Synthesis and Characterization of Bi₂Se₃ Thermoelectric Nanopowders

K.F. Cai*^{,1}, L. Wang¹, J.L. Yin² and C.W. Zhou¹

¹Tongji University, Functional Materials Research Laboratory, 1239 Siping Road, Shanghai 200092, China ²Tongji University, Shanghai Key Lab of Metal Functional Materials, 1239 Siping Road, Shanghai 200092, China

Abstract: In order to synthesize Bi_2Se_3 nanopowders by a solvothermal synthesis method, ethylenediamine, dimethylformamide, acetone, absolute ethanol, and deionized water were respectively used as a solvent, using BiCl₃ and elemental Se powders as starting materials and KBH₄ as a reductant at 180°C for different times. X-ray diffraction was used for examining the phase composition of the products. The results showed that pure Bi_2Se_3 nanopowders were successfully synthesized only when deionized water was used as the solvent. Transmission electron microscopy observation revealed that the nanopowders consisted of big polygonal nanosheets and small irregular nanoparticles. The formation mechanism of the Bi_2Se_3 nanosheets and nanoparticles was proposed.

INTRODUCTION

Since 1993, when Hicks and Dresselhaus [1] reported that the dimensionless thermoelectric figure of merit ZT $(=\sigma \alpha^2 T/\kappa)$, here σ, α , and κ are the electrical conductivity, the Seebeck coefficient, and the thermal conductivity of the material, respectively, and T is absolute temperature) of a material can be markedly increased as its dimensionality is reduced, the preparation and thermoelectric properties of nanostructured materials have attracted more and more attention [2-9]. For example, Lin et al. [2, 3] studied the transport properties of Bi and Bi1-xSbx nanowires and found that the Seebeck coefficient of Bi nanowires and the electrical conductivity of Bi_{1-x}Sb_x nanowires both dramatically increased as the diameter of the corresponding nanowires decreased. Harman et al. [10] reported ZT>2 for PbTe-PbSeTe quantum-dot superlattices. Venkatasubramanian et al. [11] showed ZT=2.4 for p-type Bi₂Te₃-Sb₂Te₃ superlattices at room temperature and ZT=1.2 for n-type superlattices. Recently, Kanatzidis et al. [12] reported bulk AgPb₁₈SbTe₂₀ material with extremely high figure of merit (ZT=2.1 at 800K), and they considered that the material possessing so high ZT value probably due to Ag-Sb-rich nanocrystals embedded in PbTe matrix, which is conceptually akin to the one found in the artificial PbTe-PbSeTe superlattices [10].

Bi₂Se₃ is a promising thermoelectric material that can be used in thermoelectric cooling devices [13-14], and it can also be used as optical recording medium [15-16]. Usually, Bi₂Se₃ nanocrystallines are prepared by metallurgical melt processing [17], traveling heater method [18] or Bridgman method [19] at high temperatures (>500°C). Recently, preparation of Bi₂Se₃ nanostructured materials *via* wet chemical methods has attracted increasing attention due to low cost and convenient. For example, Qiu *et al.* [20] synthesized Bi₂Se₃ nanoparticles *via* sonochemical method using Bi(NO₃)₃, Na₂SeSO₃, EDTA and ascorbic acid as starting materials; Cui et al. [21, 22] obtained Bi₂Se₃ nanobelts or nanotubes via the same method as in ref. [20], using BiCl₃, selenious acid and diamine hydrate as the starting materials; Wang et al. [23] synthesized Bi₂Se₃ nanopowders by a solvothermal method in ethylenediamine (en) using BiCl₃ and Se as starting materials and NaI as a reductant. Since selenium contained compounds are toxicic, the influence of the fabrication route to Bi₂Se₃ upon the environment should be concerned. As elemental Se is less toxicic compared with selenium contained compounds, in this paper, we selected Se powder as the Se source for the synthesis of Bi₂Se₃ nanopowders via a solvothermal method, in acetone, absolute ethanol, en, dimethylformamide (DMF), or deionized water, respectively. The phase composition and microstructure of the corresponding products were characterized by Xray diffraction (XRD) and transmission electron microscopy (TEM), respectively.

