Study of Ceramic and Hybrid Coatings Produced by the Sol-Gel Method for Corrosion Protection

G. Carbajal-de la Torre¹, M.A. Espinosa-Medina², A. Martinez-Villafañe³, J.G. Gonzalez-Rodriguez⁴ and V.M. Castaño*,⁵

¹Facultad de Ingeniería Mecánica, UMSNH, Santiago Tapia 403 Col. Centro, C.P. 58098 Morelia, Michoacán, México
²Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte #152, San Bartolo Atepehuacan, 07730, México, DF, México
³Centro de Investigación en Materiales Avanzados, CIMAV, Miguel de Cervantes 120, Complejo Ind. Chihuahua, Chihuahua, Chih., México
⁴U.A.E.M - CIICAp, Av. Universidad 1001, C.P. 62210, Col. Chamilpa, Cuernavaca, Morelos, México
⁵Centro de Física Aplicada y Tecnología Avanzada, CFATA, UNAM. Apartado Postal 1-1010. Santiago de Querétaro, Qro., 76000, México

Abstract: Silica based ceramic oxides and hybrid coatings were developed using 3-(trimethoxysilyl) propylmethacrylate (TMSPM), methylmethacrylate (MMA) as the organic phase with different fractions of tetraethoxysilane (TEOS) and aluminium isopropoxide as the inorganic phase using sol-gel process which were deposited onto 316 stainless steel substrate by dip-coating technique, followed by a sintering step. Characterization of the obtained coatings was carried out by scanning electron microscopy to determine the topographical features of the coatings. Furthermore, the coatings were analyzed in this manner after the corrosion tests. Analyses of corrosion resistance for coated and uncoated samples were performed in \(\text{SO}_4^{2-}\) and \(\text{Cl}^-\) solutions. The influence of the sol characteristic and composition, as well as the behaviour of the coatings during the corrosion tests were reported. The results show that coatings prevent corrosion in an acid environment, and the ceramic coating developed best resistance corrosion under those media.

Keywords: Thin films, ceramic mix-oxide, hybrid, coatings, sol-gel, dip-coating, corrosion, stainless steel, acid medium, electrochemical tests.

INTRODUCTION

One of the most interesting applications of the sol-gel method is the deposition of thin oxide layer on glass, ceramic or metal substrates. In the literature, there are many examples showing the versatility and the simplicity of this method to produce coatings for many different purposes [1, 2]. The coatings like hybrid mix-up improve the chemical and physical properties of the metal surfaces relative to corrosion, friction and wear performance without altering the original properties such as strength and toughness of the substrate [3]. During sol-gel thin film formation via dipping, inorganic or metal organic sol is deposited on the substrate surface by a complex steady-state process combining gravitational draining, solvent evaporation and continued condensation reactions [4, 5].

The properties of the hybrids are not just the direct addition of the individual contributions from inorganic and organic components. The use of synergistic effects by combining both components can lead to the innovation of multifunctional materials. A wide versatility in the design of the inorganic-organic hybrids provides various applications of these materials in the fields of optics, electronics, mechanics, biology and others [6]. The inorganic component in the hybrid films has reinforced the organic component enhancing hardness and consequently more abrasion resistant films are achieved compared to the pure PMMA-films [7]. The presence of organic components turns the gel network into a more flexible and less prone to crack film during further heat-treatment. Moreover, the impregnation of open pores by organic materials can reduce the coating porosity producing a better diffusion barrier [8].

It is possible to hybridize ceramics and polymers using a relatively new low-temperature method for ceramic processing. This sol-gel process involves the formation of an inorganic glass from solution and yields a high-purity homogeneous ceramic material [9, 10]. One successful approach to hybridization has been to use the sol-gel process to polymerize metal alkoxides in organic polymer matrices [11-17]. In addition, this process can be used to prepare an inorganic-organic hybrid coating through the in situ polycondensation of a metal alkoxide in an inorganic polymer matrix [18, 19].

