Benzoylation of p-Xylene at the Solid-Liquid Interface on Iron Incorporated Silica

Farook Adam*, Ishraga Abdelmoniem Hassan and Radhika Thankappan

School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia

Abstract: A series of iron incorporated silica catalysts were prepared using rice husk ash as a source of silica. The specific surface areas of the catalysts were found to be in the range of 200-400 m2 g$^{-1}$. The activities of the catalysts were tested for liquid phase Friedel-Crafts acylation reaction of p-xylene with benzoyl chloride. The catalyst RHA-10Fe exhibited the highest activity for benzoylation of p-xylene. The conversion of benzoyl chloride (BzCl) and the selectivity towards 2,5-dimethylbenzophenone (2,5-DMBP) were found to be 98.4 and 88.9 (%) respectively at 413 K.

Keywords: Rice husk silica, Friedel-Crafts acylation, benzylation, p-xylene.

INTRODUCTION

The Friedel-Crafts acylation of aromatics is the main route for the formation of aromatic ketones in organic synthesis. These aromatic ketones are widely used for the production of pharmaceuticals, fragrances, flavours, insecticides and other products [1]. Acylation of p-xylene with benzoyl chloride yields 2.5-dimethylbenzophenone, which is used extensively as a UV light stabilizer in plastics, cosmetics and films [2]. Generally, these reactions are catalyzed by homogeneous Lewis acids such as AlCl$_3$, BF$_3$, FeCl$_3$, ZnCl$_2$ or strong protonic acids (e.g. H$_2$SO$_4$, HF) [3]. However, these homogeneous catalysts have several problems, such as difficulty in separation and recovery, corrosion, high toxicity, requirements of more stoichiometric amounts and the formation of many side products [4]. The application of homogeneous catalysts generates a high volume of waste material. With the current drive towards green chemistry, it is recognized that there is a need to replace the conventional Lewis acid catalysts with reusable, environmentally friendly catalysts to produce minimal waste and by-products [5]. Recently, considerable efforts have been made to achieve this goal using a number of heterogeneous solid acid catalysts such as salts of heteropolyacids [6], zeolites [5, 7, 8], clays [2], sulphated ZrO$_2$ [9] and mesoporous molecular sieves [10].

The benzylation of aromatic compounds over zeolites and modified zeolites has been reported in the literature [5,8]. Suja et al. [9] studied the benzylation of arenes over iron promoted sulphated zirconia. The benzylation of substituted benzenes by benzoyl chloride over In$_2$O$_3$ (20%)/Si-MCM-41[10] showed a reactivity of about 82% for p-xylene within 8 h. Yadav et al. [2] studied the benzylation of p-xylene with benzoyl chloride using 20% w/w cesium-substituted dodecatungstophosphoric acid supported on K-10 clay catalyst. The conversion was 60% with 1.8 g of the catalyst at 403 K for 4 h.

Rice husk (RH) is a major waste product of the rice milling industry. It is well known that the RH contains 20% of ash and the silica content of this ash is more than 95% [11]. Amorphous silica of high surface area could be prepared from rice husk ash (RHA) [12]. Recently, there has been great interest for the use of rice husk silica as a support for preparing improved heterogeneous catalysts and adsorbents [13-17]. Iron incorporated silica from rice husk ash was found to be active in the Friedel-Crafts benzylation of toluene with high product yield of more than 92% [18]. Adam et al. [19] reported the synthesis of 4-(methylamino)benzoic acid incorporated iron-rice husk silica for benzylation of toluene with the selective formation of monobenzyl toluene. The iron-silica heterogeneous catalysts were also used for the benzylation of benzene and xylene [20, 21].

In this paper, we report the preparation, characterization and catalytic activity of iron loaded silica catalysts from RHA in the benzylation of p-xylene. To the best of our knowledge, the benzylation of p-xylene over iron loaded rice husk silica catalyst for producing 2,5-dimethylbenzophenone has not been studied.