EXPERIMENTAL DETAILS

Se powders with purity>99.5% and other chemicals with analytical purity were used. Absolute ethanol, acetone, en, DMF, and deionized water were respectively poured into five Teflon-lined autoclaves of 100 ml capacity until 80% of the volume was filled. Appropriate amount of BiCl₃, Se, KBH₄, and KOH were put into the autoclave sequentially. The autoclaves were sealed and maintained at 180°C for 24, 36, and 48 h, respectively, then naturally cooled to room temperature. The resultants were washed with diluted hydrochloride, deionized water and absolute ethanol in sequence for several times then filtered. Finally the dark products were dried in vacuum. XRD (Bruker D8 Advance) was used to characterize the dried products. The morphology and size of the products were examined by using TEM (Hitachi H-800).

RESULTS AND DISCUSSION

Fig. (1) shows the XRD patterns of the products synthesized at 180 °C for 24 h, using various solvents. It can be seen from Fig. 1 that using acetone or absolute ethanol as the solvent, their corresponding products have a similar XRD pattern and mainly contain elemental Bi and Se, with a little

^{*}Address correspondence to this author at the Tongji University (South Campus), Functional Materials Research Laboratory, 1239 Siping Road, Shanghai 200092, China; Tel/Fax: +86-21-65980255; E-mail: kfcai@mail.tongji.edu.cn

amount of Bi₄Se₃. As en was used as the solvent, the product mainly contains Bi, with a small amount of Se and unknown phase, which is quite different from the result in ref. [23], where NaI was used as the reductant. The reason for the difference is considered that NaI is a very weak reductant $(E_{l_2/I^-}^0 = 0.535 \text{V})$, while KBH₄ is very strong $(E_{H_2O/BH_4^-}^0 = -1.24 \text{V})$. The latter can easily reduce Bi³⁺ into Bi $(E_{Ri^{3+}/Bi}^0 = 0.16 \text{ V})$.

Fig. (1). XRD patterns of the product synthesized at $180 \,^{\circ}$ C for 24 h using various solvents, the reported data for Bi₂Se₃ is also given for comparison. The peaks marked by %, #, \$ and ? correspond to Bi, Bi₄Se₃, Se, and unknown phase, respectively.

As DMF was used as the solvent, the product contains mainly Bi_2Se_3 (JCPDS card file, No. 33-0214), with some amount of Bi_4Se_3 , Bi and Se. As deionized water was used as the solvent, the product mainly contains Bi_4Se_3 (JCPDS 72-2065), with a little amount of Se and Bi_2Se_3 . These suggest that if we further prolong the holding time and/or increase the synthesis temperature, it is promising to obtain pure Bi_2Se_3 powders using DMF or deionized water as the solvent. Therefore, further experiments were only carried out using DMF or deionized water as the solvent and the results are shown as follows.

Fig. (2) shows the XRD patterns of products synthesized at 180°C for 36 or 48 h, using DMF and deionized water as the solvent, respectively. It can be seen from Fig. (2) that as DMF was used as the solvent and the holding time was 36 and 48 h, respectively, both the products contain Bi_2Se_3 , Bi_4Se_3 and Se_3 , only the product of the latter case has more Bi_2Se_3 . This indicates that, using DMF as the solvent, the product is still not pure even the holding time is 48 h. As deionized water was used as the solvent and the holding time was 36 h, besides the expected phase, Bi_2Se_3 , the product still contains Bi_4Se_3 , and little amount of unreacted Se, whereas as the holding time was prolonged to 48 h, all the XRD peaks (pattern 4 in Fig. 2) of the product correspond to the reflections of rhombohedral Bi_2Se_3 (JCPDS card file, No. 33-0214) with space group: R-3m (166). The calculated lattice constants, a=4.130Å and c=28.42 Å, from the XRD pattern agree with the reported data in JCPDS card file, No. 33-0214, a=4.139Å and c=28.63 Å. Therefore, the synthesized powder is rhombohedral Bi_2Se_3 .