The coatings of metallic surfaces by sol-gel films have been proposed as a useful way to protect against acid corrosion [20]. The barrier coated via sol-gel process consists of the preparation of a solution (sol), from which the
gel is obtained and applied by several methods to protect the surfaces [21-26]. The deposition of these thin films can offer some advantages in devices, particularly in the case of integrated hybrid systems. Homogeneous thin films could be prepared by dip coating process using alkoxides. The metal alkoxide method offers many advantages such as: high purity, low-temperature processing and controllability of the composition [22, 23, 27]. The dip coating process is one of the deposition methods involving liquid films [28, 29]. Sol-gel dip-coating has been used to develop corrosion resistance on structural metallic components, like low carbon steels [22, 23] showing good performance in corrosion protection into environments of chemical industry. In industrial applications sulphuric acid is one of top products of the chemical industry like: fertilizer manufacturing, oil refining wastewater processing, and chemical synthesis of many kinds [30]. Additionally, it is a constituent of acid rain which is formed by atmospheric oxidation of sulphur dioxide (from combustion oil process, as an example) in the presence of water, i.e., oxidation of sulphurous acid). In this sense, chlorine acid solution can be present in the processes of chemical intermediate in other chemical production (of hydrochloric acid), hydrochlorination of rubber, production of vinyl and alkyl chlorides, etc. All those industrial acid conditions are the promoters of the structural material corrosion, and are necessary a form of material protection or corrosion inhibition; which can be obtained by the surface modification by sol-gel coatings.

In this work, the results of a systematic corrosion study by electrochemical dynamic-polarization tests of sol-gel coatings of ceramic mix-oxide and hybrid coatings deposited on stainless steel 316 by dip coating technique in acid environments (H2SO4 and HCl solutions at 1.0 M and 0.1 M concentrations) are presented. The results were complemented by SEM characterization.

METHODOLOGY

A simple method to obtain organic-inorganic hybrids is by mixing an organic polymer with a silicon alkoxide such as tetraethoxysilane (TEOS) as the silicate source; followed by sol-gel reaction involving hydrolysis and polycondensation of TEOS [29].

Materials

Samples of stainless steels 316 were used as substrate in the metal/coating system. Tetraethoxysilane (TEOS, 99% Aldrich) was used as the silica source. 3-(trimethoxysilyl) propylmethacrylate (TMSPM, 98% Aldrich) and methacrylaldehyde (MMA, 99% Aldrich), were used as the polymer component. HCl was used as the catalyst is (2,2’ Azobisobutyronitrile) for hydrolysis. The metal alkoxide of aluminium (aluminium isopropoxide, AIP, 98% Aldrich) was used for preparing the ceramic coating. The chemical composition of stainless steel 316 (SS 316) used as coating substrate is: Fe (balance), <0.03% C, 16-18.5% Cr, 10-14% Ni, 2-3% Mo, <2% Mn, <1% Si, <0.045% P, <0.03% S. The substrate was selected due to its corrosion resistance known characteristics, in order to minimize substrate signals and differentiated the coating behaviour. Pieces of 40 x 20 mm2 from 1.0 mm of thickness foil were cut and surface finished by polished, cleaned and degreased with isopropyl alcohol and air-dried.

Sol Preparation

Preparation of M1 sol: The silica-sol was prepared by acid-catalysed hydrolysis of tetraethylorthosilicate (TEOS) in ethanol and in the presence of HCl. This sol was reflux under heating for 3 hours. Next, 0.2 g of AIP (aluminium isopropoxide) dissolved in ethanol was added. The resultant mixture was heated to 76°C for 3 hours under reflux. The molar ratio Si:Al was 2:1.

Preparation of C1 sol: First, the copolymerization of MMA and TMSPM is carried out in nitrogen atmosphere and using AIBN (2,2’ Azo Bis Iso Butylonitrilo) as an initiator at 70°C during 60 minutes. The obtained liquid is diluted in methanol, and TEOS is slowly added in the appropriate quantity. For the hydrolysis reaction at ambient temperature, acid water is added (0.15 N HCl), using an equivalent of water for alkoxyil group. Finally, the previously dissolved AIP is added in hot ethanol (80°C) and it is allowed that the formation reaction is made of the mixed oxide SiO2-Al2O3 to ambient temperature for 3 hours. The molar ratio Si:Al is 2:1.

Coating Procedure

Steel substrates (10x10x0.1 cm) were polished, cleaned and degreased with isopropyl alcohol and air-dried. The two prepared sol solutions were used to deposit the sol onto the substrates by dip-coating technique. Each substrate was dipped into the sol at an immersion speed of 20 cm/min for 5 minutes, and then withdrawn at the same speed previously mentioned. After deposition, the coated samples were air-dried and heat treated at 600°C for 2 hours by heating rate of 2°C/min, as before reported [31]. Similarly, the hybrid coatings were dried at room temperature and then heat treated at 200°C. The SS 316 alloy used as substrate, is characterized as extra-low–carbon and is stabilized grade stainless steel (with 0.030 wt. % of carbon) [32], and this material is required to be heat treated at 650 to 675°C in order to be sensitized, although, the most commonly used sensitizing treatment is 1 hour at 675°C. However, for this stainless steel alloy, the sensitizing appears after the 50 hours at 650°C [33]. Because of the heat treatment minimum changes were expected in the substrate.

Corrosion Analysis

The corrosion resistance analyzes of the coated samples which were carried out by the electrochemical polarization technique using a computerized potentiostate (ACM Instruments). The electrochemical cell consisted of a saturated calomel electrode (SCE) used as a reference electrode, a graphite foil used as auxiliary electrode and the work electrode was each coated sample. Work electrode area exposed to the electrolyte was 1.0 cm2, for each specimen, the rest of sample surface was insulated with epoxy paint. The potentiodynamic measurements were initiated at ~200 mV and ended at 1500 mV from the open circuit potential with a scanning rate of 1 mV/s. The electrolyte solutions were H2SO4 and HCl in both 1.0 and 0.1 M concentrations at room temperature. In addition, Scanning electronic microscopy (SEM, JEOL JSM5800 LV) was used to study topographical features and the homogeneity of surface analysis.
RESULTS AND DISCUSSION

Fig. (1) shows an example of the surface morphology of one coating applied onto the substrate; similar morphologies were obtained by all coatings. In this figure the SEM micrograph of the SiO$_2$-Al$_2$O$_3$ coating (sample M$_1$) obtained by the dip-coating technique followed by the heat treatment (Fig. 1) is shown. SEM micrographs show uniform, homogenous and crack-free surfaces of sol-gel coatings, which were readily obtained after post-deposition annealing. The morphology of the ceramic coatings showed a completely covered surface, following similar surface topography in accordance with the polished surface texture of the substrate, likewise macrostructural defects or holes were not observed. Similar surface characteristics were obtained for the hybrid coating samples here evaluated, as similar results before were reported [22, 23, 34]. Homogeneity characteristics of coatings are a desired part of the roles of protective layers that consists in mitigate the corrosion into a specific corrosive environment [21]. These coatings have to improve physical barrier with anticorrosive characteristics.

The role of protective films is to avoid or reduce corrosion in an acidic and basic environment [21]. The results of corrosion tests of M$_1$ and C$_1$ coating systems into H$_2$SO$_4$ medium are shown in Figs. (2, 3). Table 1 shows the summary of the electrochemical parameters measured from these results. In the 1.0 M H$_2$SO$_4$ solution, the M$_1$ coating sample showed a decrease in corrosion current density, i_{corr}, around one order of magnitude (see Table 1). As well, its potential was reached to more positive values around of 600 mV more positive from the corrosion potential, E_{corr}, in reference of the uncoated material. This coated sample showed an anodic behaviour with limited current density in the range of 600 mV more positive from the corrosion potential (E_{corr}) in reference of the uncoated material. This coated sample showed an anodic behaviour with limited current density in the range of 500 mV over its E_{corr}, before the potential exceeded the breakdown potential. This behaviour was improved by the protective barrier characteristic of the coating, as before reported [23]. However, C$_1$ coating into this solution concentration did not improve a significant change on corrosion resistance, but it showed some characteristics in the anodic current zone. In this way, the C$_1$ coating sample presented two ranges of anodic potential of 200 mV amplitude approximately with an anodic current limit (around 2.7x10$^{-3}$ and 8.2x10$^{-3}$ mA/cm2 respectively); before the point of the breakdown potential was reached.

One of this potential ranges was observed after the activation transition (at +140 mV of over-potential) and the second was observed at +400 mV over the E_{corr}. As a comparative result, the uncoated material presented a continuous potential range characterized by a control mechanism of equilibrium in the oxidation and reduction reactions. Also indications of breaking passive film characteristic of stainless steels were observed (curve 1 of Fig. 2). The comparison of the polarization results of behaviour of coatings material versus a self-protective substrate (SS 316) was done in order to evaluate the protective characteristics of those coatings, which could be applied in other non-self-protective structural materials to improve better corrosion resistance behaviour.

![Fig. (1). SEM micrograph of the M$_1$ coating obtained by dipcoating technique.](image1.png)

![Fig. (2). Potentiodynamic polarization curves of coated SS 316 in 1M- H$_2$SO$_4$ solution at 25°C.](image2.png)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Electrolyte</th>
<th>E_{corr} (mV)</th>
<th>i_{corr} (mA/cm2)</th>
<th>B_a (mV)</th>
<th>B_c (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>uncoated</td>
<td>1M H$_2$SO$_4$</td>
<td>+055</td>
<td>3.01 x10$^{-4}$</td>
<td>200</td>
<td>150</td>
</tr>
<tr>
<td>M$_1$</td>
<td>+664</td>
<td>4.37 x10$^{-5}$</td>
<td>195</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>C$_1$</td>
<td>+043</td>
<td>7.14 x10$^{-4}$</td>
<td>201</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>uncoated</td>
<td>0.1M H$_2$SO$_4$</td>
<td>-332</td>
<td>6.81 x10$^{-3}$</td>
<td>550</td>
<td>057</td>
</tr>
<tr>
<td>M$_1$</td>
<td>+468</td>
<td>3.85 x10$^{-4}$</td>
<td>140</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>C$_1$</td>
<td>+079</td>
<td>1.73 x10$^{-4}$</td>
<td>113</td>
<td>108</td>
<td></td>
</tr>
</tbody>
</table>
The Open Corrosion Journal, 2009, Volume 2

Carbajal-de la Torre et al.

nearby to its E_{corr} potential. The limited anodic current behaviour, presented by the hybrid-oxide coating, was the characteristic of passive behaviour; and then post-passivation transition behaviour was occurred. This transition was observed at +700 mV anodic potential vs its E_{corr} (arrow a; Fig. 3). In this solution the M1 coating sample showed activation mechanism behaviour principally, with anodic current density controlled by oxidation and reduction reactions equilibrium. The transition of this behaviour to faster anodic dissolution (controlled by the rate of oxidation reactions) due the increase of over-potential is pointed with the arrow b; Fig. (3), and reached around +953 mV potential values (vs E_{corr}) showing anodic current density values of 0.01 mA/cm2 approximately. Last current density was similar to be shown by the uncoated alloy, in the anodic curve. At over-potential conditions which M1 coating showed its breakdown transition point, coating layer became to scratch faster and then exposed areas increase; as a result, corrosion current increased. We suggest that point b describes a start of limited current behaviour as response of the contribution capacitance of the metallic interface as an addition of a mechanism of element diffusion of alloy. In addition, the M1 coating sample showed a displacement in the E_{corr} potential to more positive values showing better corrosion resistance or lower activity, nevertheless the hybrid coating showed the best passive behaviour in a wide potential region.

The results obtained by the potentiodynamic tests of M1 and C1 coatings in HCl solutions are showed in Figs. (4, 5). Table 2 shows the summary of the electrochemical parameters measured from these results. In this solution at 1.0 M, the uncoated stainless steel showed a more negative cell potential and bigger i_{corr}, meaning higher corrosion rate by the Tafel fitting parameters. All the coatings presented improved corrosion resistance at the OCP region. In addition, the more positive E_{corr} potential was obtained by M1 coating in 0.1 M HCl solution, while the E_{corr} of electrolyte/coating interface became more negative as the concentration increase. On the other hand, the C1 coating had less corrosion current density (i_{corr}) than the SS 316 substrate, just a smaller positive displacement of anodic curve, and presented the characteristic of “S” shape curve of stainless steel in this medium [35]. The most important feature of the polarization results was the electrochemical behaviour of coatings systems near the E_{corr} potential, where the coatings showed good response on corrosion resistance in HCl environment. Also the i_{corr} values were smaller than the measured ones from the uncoated material (cf. Table 2). These coatings were produced with a Si:Al = 2:1 ratio, besides coating systems with a Si:Al = 1:1 ratio previously reported [22], showed a good response with a passivation behaviour by the M1 coating system.