EXPERIMENTAL

Materials

Rice husk was collected from a local rice mill in Penang. The chemicals used were sodium hydroxide (Systerm, 99%), nitric acid (Systerm, 65%), iron nitrate-nonahydrate Fe(NO$_3$)$_3$.9H$_2$O (Systerm, 98%), benzoyl chloride (Fluka, 98%), p-xylene (Fluka, ≥ 98%), and decane (Acros-organics, 99%). All the chemicals were of AR grade and used as received.

Catalyst Preparation

The treatment of RH and the preparation of catalysts were carried out according to literature [22]. A 5.0 g sample of the treated RHA was dissolved in 250 mL of 1.0 M
NaOH, stirred for 18 h at room temperature and filtered to yield a sodium silicate solution. To prepare 5, 10, 15 and 20 wt.% Fe incorporated catalyst, masses of 1.81, 3.62, 5.43 and 7.23 g respectively of Fe(NO₃)₃·9H₂O were dissolved in 3.0 M HNO₃ and this solution was titrated against sodium silicate solution until pH 5.0. The gel formed was separated by centrifuge (Model T 30, JANETZKI), washed with distilled water followed by acetone and dried at 110 °C for 24 h. The catalysts were denoted as RHA-xFe where x = 5, 10, 15 and 20 wt.% Fe.

THE CATALYSTS CHARACTERIZATION

The prepared catalysts were characterized by powder X-ray diffraction (Siemens D5000, Kristalloflex), FT-IR spectroscopy (Perkin Elmer system 2000), BJH N₂-sorption analysis (Micromeritics Instrument Corporation Model ASAP 2000), diffuse reflectance UV-Vis (Perkin Elmer Lambda 35 UV-Vis spectrometer), energy dispersive spectrometry (Oxford INCA 400), inductively coupled plasma atomic emission spectrometer (PE SCIEX ELAN 6100) and scanning electron microscopy (Leo Supra 50 VP). The acidity of the catalysts was studied by pyridine adsorption using the following procedure: about 0.05 g of the catalyst was kept with pyridine in a desiccator equipped with a valve connected to a membrane vacuum pump (AMB Greiffenberger Antriebstechnik, MZ2C, CE 2002/06). The system was evacuated for 1 h at a rate of 1.7 m³ h⁻¹ and kept under closed vacuum for 48 h. The excess pyridine in the desiccator was evacuated again for 1 h at the same pump rate. The catalyst was removed and analyzed by FT-IR in the range of 1700-1400 cm⁻¹.

BENZOYLATION OF p-XYLENE WITH BENZOYL CHLORIDE

The liquid phase benzylation of p-xylene (p-xyl) with benzylo chloride (BzCl) was carried out in a 50 mL two-necked round bottom flask equipped with a reflux condenser. The temperature of the system was controlled using a thermocouple in an oil bath. A constant flow of dry argon was maintained to minimize the effect of moisture throughout the reaction period.

In a typical reaction, p-xyl (189.9 mmol) was added to 0.5 g of the activated catalyst (383 K) in a round bottom flask and kept in an oil bath. After attaining the reaction temperature, BzCl (9.3 mmol) was added and stirred magnetically (600 rpm). Decane was added into the reaction system as an internal standard. The products were withdrawn at regular intervals and analyzed on gas chromatography (Clarus 500, Perkin Elmer) equipped with flame ionization detector and capillary column (Elite-5, 30 m length and 0.32 mm inner diameter). The set up temperature program was: initial oven temperature- 90 °C, heating rate 10 °C min⁻¹, and final temperature-220 °C. The detector and injector temperatures were maintained as 250 °C.

In order to check the reusability of catalysts, the used catalyst was allowed to settle in the reaction system. After removing the supernatant mixture, fresh reagents were added to continue the reaction [4].

To test of metal leaching, the reaction mixture was separated after 4 min with a micro membrane filter. The reaction mixture was transferred into a preheated empty reaction vessel to continue the reaction. The products were monitored as before.

RESULTS AND DISCUSSION

Powder X-ray Diffraction

The powder X-ray diffraction (XRD) patterns of the RHA-SiO₂ and all Fe loaded silica catalysts are shown in Fig. 1. The broad pattern observed at 2θ = 23° corresponds to the amorphous nature of the silica [23, 24]. All catalysts appear amorphous without any crystalline nature. When the Fe content increased, the peak intensity decreased indicating that the addition of Fe has an influence on the amorphous nature of the silica.