Fig. (2). XRD patterns of the product synthesized at 180 $^{\circ}$ C for 36 or 48 h, using DMF and deionized water as the solvent, respectively, the reported data for Bi₂Se₃ is also given for comparison. The peaks marked by # and \$ correspond to Bi₄Se₃ and Se, respectively.

Pure Bi_2Se_3 cannot be successfully obtained under the present conditions when en, absolute ethanol, acetone or DMF was used as the solvent, which is probably because the physical and chemical properties of these solvents are different from those of deionized water. By comparing with the physical and chemical properties of the solvents used, it is found that deionized water has the biggest dielectric constant (dielectric constant=78.304, 36.71, 25.7, 20.7, 12.9 for deionized water, DMF, ethanol, acetone, and en, respectively) and that their other properties are similar [24]. Therefore, the dielectric constant of a solvent probably has a significant effect on the formation of the Bi_2Se_3 compound.

Fig. (3a) shows the TEM image of the product synthesized at 180 °C for 36 h, using deionized water as the solvent. It can be seen from Fig. (3a) that the product contains some flake-like nanostructures with sizes of about 50 - 100nm besides many small irregular nanoparticles. Fig. (3b) shows the TEM image of the product synthesized at 180 °C for 48 h, using deionized water as the solvent. The morphology of the Bi₂Se₃ nanopowders is not uniform. The nanopowders contain two kinds of grains: one is small with size of ~ 100 nm, the other is bigger and regular with sizes in the range of 500-1000 nm. The bigger grains are in polygon and very thin, which can be seen from their contrast with the small grains (see the right upper corner hexagon). Therefore, we call them nanograins and nanosheets, respectively. Most nanosheets are hexagonal. If one takes a close look at the big hexagonal particle in the center of Fig. (3b), one will find

Fig. (3). TEM images of as the synthesized nanopowders at 180° C for 36 h (a), and 48 h (b) and (c), and the SAED pattern (d) recorded on the hexagonal nanosheet indicted by an arrow in (c).

that in fact it consists of at least two hexagons with similar size. The hexagons are almost superpositioned, resulting in dark contrast. Fig. (**3c**) more clearly shows the morphology of the nanosheets, where several nanosheets are overlapped to some extent. Fig. (**3d**) shows the selected area electron diffraction (SAED) pattern normal to the plane of the hexagonal nanosheet indicated by an arrow in Fig. (**3c**). It reveals that the nanosheets are well crystallized and grow along the (0001) plane of the rhombohedral Bi₂Se₃.

The crystal structure of Bi_2Se_3 consists of Bi and Se layers [22]. A Bi layer is composed of Bi atoms arranged to form a plane hexagonal structure, and a Se layer is formed by Se atoms arranged in the same way. In a unit cell, there are two different Se layers, named $Se^{(1)}$ and $Se^{(2)}$. A unit cell is packed with two Bi layers and three Se layers according to the sequence as follows: $Se^{(1)}$ -Bi- $Se^{(2)}$ -Bi- $Se^{(1)}$. Between two units, there is only the Van der Waals bond between the neighboring $Se^{(1)}$ planes. Because the Bi_2Se_3 has such layered structure and weak bonds between two unit layers, the nuclei forming from the solution are tiny thin crystals. And when the temperature is low, the formation rate of Bi_2Se_3 molecules and the growth rate of the crystals are low. It is easy to get small crystalline nanosheets with well-formed hexagonal morphology [22].

The synthesized Bi₂Se₃ powders possessing different morphologies must be related to their formation mechanisms. According to the redox potentials ($E_{Se/Se^{2-}}^{0}$ =-0.92 V

and others being given in above paragraphs), the Bi³⁺ and Se in the autoclave can be reduced into Bi and Se²⁻, respectively, by KBH₄. Although the former is easier to be reduced than the latter, the solubility of BiCl₃ in water is very limited especially at room temperature and it increases with increasing temperature. This suggests that the reduction process from Bi³⁺ to Bi in the system is slow. Therefore, there are two possible formation pathways of the Bi₂Se₃. One is that the Bi³⁺ directly reacts with the reduced Se²⁻ and the other is that the reduced Bi reacts with the elemental Se. The reaction process is proposed as follows: a part of the Se is reduced into Se²⁻ and then the Se²⁻ directly reacts with Bi³⁺ into Bi₂Se₃, whereas other Bi³⁺ ions in the solution are reduced into Bi atoms, then as the temperature increases the Bi atoms react with some Se to form Bi₄Se₃, and finally the Bi₄Se₃ react with the remnant Se to form Bi₂Se₃. The formation mechanisms can be expressed as follows.