![Fig. (3). Potentiodynamic polarization curves of coated SS 316 in 0.1 M H$_2$SO$_4$ solution at 25°C.](image1)

![Fig. (4). Potentiodynamic polarization curves obtained in 1.0 M HCl solution at room temperature for SS 316 and coating systems.](image2)

![Fig. (5). Potentiodynamic polarization curves obtained in 0.1 M HCl solution at room temperature for stainless steel 316 and coating systems.](image3)
damage was observed in the M 1 coating in 0.1M solution peeling of the coating as shown in Fig. (6). The increasing higher potential promoted the cracking and small cracking points or pitting in the coating. However, the increasing of sweep over-potential initially grow from coating damage. Fractures of the ceramic coatings derived by the film, such an example was the cause of the observed products increase, the protective coating is lost by peeling of before reported by Dianran et al.

Fig. (6). SEM micrograph of the M 1 coating potentiodynamic test in the H 2SO 4 solution with: (a) 1.0 M and (b) 0.1 M concentrations. The forced damage of coating was generated by the high potential increase in the anodic region.

resulted in debonding, delaminating and lifting of the coating from the substrate, possibly due to hydrolysis reactions at the interface [36]. Additionally, the diffusion of the oxidant ions speeds up and the corrosion rate increases causing an accumulation of the corrosion products at the interface, promoting the formation of bulges and even leading to microcracks as it can be seen as an example in Fig. (6), before reported by Dianran et al. [37] also. As the corrosion products increase, the protective coating is lost by peeling of the film, such an example was the cause of the observed coating damage. Fractures of the ceramic coatings derived by the increasing of sweep over-potential initially grow from small cracking points or pitting in the coating. However, increasing higher potential promoted the cracking and peeling of the coating as shown in Fig. (6). More evident damage was observed in the M 1 coating in 0.1M solution (Fig. 6b), where the corrosion mechanism was mainly controlled by activation (Fig. 3). However, the coating samples showed higher corrosion resistance described by the E_{corr} and i_{corr} values (Tables 1 and 2), as reported before [22, 23, 36].

At the beginning of an interaction in a corrosive environment, the ceramic coating keeps a barrier between the substrate and environment protecting it from corrosion. Micropores and microcracks that could be present in the ceramic film play an important role in the corrosion, which generate a particular stage, high or low weight losses. In Fig. (7) we propose a different corrosion mechanism at the interface between the sol-gel coating and the stainless steel substrate. The Schematic illustrate the possible corrosion mechanisms of coating/SS 316 interface into: a) H 2SO 4 and b) HCl solutions. The possible paths for the electrochemical reaction between the corrosive and metal ions at the coating/substrate interface affects in the formation of an oxide layer, which could grow passive layer to enhance the corrosion resistance. Cracking during drying is a rare condition but could occur when the gel has had insufficient ageing and strength [10]. After drying, the coatings were densified by heat treatment. During this step the residual stress grows until the point of generating some microcracks into the coating. Residual stress in the interface comes from the differential thermal expansion of both substrate and film coating. However, as soon as the corrosive medium penetrates through the layer and reaches the substrate, an electrochemical reaction takes place, causing an increase of current density. Fortunately, the evaluated coatings did not show such behaviour and the surface appearance obtained by SEM characterization did not present substantial density of those defects (Fig. 1). Similar behaviour has been attributed to the presence of the methyl groups of the hybrid coatings which generate a hydrophobic barrier that restricts the access of the aqueous electrolyte into the coating pores, improving the corrosion resistance of the coating material [24].