[Image: powder_X-ray_diffraction_pattern.png]

Fig. (1). The powder X-ray diffraction pattern of the prepared catalysts.

FT-IR Spectra

The FT-IR spectra of the RHA-SiO₂ and various Fe loaded silica catalysts are shown in Fig. 2. In RHA-SiO₂, the strong band at 1096 cm⁻¹ is due to the asymmetric stretching vibration of the structural siloxane bond, Si–O–Si [25-28]. Upon Fe loading, an observed shift of this band to lower wavenumber was detected, possibly due to the formation of Si–O–Fe bonds. The band at 976 cm⁻¹ in RHA-SiO₂ is attributed to Si–OH asymmetric stretching vibration. This band appears as a shoulder at 972 cm⁻¹ in RHA-5Fe and completely vanished as the Fe loading was increased. This could be due to the increased presence of Si–O–Fe bonds at the expense of surface Si–OH [21, 29].

Nitrogen-Sorption Analysis

The N₂ adsorption-desorption analysis results obtained for the catalysts are presented in Fig. 3. In all cases, the isotherms were of type IV, which is characteristic of mesoporous materials according to IUPAC classification [30]. The pure silica exhibited IUPAC type H2 hysteresis loop, which is characteristic of corpuscular systems consisting of the distribution of pore size and shape is not well defined. RHA-5Fe exhibited H1 hysteresis loop, which is characteristic of porous material consisting of agglomerates or compacts of spheroidal particles with uniform size and array occur in the curve at a relative pressure of 0.5 < P/P₀ < 0.9 resulting from the capillary condensation and desorption of N₂, which strongly suggest the presence of large mesopores [31]. When the Fe content increased from 10 to 20 wt.%, the hysteresis loop transforms gradually from type H1 to type
H3 suggesting the presence of slit shaped pores with non-uniform size and shape. The inflection point of $P/P_0 = 1$ indicates that the presence of large mesopores arising from textural mesoporosity and gives non-homogenous pore size distribution [32].

Fig. (2). The FT-IR spectra of the catalysts.
Textural parameters of the prepared catalysts obtained from N₂-sorption analysis is presented in Table 1. The prepared RHA-SiO₂ was found to have a surface area of 414 m² g⁻¹. As the iron loading increased from 5-20 wt.%, a gradual decrease in the specific surface area was observed. The decrease in the surface area could be due to agglomeration of the silica-Fe particles as the metal loading was increased [9,33]. The average pore diameter increased upon Fe loading to 10 wt.% (RHA-10Fe) and subsequently decreased upon further increase in Fe.

Diffuse Reflectance UV-Visible Spectroscopy

The DR UV-Vis spectra of the catalysts are shown in Fig. 4. The spectra in all catalysts show absorption bands at 245 nm corresponding to oxygen to metal charge transfers involving isolated tetrahedral coordinated Fe³⁺ [34]. The absence of bands above 320 nm confirmed that no clustered Fe₂O₃ or Fe₃O₄ species were present in the prepared catalysts [35].

Elemental Analyses

The elemental analyses result of the RHA-SiO₂ and various Fe loaded silica catalysts carried out by EDX (surface analysis) and ICP-MS (which involves complete dissolution of the sample prior to analysis) are shown in Table 2. The results show the presence of Fe³⁺ ions in the Fe loaded silica samples, while it was completely absent in RHA-SiO₂ sample. The amount of Fe detected by EDX and ICP-MS are in good agreement with each other. The incorporated Fe was found to be lower than the actual amount used for the preparation of the catalyst. This could arise from the tension generated within the silicate structure due to the difference in the

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>BET Surface area (m² g⁻¹)</th>
<th>Average Pore Diameter (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHA-SiO₂</td>
<td>414</td>
<td>6.48</td>
</tr>
<tr>
<td>RHA-5Fe</td>
<td>393</td>
<td>6.75</td>
</tr>
<tr>
<td>RHA-10Fe</td>
<td>301</td>
<td>10.6</td>
</tr>
<tr>
<td>RHA-15Fe</td>
<td>248</td>
<td>9.80</td>
</tr>
<tr>
<td>RHA-20Fe</td>
<td>219</td>
<td>8.15</td>
</tr>
</tbody>
</table>

Table 1. The Textural Parameters of Prepared Catalysts
ionic radii of Fe$^{3+}$ and Si$^{4+}$ bond lengths resulting in distorted silica structures. This can limit the amount of Fe to be incorporated within the silica structure [36].

