters used for Sn  in the present work are listed in 

Table 1. The value of the orbital exponent  determines the 

charge distribution of electrons around the nucleus. This 

parameter is varied till the total energy reaches its minimum 

value. As a consequence, this parameters is chosen in the 

same way of the ab initio methods. Comparing the  value 

for Sn  crystal with that obtained by Clementi and Roetti 

(1.89 a.u
1

) [28] for atoms, shows that the  value for 

solids is larger than that for atoms. This indicates the 

contracted charge distribution for solids and the diffuse 

charge distribution for atoms. The absolute value of the 

bonding parameter o
 of Sn  crystal is noted to be 

much smaller than that for molecules (-11.85 eV) [29]. This 

can be explained by noting that the number of bonds in solid 

is higher, then the interaction energy is distributed over all 

these bonds. The value of the 
1

2
(Is + As )  parameter of 

Sn  crystal is less than the corresponding value of the tin 

free atom. This indicates that the s orbitals of the solid are 

less connected to their atoms than in the free atom. A reverse 

observation is reported for the 
1

2
(I p + Ap )  parameter. 

3.2. Electronic and Structural Properties 

 Using the computational procedure described in section 

2, the electronic and structural properties of   Sn crystal at 

0 K and zero pressure are calculated as listed in Table 2 in 

comparison with other computational and experimental 

results. 

 The equilibrium lattice constant (a0) is determined by 

plotting the total energy as a function of the lattice 

parameter, as depicted in Fig. (1). The calculated value of the 
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equilibrium lattice constant (12.263 a.u) is in good 

agreement with the estimated value of 12.184 a.u from the 

experimental data [30]. 

Table 1. Empirical Parameters Used in the Present Work for 

  Sn 

 

Parameter  Value 

(a.u 1)  1.9965 

)eV(o  -5.3345 

1

2
(Is + As )  (eV)  -9.452 

1

2
(I p + Ap )  (eV)  -5.632 

 

 

Fig. (1). Total energy of ( Sn)  as a function of lattice constant. 

 The cohesive energy is calculated from the total energy 

of the large unit cell. Since the large unit cell in the present 

work is composed of 8 atoms, the cohesive energy can be 

determined from the following expression: 

Ecoh = E
T / 8  Efree   E0           (8) 

where Efree denotes the free atom sp shell energy, E0 is the 

vibrational energy state, which is referred to as zero-point 

energy, and its value is 0.03 eV [32]. The cohesive energy 

value of present work (-3.144 eV) is also in good agreement 

with the experimental value of -3.14 eV [31]. This is due to 

the including of the exchange integrals, correlation 

correction, and zero-point energy in the present analysis. The 

correlation correction is the correction included to take into 

account the fact that the motions of electrons are correlated 

pairwise to keep electrons apart. Correlation energies may be 

included by considering Slater determinants composed of 

orbitals that represent excited state contribution, and this 

method of including unoccupied orbitals in the many body 

wavefunction is referred to as configuration interaction (CI) 

[24]. Another method to estimate the correlation correction, 

which is used in the present work, is the Moller-Plesset 

perturbation theory [24]. This correction is calculated to be 

0.27 eV. A detailed description of the several kinds of 

correlation corrections is present in reference [24]. 

 The calculated direct band gap is considerably larger than 

the experimental value. A similar anomaly was also obtained 

by Svane [5] using the Hartree-Fock approximation. The 

large computed value of the direct band gap can be attributed 

to the approximations involved in the LUC-INDO formalism 

and Hartree-Fock method, and to the perturbative treatment 

of the correlation correction [33]. However, the available 

non-perturbative correlation correction method takes nearly 

ten times the computational time needed in Moller-Plesset 

method. The most significant approximations that affect the 

band gap are: 

(i). Using equal values of  and 
0

 for s and p 

wavefunctions. The difference between bonding and 

anti-bonding states is directly proportional to 0
S, 

where the overlap integral S is a function of . The 

percentage different of  between s and p orbitals 

was reported to be 14.4% for tin [28]. 

(ii). Neglecting the core states will also result in a neglect 

of its effects on the distribution of the outer valence 

electrons. 

(iii). Using the 5s 5p orbitals only without the inclusion of 

the 4d orbital. 