In this sense, the affinity of sulphuric acid for water is sufficiently strong that it will remove hydrogen and oxygen atoms from other compounds. In this way, when a material reaches an over-potential condition by the dynamic polarization (as in the present work), it promotes that corrosion to take place on the metallic surface by forced way. The diffusion through the corrosion products or coating barrier increases driven by over potential force which causes an increase in the ion concentration at the interface promoting the oxidation reaction of metal. In the H 2SO 4 solutions, the electrochemical reactions are: $H_2SO_4 + H_2O \rightarrow H_2O^+ + HSO_4^-$, and then $HSO_4^- + H_2O \rightarrow H_2O^+ + SO_4^{2-}$.

Then, SO_4^{2-} and O_2^- ions diffusion (last from aerated solution) through metal/coating interface is driven by the over potential changes. In materials protected by ceramic coatings, this corrosion activity can promote the coating scaling by the corrosion products accumulation (schematized

<table>
<thead>
<tr>
<th>Sample</th>
<th>Electrolyte</th>
<th>E_{corr} (mV)</th>
<th>i_{corr} (mA/cm²)</th>
<th>Ba (mV)</th>
<th>Bc (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>uncoated</td>
<td>1M HCl</td>
<td>-465</td>
<td>2.77 x10⁻²</td>
<td>111</td>
<td>126</td>
</tr>
<tr>
<td>M 1</td>
<td>1M HCl</td>
<td>-361</td>
<td>1.03 x10⁻²</td>
<td>053</td>
<td>255</td>
</tr>
<tr>
<td>C 1</td>
<td>1M HCl</td>
<td>-427</td>
<td>3.12 x10⁻²</td>
<td>039</td>
<td>235</td>
</tr>
<tr>
<td>uncoated</td>
<td>0.1M HCl</td>
<td>-358</td>
<td>1.51 x10⁻¹</td>
<td>422</td>
<td>167</td>
</tr>
<tr>
<td>M 1</td>
<td>0.1M HCl</td>
<td>-364</td>
<td>3.50 x10⁻¹</td>
<td>99</td>
<td>343</td>
</tr>
</tbody>
</table>

Table 2. Summary of the Electrochemical Parameters Measured from Polarization Results in the HCl Solutions
in Fig. 7a). As a result, formation of bulges and even leading to microcracks as it can be seen in Fig. (6), previously reported by Dianran et al. [37]. As the corrosion products increase, the protective coating is lost by peeling of the film, which might be the cause of the observed coating damage. Pure sulphuric acid reacts with most metals via a single displacement reaction to produce hydrogen gas and the metal sulphate, however, diluted H$_2$SO$_4$ attacks iron, and (many metals as: aluminium, zinc, manganese, magnesium and nickel). In this way, the general reaction with iron is: Fe(s) + H$_2$SO$_4$ (aqueous) → H$_2$ (g) + FeSO$_4$; or electrochemical reaction: Fe$^{2+}$ + SO$_4^{2-}$ → FeSO$_4$. Additionally, the Cr contents an O, gives the oxidation and reduction of Cr reaction: Fe$^{2+}$ + O$_2$ + 2H$^+$ → Fe$^{3+}$ + H$_2$O. These products grow easily and their structure is not protective, generating localized corrosion connecting pathways for the corrosive environments. The origin of the deterioration of the coatings was clearly revealed by the presence of microcracks which acts as characteristic passivation behaviour. In Fig. 7b). The corrosion products are constituted by Cl and Fe in addition to the oxygen. These products grow easily and their structure is not protective, generating localized corrosion such pitting and crevice corrosion. The anodic metal dissolution reaction occurs principally by: oxidation of Fe → Fe$^{2+}$ + 2 e$^-$ then Fe$^{2+}$ + 2 Cl$^-$ → FeCl$_2$; also Fe$^{2+}$ → Fe$^{3+}$ + e$^-$; and 2Fe$^{3+}$ + 3 O$_2^{2-}$ → Fe$_2$O$_3$; also 2Cr$^{3+}$ + 3 O$_2^{2-}$ → Cr$_2$O$_3$ reaction occurs at the metal/coating interface.

In the HCl solutions, the electrochemical reaction is: HCl + H$_2$O → H$_3$O$^+$ + Cl$^-$. If these solutions are aerated, the oxidizing ions are compounded by Cl$^-$ and O$_2^{2-}$ ions, (Fig. 7b). The corrosion products are constituted by Cl and Fe in addition to the oxygen. These products grow easily and their structure is not protective, generating localized corrosion such pitting and crevice corrosion. The anodic metal dissolution reaction occurs principally by: oxidation of Fe → Fe$^{2+}$ + 2 e$^-$ then Fe$^{2+}$ + 2 Cl$^-$ → FeCl$_2$; also Fe$^{2+}$ → Fe$^{3+}$ + e$^-$; and 2Fe$^{3+}$ + 3 O$_2^{2-}$ → Fe$_2$O$_3$; also 2Cr$^{3+}$ + 3 O$_2^{2-}$ → Cr$_2$O$_3$ happens. However, stainless steels in chloride solutions pitting corrosion, then, at the bottom of the pit, 2Fe $→$ 2Fe$^{2+}$ + 4 e$^-$, is balanced by the cathodic reaction at the adjacent surface, O$_2$ + 2H$_2$O + 4 e$^-$ → 4 OH$^-$. The increased concentration of Fe$^{2+}$ within the pit results in the migration of chloride ions (Cl$^-$) to maintain neutrality. The metal chloride formed, FeCl$_2$, is hydrolyzed by H$_2$O, hydroxide and free acid, FeCl$_2$ + 2H$_2$O → Fe(OH)$_2$ + 2H$^+$ + 2Cl$^-$. This acid drops pH values at the bottom of the pit while the pH of the bulk remains neutral [38].

The kinds of corrosion products were attributed to the difference on corrosion reactions of the metal/coating interfaces in these solutions (Figs. 2-5). The reaction of substrate interface in H$_2$SO$_4$ and HCl solutions promotes the interaction of Fe and Cr with the oxidizers as O, and S, and O and Cl respectively, then the formation of a protective film on the metallic surface principally by the chromium oxide minimizing the corrosion rate by passivation and spreading of microcracks. The increase of exposed area to corrosion phenomena due to coating spilling causes the increase in current density occurred at high over-potential, and explain the increase in anodic current over some ranges of potential. Nevertheless, the coatings evaluated in the current work developed good corrosion resistance, showing passivation region implied that the sol-gel coatings indeed provided a physical barrier for blocking the electrochemical corrosion process [34].

CONCLUSIONS

Hybrid C$_1$ and ceramic mix-oxide M$_1$ sols were synthesized by a sol-gel process producing protective films with different properties and used to dip-coat “ormocers” coatings on SS 316. The protective properties in corrosion environments of both coating systems tested by the potentiodynamic technique suggest good corrosion resistance at OCP conditions. The M$_1$ coatings prevent the corrosion resistance in the H$_2$SO$_4$ solutions by a mechanism limited or controlled by seudo-passivation, and presented a second passivation potential region in 0.1 M solution. Also the C$_1$ coating developed beneficial passivation behaviour in this solution concentration.

In the HCl solutions, both coatings improved corrosion resistance at the OCP region. In addition, the more positive E_{corr} was obtained by M$_1$ coating into 1 M HCl solution (around 100 mV more positive than substrate), and this E_{corr} became more negative as the solution concentration decrease at 0.1 M. However, the more important feature of the results was their electrochemical behaviour in the near E_{corr} region, in which the coatings shown good response of corrosion resistance. Furthermore, the I_{corr} values resulted to be smaller than I_{corr} from the uncoated material.

The origin of the deterioration of the coatings was clearly revealed by the presence of microcracks which acts as connecting pathways for the corrosive environments. The different corrosion resistance shown by protective coatings in the corrosive media was related by the development of specific corrosion products. In H$_2$SO$_4$, chromium oxides grown into metal-coating interface, which developed the best behaviour as characteristic passivation curves, while chlorine solutions generated chlorine compounds into interface cause...
of bulge formations, lifting and spalling of protective coatings, thus same behaviour than uncoated material.

ACKNOWLEDGEMENTS

The authors acknowledge the technical help of H. E. Esparza-Ponce, A. Rojas, G. Hernandez, C. Peza.

REFERENCES

Received: January 27, 2009
Revised: February 27, 2009
Accepted: May 8, 2009

© Carbajal-de la Torre et al.; Licensee Bentham Open.
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.