The first pathway:

$$2BH_4^- + 2OH^- + 2Se = 2Se^{2-} + 2H_2O + B_2H_6^{\uparrow}$$
(1)

$$3Se^{2-} + 2Bi^{3+} = Bi_2Se_3$$
 (2)

The second pathway:

$$6BH_4^- + 6OH^- + 4Bi^{3+} = 4Bi + 6H_2O + 3B_2H_6^{\uparrow}$$
(3)

$$3Se + 4Bi = Bi_4 Se_3 \tag{4}$$

Synthesis and Characterization of Bi₂Se₃ Thermoelectric Nanopowders

$$\operatorname{Bi}_{4}\operatorname{Se}_{3} + 3\operatorname{Se} = 2\operatorname{Bi}_{2}\operatorname{Se}_{3} \tag{5}$$

The formation process of the Bi_2Se_3 is complicated as described above, resulting in the Bi_2Se_3 nanopowders not uniform. Combining the XRD and TEM results it can be deduced that the reactions (1) to (4) occur at early stage whereas the reaction (5) at late stage of the processing and that the nanosheets and the nanograins are the products of the first and the second pathway, respectively. The nanosheets formed at early stage of the processing grow up into regular shape as the temperature increases and the time is prolonged; therefore, they are bigger.

Based on the above results and discussion, we deduce that homogeneous Bi_2Se_3 nanopowders might be synthesized by adjusting the processing. For example, the Se powder is first fully reduced into Se^{2^-} by KBH₄ according to the reaction (1) and then the Se^{2^-} contained solution and BiCl₃ are put into the autoclave, Bi_2Se_3 nanopowders would finally form according to the first pathway. Using H₂SeO₃ or Na₂SeO₃ to replace Se may be another choice, as H₂SeO₃ or Na₂SeO₃ will be reduced to form Se and BiCl₃ will be reduced to form Bi according to the reaction (3). Bi₂Se₃ nanopowders would form according to the second pathway.

CONCLUSIONS

Pure Bi_2Se_3 nanopowders were successfully synthesized at 180°C for 48 h, using deionized water as solvent, whereas it was not successful using en, DMF, acetone or absolute ethanol as the solvent. There are two possible formation pathways of the Bi_2Se_3 nanopowders, which is probably the main reason that the nanopowders are not uniform.

ACKNOWLEDGEMENTS

This work was supported by the Shanghai Pujiang Program and the Ministry of Sciences and Technology of China through 973-project under grant No. 2007CB607500.

REFERENCES

- Hicks LD, Dresselhaus MS. Effect of quantum- well structures on the thermoelectric figure of merit. Phys Rev B 1993; 47: 12727-31.
- [2] Lin YM, Sun XZ, Dresselhaus MS. Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires. Phys Rev B 2000; 62: 4610-23.
- [3] Lin YM, Rabin O, Cronin SB, Ying JY, Dresselhaus MS. Semimetal-semiconductor transition in Bi_{1-x}Sb_x alloy nanowires and their thermoelectric properties. Appl Phys Lett 2002; 81: 2403-5
- [4] Shi L, Li DY, Yu CH, et al. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J Heat Transfer Trans ASME 2003; 125: 881-8.

Received: March 30, 2008

Revised: May 05, 2008

Accepted: May 07, 2008

© Cai et al.; Licensee Bentham Open.