Table 2. The Electronic and Structural Properties of Sn  Crystal Obtained in the Present Work in Comparison with Other 

Results 

 

Computational 
Property 

Present Work Others 
Experimental Value 

Lattice constant (a.u)  12.263 
12.24 [2] 

12.216 [1]  

12.255 [30] (at R.T)  

12.184 (at 0 K) 

Cohesive energy (eV/atom) -3.144 
-2.8 [5] 

-3.723 [1] 
-3.14 [27] 

Valence band width (eV) 11.87 10.6 [5] ----- 

Direct band gap (eV) 1.76 2.6 [5] 0.0 [31] 

Conduction band width (eV) 5.2 ------ ----- 

Hybridization state  s1.37 p2.63 ----- ---- 

-28.318

-28.316

-28.314

-28.312

-28.31

-28.308

-28.306

-28.304

12.15 12.2 12.25 12.3 12.35

 Lattice constant (a.u)

T
ot

al
 e

ne
rg

y 
(a

.u
)
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 It should be pointed out that the present value for the 

band gap is a non-relativistic value. The computed band gap 

value of tin is expected to be in good agreement with the 

corresponding experimental value if the relativistic splitting 

of the levels [5] is considered, and if greater size of LUC is 

used [34], in addition to the points mentioned above. 

 The eigenvalues of the high symmetry points used to 

determine the band structure are listed in Table 3, in 

comparison with the corresponding values calculated by 

Svane [5]. 

Table 3. Energy Bands of   Sn at  and X High Symmetry 

Points 

 

 Eigenvalue (eV) 
Symmetry Point 

Present Work Ref. [5] 

1  -12.04 -16.0 

X1V -7.08 -11.2 

X4V -2.8 -3.9 

25  0.0 0.0 

2  1.5 2.6 

X1C 4.37 4.39 

X4C 6.92 - 

15  5.19 6.6 

 

 Some physical properties of solids can be determined 

using the analysis described in the preceding section, such as 

the electronic charge density and the X-ray scattering factor, 

the valence electrons charge density ( e (r))  can be 

expressed as: 

(r) =  Ppq  
qp

p (r) q (r)         (9) 

 The electronic charge density for some planes of -Sn 

crystal is displayed in Fig. (2). 

 The X-ray scattering factor (fj) is defined by [31]. 

f j = e (r)  exp( iG.r) dV          (10) 

where G is the reciprocal lattice vector. In Table 4, the 

calculated X-ray scattering factors for Sn  are listed in 

comparison with other computational [35] and experimental 

[25] results. The calculated X-ray scattering factors are in 

good agreement with the experimental values. 

3.3. Effect of pressure on the properties of   Sn 

 The pressure dependence of the electronic structure can 

be predicted from the present computational analysis. The 

pressure dependence of the lattice parameter is determined 

using the Murnaghan [36] equation of state: 

a = a0 1+ B
P

B0

1

3B
         (11) 

where a is the lattice parameter at pressure P, a 0  is the 

(A) (B) 

 
 

(C) (D) 

  

Fig. (2). Valence charge density (in atomic unit) of Sn  in the: (A) (001) plane, (B) (400) plane, (C) (200) plane, and (D) (110) plane. 
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lattice constant at zero pressure, B 0  is the bulk modulus at 

zero pressure, and B  represents the pressure derivative of 

the bulk modulus and its value for Sn  is 4.6 [37]. The 

variation of the lattice parameter as a function of pressure for 

Sn  is depicted in Fig. (3). This figure was plotted using 

the experimental value of B0 of 53 GPa [38] and the 

calculated value of B
_

 of 4.6 [37]. 

Table 4. Calculated X-Ray Scattering Factors of   Sn 

Compared with Other Results 

 

X-Ray Scattering Factor 
(hkl) 

Present Work HF [35] Experimental [25] 

(111) 44.45 44.47 43.59 

(220) 39.57 39.56 38.79 

(311) 37.44 37.43 37.40 

(400) 35.37 34.54 35.12 

(331) 33.03 33.08 33.17 

(422) 30.63 31.01 30.19 

(511) 30.34 29.93 28.63 

(333) 29.42 29.93 28.63 

 

 

Fig. (3). Lattice constant of ( Sn) as a function of pressure. 

 The pressure dependence of the cohesive energy, direct 

band gap, valence band width, and conduction band width as 

predicted from our analysis is shown in Figs. (4-7) 

respectively. 

 As it is obvious from Fig. (5), the direct band gap 

increases nearly linearly with the increase of the pressure. 

We suppose that this is mainly due to the nearly linear 

dependence of the lattice constant with the pressure as 

shown in Fig. (3), and since the translation vector (T v ) 

scales linearly with the lattice constant, one can expect a 

nearly linear relation between the band gap and the pressure 

according to the present model. The pressure derivative of 

the direct band gap equals 0.06 eV/GPa. Wei and Zunger 

[37] have determined the pressure derivative of the band gap 

of the three main transitions; - X, - L, and -  for 

-Sn to be -0.01, 0.059, and 0.166 eV/GPa respectively. 

The direct band gap is determine, d from the energy 

difference ( 2 25 ) . The observed linear increase of the 

direct band gap with pressure is due to the linear increase of 

the 2  energy with respect to the 25  energy as found from 

the present analysis, and also by Bassani and Liu [3]. The 

valence band width is calculated from the energy difference 

( 25 1) . The 1  state is shown to decrease linearly with 

the increase of pressure, and this causes a linear increase of 

the valence band width as depicted in Fig. (6). The 

conduction band width can be determined from the energy 

difference (X4C 2 ) . Although the X4C energy is shown to 

increase with pressure, the conduction band width decreases 

with pressure as shown in Fig. (7) because the increase of 

2  energy is more than the increase of X4C energy. 

 

Fig. (4). Effect of pressure on the cohesive energy of grey tin. 

 

Fig. (5). Effect of pressure on the direct band gap width of grey tin. 

Fig. (6). Effect of pressure on the valence band width of grey tin. 
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Fig. (7). Effect of pressure on the conduction band width of grey 
tin. 

 It is found that the s state occupation decreases with the 

increase of pressure as in Fig. (8), whereas the p state 

occupation increases with the increase of pressure as in Fig. 

(9). 

 

Fig. (8). Effect of pressure on the hybridization state of the s orbital 
of grey tin. 

 

Fig. (9). Effect of pressure on the hybridization state of the p orbital 
of grey tin. 

 The present works shows that the X-ray scattering factors 

decrease as pressure increases. This behavior is obvious in 

Table 5. This can be interpreted as follows: increasing 

pressure decreases the inter-planer distance 
 
(dhk ) , this 

increases the Bragg scattering angle (Bragg's law), and this 

in turn causes a decrease of the scattering wave intensity. 

Table 5. Effect of Pressure on the X-Ray Scattering Factors 

of   Sn 

 

X-Ray Scattering Factor at a Pressure of 
(hkf) 

0.2 (GPa) 0.4 (GPa) 0.6 (GPa) 0.8 (GPa) 1.0 (GPa) 

(111) 44.447 44.437 44.427 44.417 44.407 

(220) 39.562 39.547 39.532 39.518 39.503 

(311) 37.426 37.410 37.393 37.376 37.360 

(400) 35.353 35.335 35.317 35.298 35.280 

(331) 33.009 32.988 32.966 32.944 32.923 

(422) 30.611 30.586 30.561 30.537 30.512 

(511) 30.318 30.295 30.271 30.248 30.224 

(333) 29.398 29.373 29.348 29.323 29.298 

 

4. CONCLUSIONS 

 The present work shows that the semi-empirical LUC-

INDO model can be used to simulate solids in a practical 

manner, because it is reasonably economical to use. The 

success of the approach depends on the optimum choice of 

the empirical parameter set and on the size of the LUC. 

Increasing the LUC size is expected to improve the result 

accuracy and reliability as it was confirmed by Harker and 

Larkins [27], but the increase of the LUC size results in a 

significant increase of the processing time. The calculated 

properties of Sn  are, in general, in acceptable 

agreement with the available experimental values, except the 

direct band gap. Increasing pressure is predicted to cause the 

following effects; a decrease of the absolute value of the 

cohesive energy, a linear increase of the direct band gap with 

a pressure coefficient of 0.06 eV/GPa, a linear increase of 

the valence band width, a decrease of the conduction band 

width, a slight decrease of the electronic occupation 

probability for the s orbital with a slight increase of this 

probability for the p orbital, and a decrease of the X-ray 

scattering factors. The above results show the usual trends 

that can be obtained from Hartree-Fock analysis which are a 

high band gap and acceptable qualitative results. 
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