Acidity of the Catalysts

The FT-IR spectra obtained after pyridine adsorption are shown in Fig. 5. The strong band at about 1638 cm$^{-1}$ can be assigned to the stretching vibration of pyridinium ion that binds to Brønsted as well as Lewis acid sites [37]. Characteristic bands found from 1551 to 1565 cm$^{-1}$ are assigned to Brønsted acid sites and the band at 1450 cm$^{-1}$ can be attributed to strong Lewis acid sites [38,39]. The additional band at 1491 cm$^{-1}$ in RHA-10Fe is assigned to pyridine associated with both Brønsted and Lewis acid sites [38]. All the prepared catalysts contain both Brønsted and Lewis acid sites, which can make the benzoylation reaction more feasible.

Microscopy Analysis

Fig. 6 shows the SEM backscattered electron micrographs of RHA-SiO$_2$ and Fe loaded silica catalysts. The SEM image of RHA-SiO$_2$ shows agglomerates of spherical particles. The surface of RHA-5Fe was composed of irregular shape particles. As iron loading increased, these particles are stick together to form agglomerates [36].

CATALYTIC ACTIVITY OF VARIOUS CATALYSTS

To optimize the reaction parameters, the benzoylation reaction was carried out using RHA-10Fe as a representative catalyst by varying the reaction conditions such as, catalyst mass, molar ratio, temperature, etc.

Effect of Catalyst Mass

To determine the optimum mass of the catalyst, reactions were carried out by varying the mass of the catalyst from 0.1 to 0.5 (g). The results are presented in Table 3. The conversion of BzCl was found to increase from 44.8 to 62.5% as the mass of the catalyst increased. This can result from the increase in the number of active sites available for the reaction [7]. The main product formed in the benzoylation of p-xyl was 2,5-DMBP with minor side products as: benzoic acid (BA), benzoic anhydride (BAN) and 2,4-DMBP.

Table 2. The Average Fe Content (w/w) % Obtained by EDX and ICP-MS of Catalysts

<table>
<thead>
<tr>
<th>Catalysts</th>
<th>EDX</th>
<th>ICP-MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHA-SiO$_2$</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RHA-5Fe</td>
<td>3.54</td>
<td>4.39</td>
</tr>
<tr>
<td>RHA-10Fe</td>
<td>7.58</td>
<td>7.22 (4.96)*</td>
</tr>
<tr>
<td>RHA-15Fe</td>
<td>9.91</td>
<td>10.46</td>
</tr>
<tr>
<td>RHA-20Fe</td>
<td>13.90</td>
<td>11.95</td>
</tr>
</tbody>
</table>

*After first recycle experiment.

Fig. (5). The pyridine-FTIR spectra of RHA-SiO$_2$, RHA-5Fe, RHA-10Fe, RHA-15Fe and RHA-20Fe at room temperature.
Influence of Benzoyl Chloride: p-Xylene Molar Ratio

The influence of BzCl:p-xyl molar ratio on the conversion and product distribution over RHA-10Fe at 353 K is shown in Fig. 7. As the molar ratio increased from 1:5 to 1:20, the BzCl conversion also increased. At a molar ratio of 1:20, high conversion of BzCl (86.0%) was observed. At the lower concentration of benzoyl chloride more active sites of catalyst are available for adsorption, which results in the formation of active electrophilic benzoylinium cation that can react with p-xyl. At lower mole ratios, the concentration of benzoyl chloride with respect to p-xyl increases and the active sites become saturated with benzoyl chloride, resulting in the formation of fewer active electrophilic benzoylinium ion to react with the p-xyl present in the bulk phase. Thereby showing a decrease in conversion of benzoyl chloride [2,40]. In addition, not much difference is observed for the selective formation of 2,5-DMBP as the molar ratio changed from 1:5 to 1:20. Thus the optimum molar ratio of 1:20 was used for further studies.

Table 3. Effect of Catalyst Mass on the Reaction

<table>
<thead>
<tr>
<th>Catalyst Mass (g)</th>
<th>Conversion of BzCl (%)</th>
<th>Selectivity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BA</td>
</tr>
<tr>
<td>0.1</td>
<td>44.8</td>
<td>11.1</td>
</tr>
<tr>
<td>0.3</td>
<td>57.8</td>
<td>30.3</td>
</tr>
<tr>
<td>0.5</td>
<td>62.5</td>
<td>15.9</td>
</tr>
</tbody>
</table>

Reacnton condition: Temperature = 353 K, BzCl:p-xyl = 1:15, catalyst = RHA-10Fe, time = 9 h.

Fig. (6). The SEM images of (a) RHA-SiO2 (b) RHA-5Fe (c) RHA-10Fe (d) RHA-15Fe and (e) RHA-20Fe.
Effect of Reaction Temperature

In order to study the effect of temperature, the benzoylation was carried out from 353 to 413 K with a 1:20 molar ratio (BzCl: \(p\)-xyl) over RHA-10Fe. The results are shown in Fig. 8. The conversion of BzCl was found to increase substantially with increasing reaction temperature. However, the time taken to reach the maximum conversion was shorter as the temperature increased. Selectivity to 2,5-DMBP also increased as the temperature increased. A conversion of 98.4% of BzCl was achieved over RHA-10Fe in 1 h with selectivity of 88.9% for 2,5-DMBP at the reaction temperature of 413 K. This can be attributed to the faster reaction which decreased the probability of forming side products due to rearrangements.

Effect of Metal Loading

The benzoylation reaction was carried out at optimized reaction conditions over various metals loaded catalysts. Reaction was also done with homogeneous iron salt for comparison. The results are shown in Table 4. The activity of the catalysts under the optimized condition was found to increase as the metal loading increased from 5 to 10 wt.% (98.4%, RHA-10Fe). However, further increase of metal loading to 15 and 20 wt.% did not have much effect on the activity. In addition, the selectivity to 2,5-DMBP also increased as the temperature increased. A conversion of 98.4% of BzCl was achieved over RHA-10Fe in 1 h with selectivity of 88.9% for 2,5-DMBP at the reaction temperature of 413 K. This can be attributed to the faster reaction which decreased the probability of forming side products due to rearrangements.

Stability and Reusability

The reusability of the catalyst in the benzoylation of \(p\)-xyl was studied under the optimum conditions according to a published method [4]. The results are presented in Table 5. During its first reuse, the conversion of BzCl decreased from 98.4% to 96.8%. However, the selectivity for 2,5-DMBP was found to be only 50.4% for the homogeneous iron salt. A much higher selectivity for the desired product (2,5-DMBP) was afforded by the heterogeneous catalyst. Therefore, the heterogeneity of Fe on RHA-silica showed beneficial characteristics, especially for the selective formation of 2,5-DMBP.

The high benzoylation activity observed for these heterogeneous catalysts can be related to the presence of Brønsted and Lewis acid sites as observed from FT-IR-pyridine spectra (Fig. 5). It could also result from the high BET surface area. The redox properties of Fe supported systems can give rise to high benzoylation activity [9]. Decrease in the selective formation of 2,5-DMBP for RHA-15Fe and RHA-20Fe can be due to the decrease in surface area as well as the wide pore size (Fig. 3) [41].
98.7 to 71.5%. Further reuse reduced conversion to 42.4% suggesting leaching of some active metal centres during the reaction. However, the selectivity of 2,5-DMBP remain almost similar during all runs. The insignificant change in the selectivity of 2,5-DMBP and the noticeable decrease in the conversion suggest that there is a possible loss of Fe active sites from the catalyst. This was confirmed from ICP-MS analysis of the catalyst after the first recycle. The amount of Fe decreased from 7.22 to 4.96 w/w % (Table 2), thus decreasing the catalytic activity. This could be due to the use of BzCl as the acylating agent, which is known to be corrosive. It could also be due to the presence of benzoic acid and the HCl (from the reaction) in the reaction mixture. According to Corma [42], leaching of active metal species can take place during the reaction depending on the nature of the substrate, the solvent and the reaction conditions. We are actively trying to overcome this leaching to improve the catalyst. We hope to report these improvements in the future.

Leaching

In order to investigate the details of the decreased activity observed in the previous section, a leaching test was carried out at 393 K since the reaction was so fast at the optimized temperature of 413 K (Fig. 9). After 4 minutes of reaction (13.8% conversion of BzCl, 58.0% selectivity to 2,5-DMBP), reactants were carefully withdrawn and filtered while hot and charged into an empty round bottom flask equipped with a condenser maintained at the same temperature. The system was allowed to react further without the catalyst. It can be seen that the conversion of BzCl continued even after removal of the catalyst. However, the selectivity towards 2,5-DMBP remains almost same (58.5%) as in comparison to ca. 88% in the presence of the catalyst (Fig. 8). In addition, more amounts of BA and BAN were observed during the course of reaction. Increase in conversion indicates that leaching of Fe may take place during the reaction. Arénds and Sheldon [43] had reported that the metal leaching is possible by the action of strongly corrosive products such as carboxylic acid or when using acetic acid as a solvent which leads to rapid leaching of the metal ions. Yadav et al. [40] had shown that 20% (w/w) dodecatungstophosphoric acid on K-10 clay (20% (w/w) DTP/K-10) was more efficient for the acylation reaction when acetyl chloride was used as the acylating agent. However, when the highly corrosive acylating agent benzoyl chloride was used, the efficiency of the catal-

![Fig. (9). The leaching effect over RHA-10Fe on the conversion of BzCl and the selectivity for 2,5-DMBP at 393 K using 1:20 (BzCl: \textit{p-xyl}).](image-url)
lyst decreased due to leaching.

It must now be reemphasized that during the reusability tests of the catalyst, the selectivity for the 2,5-DMBP did not change significantly, i.e., maintained at ca. 90% (Table 5). This implies that although there was some leaching of the Fe centres, the efficiency in terms of the selectivity of the heterogeneous catalyst was not affected during its reuse. It can therefore, be concluded that the catalysts can be reused without loss of selectivity but with some loss in its efficiency. Further work is in progress to overcome the leaching and improve efficiency.

Proposed Reaction Mechanism

Generally, acylation of aromatics takes place by electrophilic aromatic substitution [44]. A schematic diagram of the proposed reaction mechanism for the benzoylation of p-xyl is presented in Fig. 10. The proposed mechanism involves the formation of an adsorbed electrophilic transition species (fast step), which is generated from the benzoyl chloride by interaction with the surface of the catalyst as shown. This reacts with p-xyl resulting in the formation of 2,5-dimethylbenzophenone (a bimolecular slow step) with the simultaneous elimination of HCl.

CONCLUSIONS

Heterogeneous catalysts with different Fe loadings using rice husk silica as the support were successfully prepared at room temperature. These catalysts showed high activity in the benzoylation of p-xyl. It also showed a high selectivity towards 2,5-DMBP. RHA-10Fe was found to be the best in terms of high conversion and selectivity. It showed 98.4% conversion of BzCl and 88.9% selectivity towards 2,5-DMBP under the optimum conditions. The advantages of RHA-Fe catalyst are that it can be prepared easily and does not need to be calcined after preparation. The catalyst can be reused although there is a decrease in the catalytic activity, which is related to the leaching of the Fe by benzoyl chloride and benzoic acid.

ACKNOWLEDGEMENT

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant (Ac. No: 1001/UKMIMIA/814019). The University of Khartoum, Sudan, is acknowledged for providing a scholarship to I.A. Hassan.

REFERENCES

The Open Colloid Science Journal, 2010, Volume 3

Adam et al.