- [5] Zolotukhin IV, Golev IM, Popov AA, Ievlev VP. Thermoelectric properties of nanotubular and fractal carbon deposits. Tech Phys Lett 2002; 28: 678-9.
- [6] Popov VV, Gordeev SK, Grechinskaya AV, Danishevskii AM. Electrical and thermoelectric properties of nanoporous carbon. Phys Solid State 2002; 44: 789-92.
- [7] Pitschke W, Hofman D, Schumann J, Kleint CA, Heinrich A, Burkov AT. Structure of nanocrystalline Re-Si thin film composites and their unusual thermoelectric properties. J Appl Phys 2001; 89: 3229-41.
- [8] Brochin F, Lenoir B, Devaux X, Martin-Lopez R, Scherrer H. Preparation and transport properties of polycrystalline Bi and Bi-SiO₂ nanocomposites. J Appl Phys 2000; 88: 3269-75.
- [9] Tian ML, Chen L, Li FQ, et al. Thermoelectric power properties of graphitic nanotubule bundles. J Appl Phys 1997; 82: 3164-6.
- [10] Harman TC, Spears DL, Manfra MJ. High thermoelectric figures of merit in PbTe quantum wells. J Electron Mater 1996; 25: 1121-7.
- [11] Venkatasubramanian R, Siivola E, Colpitts T, O'Quinn B. Thinfilm thermoelectric devices with high room-temperature figures of merit. Nature 2001; 413: 597-602.
- [12] Hsu KF, Loo S, Guo F, *et al.* Cubic AgPb_mSbTe_{2+m}: Bulk thermoelectric materials with high figure of merit. Science 2004; 303: 818-21.
- [13] Yim WM, Rosi FD. Compound telurides and their alloys for Peltier cooling – A review. Solid State Electron 1971; 15: 1121-40.
- [14] Glazov VM, Faradzhov AI. Electric properties of bismuth selenide (Bi₂Se₃) in the solid and liquid states. Fizika i Tekhnika Poluprovodnikov (Sankt-Peterburg) 1988; 22: 1929-35.
- [15] Mishra SK, Satpathy S, Jepsen O. Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide. J Phys Condens Mater 1997; 9: 461-70.
- [16] Hafiz MM, El-Shazly O, Kinawy N. Reversible phase change in Bi_xSe_{100-x} chalcogenide thin films for using as optical recording medium. Appl Surf Sci 2001; 171: 231-41.
- [17] Rosi FD, Abeles B, Jensen RV. Materials for thermoelectric refrigeration. Phys Chem Solids 1959; 10: 191-200.
- [18] Mongellaz F, Fillot A, Griot R, De Lallee J. Thermoelectric cooler for infrared detector, in Proceedings of SPIE-The International Society for Optical Engineering 1994; 2227(Cryogenic Optical Systems and Instruments VI): 156-65.
- [19] Drasar C, Klichova I, Koudelka L, Lostak P. Transport coefficients of (Bi_{1-x}Sb_x)₂Se₃ single crystals. Cryst Res Technol 1996; 31: 805-12.
- [20] Qiu XF, Zhu JJ, Pu L, Shi Y, Zheng YD, Chen HY. Sizecontrollable sonochemical synthesis of thermoelectric material of Bi₂Se₃ nanocrystals. Inorg Chem Commun 2004; 7: 319-21.
- [21] Cui HM, Liu H, Wang JY, Li X, Han F, Boughton RI. Sonochemical synthesis of bismuth selenide nanobelts at room temperature. J Cryst Growth 2004; 271: 456-61.
- [22] Cui HM, Liu H, Li X, et al. Synthesis of Bi₂Se₃ thermoelectric nanosheets and nanotubes through hydrothermal co-reduction method. J Solid State Chem 2004; 177: 4001-6.
- [23] Wang WZ, Geng Y, Qian YT, Xie Y, Liu XM. Synthesis and characterization of nanocrystalline Bi₂Se₃ by solvothermal method. Mater Res Bull 1999; 34: 131-4.
- [24] Zhao XB, Ji XH, Zhang YH, Lu BH. Effect of solvent on the microstructures of nanostructured Bi₂Te₃ prepared by solvothermal synthesis. J Alloy Compd 2004; 368: 349-52.

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.5/), which permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited.