Crystal Structure, Aromatic Character and AM1 Calculations of 2-(N^{\prime} -Benzylidenehydrazino)-4-trifluoromethyl-pyrimidine and 2-(N^{\prime}-2-Methyl-benzylidenehydrazino)-5-methyl-4-trifluoromethyl-pyrimidine

Simone S. Amaral, Patrick T. Campos, Josiane M. dos Santos, Liana da S. Fernandes, Marcos A. P. Martins, Helio G. Bonacorso and Nilo Zanatta*

Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, CEP -- 97.105-900, Santa Maria, RS, Brazil

Abstract

The structure of two novel 2-(N '-benzylidenehydrazino)-4-trifluoromethyl-pyrimidines has been determined by X-ray crystallography and their energy-minimized structures were stablished by molecular orbital calculations (AM1) by means of comparison. Additionally, the bond lengths of the compounds were analyzed in order to verify the occurance of electronic resonance. Bond lengths and bond angles in the pyrimidine ring and the benzylidene portion compare well with those found in similar compounds. 2-(N '-benzylidenehydrazino)-4-trifluoromethyl-pyrimidine, crystallized in the triclinic space group P-1 solvated with a molecule of water, while 2-($N^{\prime}-2$-methyl-benzylidenehydrazino)-5-methyl-4-trifluoromethyl-pyrimidine crystallized in the tetragonal space group P41. The azomethine moieties showed a trans-planar conformation. The energy-minimized structures of both compounds are in good agreement with their X-ray crystal structures. Nevertheless, a significant difference between calculated and experimental data regarding to the ring planarity was observed due to relevant intermolecular interactions in the real structures. Finally, aromaticities of both pyrimidines and phenyl rings were determined using HOMA calculations.

Keywords: X-ray, HOMA, AM1, trifluoromethylpyrimidines.

INTRODUCTION

Pyrimidines are an important class of heterocyclic compounds. They have been widely used in areas of great importance such as the agricultural [1], microbiology [2] and medicine fields [3]. In particular, N-benzylidenehydrazino pyrimidines have been associated with antitumor, antimicrobial, anti-inflammatory, anti-HIV and analgesic activities [46]. Additionally, since these compounds present donor atoms on their structures they are also very appealing ligands for the synthesis of coordination compounds [7].

We have recently described the synthesis, evaluated the cruzain inhibitory activity and proposed a binding model based on docking protocols of novel $2-\left(N^{\prime}\right.$ 'benzylidene-hydrazino)-4-trifluoromethyl-pyrimidines [8]. In order to further advance our knowledge as to how these compounds bind to the T. cruzi enzyme and to ultimately improve the potency of these inhibitors definitive structural and electronical data are required.

There are some reports about the characterization of general pyrimidinic compounds based on NMR spectroscopy [9, 10] and X-ray scattering of crystallin supramolecular structures techniques [11-13]. There are very few reports, however, dedicated to the structural assignement of pyrimidines based on X-ray crystallography associated with theoretical

[^0]calculations or to the aromatic character quantification of such heterocycles [14-16] and, to the best of our knowledge, there are no studies of this nature dealing with N '-benzylidenehydrazino pyrimidines.

In this context, we now wish to present the detailed crystal structures based on X-ray experiments combined with theoretical studies by means of semi-empirical molecular orbital calculations (AM1) and a quantitative description of aromaticity based on geometrical indices by means of harmonic oscillator model of aromaticity (HOMA) of two N benzylidenehydrazino pyrimidine derivatives.

MATERIALS AND METHODOLOGY

General Synthetic Procedure

Both 2-(N '-benzylidenehydrazino)-4-trifluoromethylpyrimidines I and II (Fig. (1)) were prepared from the cyclocondensation reaction between the related N -guanidinobenzylimines and β-alkoxyvinyl trifluoromethyl ketones in excellent yields [8]. Crystals suitable for X-ray diffraction were obtained by slow evaporation of dichloromethane/ methanol solutions of compounds I and II.

X-Ray Crystallographic Studies

The diffraction measurements were carried out by graph-ite-monochromatized Mo K α radiation with $\lambda=0.71073 \AA$ on a Bruker SMART CCD diffractometer [17]. The structures were solved with direct methods using the SHELXL97 package [18], and refined on F^{2} by full-matrix least-squares by SHELXL97 package [18]. The absorption correction was performed by Gaussian methods [19]. The anisotropic
displacement parameters for non-hydrogen atoms were applied. The hydrogen atoms were placed at calculated positions with $0.96 \AA$ (methyl CH_{3}), $0.97 \AA$ (methylene CH_{2}), $0.98 \AA$ (methine CH), $0.93 \AA$ (aromatic CH) and 0.86 $\AA(\mathrm{NH})$ using a riding model. The hydrogen isotropic thermal parameters were kept equal to $\operatorname{Uiso}(\mathrm{H})=x U$ eq (carrier C atom), with $x=1.5$ for methyl groups and $x=1.2$ otherwise. The valence angles $\mathrm{C}-\mathrm{C}-\mathrm{H}$ and $\mathrm{H}-\mathrm{C}-\mathrm{H}$ of methyl groups set to 109.5° and H atoms were allowed to rotate around the $\mathrm{C}-\mathrm{C}$ bond. Molecular graphics were prepared using ORTEP3 for Windows [20].

II

Fig. (1). Chemical scheme of the 2-(N^{\prime}-Benzylidenehydrazino)-4-trifluoromethyl-pyrimidines I and II.

Semi-Empirical Molecular Orbital Calculations (AM1)

The geometry of compounds were optimized using semiempirical SCF, AM1 [21] method implemented in the HyperChem 7.52 package (2002) [22]. The structures were fully optimized without fixing any parameter, thus bringing all geometric variables to their equilibrium values. The energy minimization protocol employed the Polak-Ribiere conjugated gradient algorithm. Convergence to a local minimum was achieved when the energy gradient was $\leq 0.01 \mathrm{kcal} \cdot$ mol^{-1}. The RHF method was used in the spin pairing for the two semi-empirical tools.

Harmonic Oscillator Model of Aromaticity (HOMA) Calculations

Cyclic compounds with alternating single and double bounds tend to present intermediate bond lengths between those compounds with isolated single and/or double bonds. This property is a cooperative effect of both the σ and π orbitals. The harmonic oscillator model of aromacity (HOMA model) is a quantitative descriptor of this effect (geometric criterion) that allows a quantitative measure of the aromaticity of organic compounds. HOMA is defined as a normalized sum of squared deviations of the individual experimental (or calculated) bond lengths and an optimal bond length, which corresponds to full π-electron delocalization

$$
\text { Eq. 1. HOMA }=1-\alpha / n \sum\left(\mathrm{R}_{\mathrm{opt}}-\mathrm{R}_{\mathrm{i}}\right)^{2}
$$

where n is the number of bonds taken into the summation; α is a normalization constant (for CC bonds $\alpha=257.7$; for CN bonds $\alpha=93.52$ for NN bonds $\alpha=130.33$) fixed to give HOMA $=0$ for a model nonaromatic system (e.g. the Kekulé structure of benzene) [23] and HOMA $=1$ for the system with all bonds equal to the optimal value $R_{\text {opt }}$ (e.g. a full aromatic system - for CC bonds $R_{\text {opt }}$ is equal to $1.388 \AA$; for CN bonds $R_{\text {opt }}$ is equal to $1.334 \AA$, for NN bonds $R_{\text {opt }}$ is equal to $1.309 \AA$); R_{i} stands for a running bond length.

The very last modification of HOMA index [24-26], applied also for rings containing heteroatoms, states that the decrease in aromatic character of the π-electron system may be realized in two different ways: (i) by the increase of the bond length alternation and (ii) by the extension of the mean bond length (bond elongation) of the system in question [27]. In general, aromaticity decreases with an increase in heteroatom electronegativity [28]. An important advantage of using bond lengths as a criterion of aromaticity is the routine X-ray measurement of molecular geometries and the wealth of experimental data available.

RESULTS AND DISCUSSION

X-Ray Crystallographic Studies

Compound I, crystallized in the triclinic space group P-1 solvated with a molecule of water, while compound II crystallized in the tetragonal space group P41. The crystal data and details concerning data collection and structure refinement are given in Table $\mathbf{1}$ and bond lengths and bond angles are given in Table 2.

Bond lengths in the pyrimidine rings are between 1.3751.383 and 1.377-1.379 A for C-C bonds and between 1.3221.353 and 1.329-1.344 \AA for C-N bonds of compounds I and II, respectively (Table 2). These results are in agreement with the available data for pyrimidine rings [28,29] clearly indicating that there is no influence of the methyl group on the aromaticity character of the heterocycles (compound II). The length of the $\mathrm{N} 8=\mathrm{C} 9$ bond is 1.2700 (14) \AA in compound I and 1.299(4) \AA in compound II, suggesting a small elongation of the double bond in the latter compound which have been previously described to be around $1.279 \AA[30,31]$. Additionally, the C9-C91 bond length is 1.4646(15) and 1.449(5) \AA for I and II, respectively, indicating a shortening of the σ bond for compound II, which have been described to be $1.478 \AA$ on average [30,31]. These unusual pattern of bond lengths may be associated with the small electronic resonance involving the phenyl group and the N8=C9-C91 fragment in compound II. Such electron delocalization was not observed in compound \mathbf{I} since its $\mathrm{N} 8=\mathrm{C} 9$ bond is located. The mean values for N7-N8 bond lengths are 1.3723(12) and $1.370(4)$ for I and II, respectively. These results are slightly deviated from those normally obtained for structurally related compounds ($1.420 \AA$, on average) $[30,31]$. The C2-N7 bond length is $1.342 \AA$ for compound \mathbf{I} and $1.380 \AA$ for compound II. Since the reported values for bonds of this type are on average $1.423 \AA$, a shortening of the simple bond in compound \mathbf{I} is evident [30,31]. These differences in bond lengths may be attributed to a more expressive electronic resonance between the pyrimidine ring and the $\mathrm{C} 2-\mathrm{N} 7-\mathrm{N} 8$ fragment in compound \mathbf{I}.

Finally, the ultimate analysis of the bond lengths (Table 2) reveals that no electronic delocalization is taking place between the two rings of compound \mathbf{I} since a localized N8=C9 bond is clearly depicted from its crystal structure. Conversely, shorter simple bonds associated with longer double bonds in the N7-N8=C9-C91 fragment of compound II suggests an electronic resonance in the molecule.

In each molecule, the pyrimidine ring is planar, with r.m.s. deviations from the plane of 0.0079 and $0.0031 \AA$ in compound I and II, respectively. C6 atom is displaced by $0.011 \AA$ from the plane defined by the atoms N1/C2/N3/C4/

Table 1. Crystal Data and Details Concerning Data Collection and Structure Refinement for Compounds I and II

Compound	I	II
Formula	$\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}$	$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{4}$
Mr	284.25	294.28
CCDC	683536	683535
Temperature (K)	293(2)	293(2)
Wavelength (\AA)	0.71073	0.71073
Crystal system	Triclinic	Tetragonal
Space Group	P-1	P41
Unit cell parameters		
a (\AA)	6.6175(4)	9.46570 (10)
$\mathrm{b}(\mathrm{A})$	8.7952(5)	9.46570(10)
c (\AA)	11.8760(6)	16.3543(3)
$\alpha\left({ }^{\circ}\right)$	70.062(3)	90
$\beta\left({ }^{\circ}\right)$	86.135(3)	90
$\gamma\left({ }^{\circ}\right)$	79.645(3)	90
$\mathrm{V}\left(\AA^{3}\right)$	639.18(6)	1465.34(3)
Z	2	4
Density (calculated) ($\mathrm{g} \mathrm{cm}^{-3}$)	1.477	1.334
Absorption coefficient (mm^{-1})	0.128	0.110
F (000)	292	608
Crystal size (mm)	$0.3 \times 0.3 \times 0.2$	$0.222 \times 0.168 \times 0.101$
θ range for data collection $\left(^{\circ}\right.$)	3.13 to 30.14	3.04 to 25.70
h,k,l range		$\begin{aligned} & -11 \leq \mathrm{h} \leq 11 \\ & -11 \leq \mathrm{k} \leq 11 \\ & -19 \leq 1 \leq 19 \end{aligned}$
Reflections collected	13100	12191
Independent reflections	$3721[\mathrm{R}(\mathrm{int})=0.0231]$	2497 [R(int) $=0.0566$]
Data/restraints/ parameters	3721 / 0 / 189	2497 / 1/186
Absorption correction	Gaussian	Gaussian
Refinement method	Full-matrix least-squares on F^{2}	Full-matrix least-squares on F^{2}
Final R indices [I>2 σ (I] $]$	$\mathrm{R} 1=0.0408, \mathrm{wR} 2=0.1220$	$\mathrm{R} 1=0.0868, \mathrm{wR} 2=0.2309$
R indices (all data)	$\mathrm{R} 1=0.0675, \mathrm{wR} 2=0.1328$	$\mathrm{R} 1=0.1282, \mathrm{wR} 2=0.2534$
Goodness of fit on F^{2}	1.070	0.964
Largest diff. peak and hole (e \AA^{-3})	0.196 and -0.211	0.498 and -0.407

C5 for compound I, and N3 atom is displaced by $-0.005 \AA$ from the plane defined by the atoms C2/N1/C6/C5/C4 for compound II. In these molecules, the azomethine group is invariably in the trans-planar conformation with torsion angle magnitudes for N7-N8-C9-C91 in the range of -178.8(9) and $178.0(3)^{\circ}$ for compound I and II, respectively (Fig. (2)). The pyrimidine ring is approximately coplanar with the benzene ring (the interplanar angles are 8.43(6) and 10.27(19) ${ }^{\circ}$ for I and II). The orientation of the heterocyclic ring attached to the azomethine group and the azomethine group attached to the phenyl ring in both molecules is similar. The torsion angles for $\mathrm{N} 8-\mathrm{N} 7-\mathrm{C} 2-\mathrm{N} 1$ are $2.70(15)$ and $-10.2(4)^{\circ}$,
and the torsion angles for N8-C9-C91-C96 are 8.41(18) and $4.8(5)$ in I and II, respectively. The planarity of the rings (pyrimidine and phenyl rings) in the N-benzylidenehydrazino pyrimidines strongly indicates that there is an electronic resonance between the rings and the exocyclic frangments.

The crystal structures of I and II are mainly stabilized by intermolecular hydrogen bonds (Table 3). As mentioned previously, compound I is solvated by a molecule of water. There are four intermolecular hydrogen bonds between the title compound and the water molecule (Fig. (3)). Water atom O 1 w acts as a hydrogen-bond acceptor to $\mathrm{N} 7-\mathrm{H} 7 \cdots \mathrm{O} 1 \mathrm{w}$ in the azomethine portion of compound \mathbf{I}. This interaction

Table 2. Experimental and Calculated Bond Lengths [\AA] and Angles [${ }^{\circ}$] for Compound I and II

Compound I					
Bond Lengths [^̊]					
	X-ray	AM1		X-ray	AM1
C2-N7	1.3421(14)	1.423	N7-N8	1.3723(12)	1.327
C2-N1	1.3471(14)	1.388	C4-C41	1.5062(16)	1.547
C2-N3	1.3525(13)	1.393	N8-C9	1.2700(14)	1.304
F1-C41	1.3165(14)	1.369	C9-C91	1.4646(15)	1.469
N3-C4	1.3244(14)	1.345	C91-C92	1.3847(18)	1.404
C6-N1	1.3217(15)	1.340	C92-C93	1.3861(19)	1.392
C6-C5	1.3832(18)	1.409	C91-C96	1.386(2)	1.401
F2-C41	$1.3302(16)$	1.370	C93-C94	1.361(3)	1.396
C5-C4	1.3749(18)	1.402	C94-C95	1.384(2)	1.394
F3-C41	1.3310(14)	1.372	C95-C96	1.3902(19)	1.395
Bond Angles [${ }^{\text {] }}$					
N7-C2-N1	119.17(9)	120.05	C92-C91-C96	119.21(11)	119.44
N7-C2-N3	115.36(9)	115.61	C92-C91-C9	118.83(11)	117.89
N1-C2-N3	125.47(10)	124.25	C96-C91-C9	121.94(11)	122.67
C4-N3-C2	115.39(9)	116.12	C91-C92-C93	120.65(15)	120.21
N1-C6-C5	123.74(11)	123.49	C94-C93-C92	120.02(15)	120.14
C6-N1-C2	115.97(10)	116.53	C93-C94-C95	120.26(13)	119.88
C4-C5-C6	115.08(11)	115.92	C94-C95-C96	120.10(15)	120.35
C2-N7-N8	120.35(9)	129.46	C91-C96-C95	119.76(14)	119.99
N3-C4-C5	124.30(11)	123.68	F1-C41-F2	107.30(11)	104.57
N3-C4-C41	114.42(10)	116.75	F1-C41-F3	107.21(10)	104.59
C5-C4-C41	121.22(11)	119.57	F2-C41-F3	105.35(11)	105.26
C9-N8-N7	115.66(9)	127.33	F1-C41-C4	112.86(11)	113.52
N8-C9-C91	121.60(10)	120.77	F2-C41-C4	112.88(10)	113.93
			F3-C41-C4	110.80(10)	113.96
Compound II					
	X-ray	AM1		X-ray	AM1
N7-N8	1.370(4)	1.342	C92-C91	1.413(5)	1.409
N7-C2	1.379(4)	1.432	C92-C921	1.468(6)	1.482
N1-C6	1.339(4)	1.336	F3-C41	1.237(6)	1.369
N1-C2	1.345(4)	1.390	C4-C5	1.379(5)	1.409
N3-C4	1.329(5)	1.348	C4-C41	1.489(6)	1.549
N3-C2	1.337(4)	1.385	C6-C5	1.377(5)	1.419
C9-N8	1.299(4)	1.300	C5-C51	1.494(5)	1.473
C9-C91	1.449(5)	1.466	C91-C96	1.404(5)	1.401
F1-C41	1.337(7)	1.369	C94-C93	1.355(7)	1.393
F2-C41	1.324(6)	1.373	C94-C95	1.367(7)	1.394
C92-C93	1.394(6)	1.399	C95-C96	1.380(6)	1.394

Table 2. contd....

Bond Angles [${ }^{\circ}$]					
N8-N7-C2	120.1(3)	119.03	C93-C92-C91	117.6(4)	119.115
C6-N1-C2	114.1(3)	116.00	C93-C92-C921	118.4(4)	119.553
C4-N3-C2	115.7(3)	116.71	C91-C92-C921	123.9(3)	121.331
N8-C9-C91	$122.2(3)$	130.69	C96-C91-C92	118.8(3)	119.822
C9-N8-N7	114.8(3)	122.12	C96-C91-C9	121.6(3)	120.961
N3-C4-C5	124.8(3)	123.28	C92-C91-C9	119.6(3)	119.209
N3-C4-C41	$113.8(4)$	117.21	C93-C94-C95	119.6(4)	119.957
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 41$	121.3(4)	119.49	C94-C95-C96	120.4(4)	119.996
N3-C2-N1	126.3(3)	124.44	C95-C96-C91	120.6(4)	120.331
N3-C2-N7	$115.6(3)$	115.43	C94-C93-C92	122.9(4)	120.778
N1-C2-N7	118.1(3)	119.99	F3-C41-F2	108.9(4)	104.830
N1-C6-C5	125.9(3)	124.21	F3-C41-F1	106.0(5)	103.962
C6-C5-C4	113.2(3)	115.33	F2-C41-F1	101.5(4)	104.437
C6-C5-C51	121.0(4)	120.86	F3-C41-C4	114.2(5)	113.239
C4-C5-C51	125.7(4)	123.81	F2-C41-C4	112.0(4)	112.676
			F1-C41-C4	113.3(4)	116.533

(I)

(II)

Fig. (2). ORTEP drawing of the molecular structure of I and II indicating atom numbering scheme with 50% of probability.
presents an interatomic distance of 2.8245(13) \AA for $\mathrm{N} 7 \cdots \mathrm{O} 1 \mathrm{w}$ ($\mathrm{x}, \mathrm{y}, \mathrm{z}-1$). When acting as a hydrogen-bond donor, the water molecule shows a O1w-H1w $\cdots \mathrm{N} 1$ interaction with the pyrimidine ring and a $\mathrm{O} 1 \mathrm{w}-\mathrm{H} 1 \cdots \mathrm{~N} 8$ interaction with the N-benzyliminic portion of compound I. The interatomic distances observed are $2.9118(15) \AA$ for $\mathrm{O} 1 \mathrm{w} \cdots \mathrm{N} 1$ and $3.2278(14) \AA$ for $\mathrm{O} 1 \mathrm{w} \cdots \mathrm{N} 8(\mathrm{x}+1, \mathrm{y}, \mathrm{z}+1)$ forming a pseudo 5 membered ring. The third hydrogen bond where the water acts as a hydrogen-bond donor is the O1w-H2w $\cdots \mathrm{N} 3$ with interatomic distance of $3.1079(15) \AA$ for O1w $\cdots \mathrm{N} 3(-\mathrm{x}+1,-\mathrm{y}$, $-\mathrm{z}+1$). In compound II the crystaline packing generates an infinite chain along of plane ac (Fig. (3)) through intermo-
lecular hydrogen bond $\mathrm{N} 7-\mathrm{H} 7 \cdots \mathrm{~N} 1$ with interatomic distance of $2.985(4) \AA(y,-x, z-1 / 4)$ for N7…N1. Whole interatomic distances are lower than the sum of the acceptor and donor atoms ($\mathrm{D} \cdots \mathrm{A}$) van der Waals radii involved in the interaction [32]. The symmetry codes for intermolecular hydrogen bonds are depicted in Table 3. Due to the presence of the water molecule in the unit cell of \mathbf{I} it was impossible to determine the effect of the methyl group in the crystal packing of compounds I and II. It became clear, however, that the water molecule is a stronger hydrogen donor than the NH group of the azomethine fragment.

Table 3. Hydrogen Bonding Geometry in Structures I and II [$\AA,^{\circ}$]

Compound	D-H $\cdots \mathbf{A}$	$\mathbf{D}-\mathbf{H}$	$\mathbf{H} \cdots \mathbf{A}$	$\mathbf{D} \cdots \mathbf{A}$	D-H $\cdots \mathbf{A}$	Symmetry Codes
I	N7-H7 \cdots O1w	0.860	1.981	2.825	167	$\mathrm{x}, \mathrm{y}, \mathrm{z}-1$
	O1w-H1w $\cdots \mathrm{N} 1$	0.812	2.133	2.912	161	$\mathrm{x}+1, \mathrm{y}, \mathrm{z}+1$
	O1w-H1w $\cdots \mathrm{N} 8$	0.812	2.668	3.228	128	$\mathrm{x}+1, \mathrm{y}, \mathrm{z}+1$
II	O1w-H2w $\cdots \mathrm{N} 3$	0.808	2.331	3.108	162	$-\mathrm{x}+1,-\mathrm{y},-\mathrm{z}+1$
	N7-H7 $\cdots \mathrm{N} 1$	0.860	2.279	2.985	139	$\mathrm{y},-\mathrm{x}, \mathrm{z}-1 / 4$

Fig. (3). A part of the crystal structure of compound I and II, showing the formation of intermolecular hydrogen-bonded chains along of the plane $a c$ in crystalline packing.

Semi-Empirical Molecular Orbital Calculations (AM1)

The selected bond lengths and angles for compounds I and II obtained from semi-empirical calculations and X-ray diffraction are presented in Table 2. Although it is expected that the intermolecular interactions observed in the crystal structures of the compounds will affect its molecular geometry for the most geometrical parameters there is an excellent correspondence between experimental and calculated data.

The simple linear regression analysis applied to quantify the strength of the relationship between bond lengths and bond angles acquired from X-ray experiments against theoretical values (AM1) showed good and similar correlation coefficients. For instance, the correlation coefficients between crystal bond lengths and calculated bond lengths are r $=0.887$ and 0.837 which represent a 78.7% and a 70.1% of agreement between observed and modeled bond lengths of pyrimidines I and II, respectively. The correlation coefficients between experimental and calculated data for bond angles are $r=0.991$ and 0.994 that show a 98.3 and 98.9% of agreement between observed and modeled bond angles of pyrimidines I and II, respectively.

It is important to notice however, that although the experimental data indicates the existence of electronic resonance between the pyrimidine ring and the azomethine frag-
ment in I and II, the theoretical values of the bond lengths of C2-N7 show typical values ($1.423 \AA$) of bonds between an aromatic carbon atom and a nitrogen atom with sp^{3} hybridization (1.423 for I and $1.432 \AA$ for II) [31]. Additionally, the calculated values for N7-N8 are 1.327 for \mathbf{I} and $1340 \AA$ for II therefore, lower than the standard value $(1.420 \AA)$. The values for $\mathrm{N} 8-\mathrm{C} 9$ are higher than the expected ($1.279 \AA$), being 1.304 for I and $1.300 \AA$ for II. Finally, the calculated bond lengths for C9-C91 are 1.469 and 1.465 for I and II, respectively, resembling the bond lengths of double bonds in conjugated systems ($1.470 \AA$) [31]. These values indicate the existence of an electronic resonance between the azomethine fragment and the phenyl ring.

Remarkable differences between the experimental and the optimized data regarding to the configuration of the exocyclic double bond and ring planarities of compounds \mathbf{I} and II were also noticed. From AM1 calculations, the exocyclic double bond of compound I preferably shows an E configuration while the Z-configuration is preferably adopted by compound II. Compound I presented a N1-C2-N7-N8 dihedral angle of $2.70(15)^{\circ}$ and a N8-C9-C91-C96 dihedral angle of $8.41(18)^{\circ}$ while its optimized structure showed values of 24.09° for N1-C2-N7-N8 and -14.82 ${ }^{\circ}$ for N8-C9-C91C96. The same dihedral angles found in compound II are $10.2(4)^{\circ}$ and $4.8(5)^{\circ}$ and its optimized structure showed val-
ues of -29.35° and 49.42°, respectively. The contrast of such results can be attributed to the relevant intermolecular interactions observed in the real structures which are not taken under consideration in the theoretical AM1 approach.

Aromaticity

After determining the ring planarity, and the endocyclic and exocyclic bond lengths of pyrimidines I and II from Xray experiments, we aimed to perform HOMA calculations to quantitatively measure their aromaticities. Geometry parameters of the ring (CC, CN and NN bond lengths) were used to estimate the so-called geometrical indices of aromaticity based on the harmonic oscillator model of aromaticity (HOMA model, Eq. 1) [33, 34].

The HOMA calculations furnished aromaticity indices of 0.979 and 0.989 for the pyrimidine rings of compounds \mathbf{I} and II. These values are very close to the ideal aromaticity index $($ HOMA $=1,0)$ stated by the HOMA model and indicate that the referred pyrimidine rings show: (i) little alternation in bond lengths and (ii) average bond length values (R_{av}) near optimal ($R_{\text {opt }}$). Therefore, as the methyl group does not cause significant distortions in the heterocyclic ring of compound II, it shows no appreciable effect in its aromaticity as well. Interestingly, these results are better than the aromaticity indices of the optimized molecules of compounds I and II (0.870 for \mathbf{I} and 0.847 for II) and are in agreement with previously stated results for the crystalline structures of heterocycles.

Unlike the pyrimidine ring, the aromaticity of the phenyl group was deeply affected by the methyl group. The presence of such group ultimately caused a reduction of 0.078 in the aromaticity index of compound II (0.967 for I and 0.889 for II). According to the HOMA model, the small deformation of the 2-methyl-phenyl ring (deviations of the r.m.s. of $0.0061 \AA$ for II and $0.0028 \AA$ for I) accounts for the decrease of the aromaticity since there is a clear deviation from the pre-stated optimal values for bond lengths of aromatic compounds.

CONCLUSION

Structure-based approaches have become a vital part on modern drug design. The understanding of protein-ligand interactions is essential for the design of new inhibitors with improved potency. We have recently described the convergent synthesis and the T. cruzi cruzain inhibitory activity of novel 2-(N^{\prime}-benzylidenehydrazino)-4-trifluoromethyl-pyrimidines. In order to advance our knowledge as to how these compounds bind to the cruzain enzyme definitive structural and electronical data are required. In this work, we presented the structures of two novel 2-(N '-benzylidenehydrazino)-4-trifluoromethyl-pyrimidines (I and II) by means of singlecrystal X-ray analysis. Furthermore, optimal molecular geometries were calculated by means of the semi-empirical quantum-chemical method (AM1) and the structures were compared. Crystallographic data showed that the $2-\left(N^{\prime}\right.$ -benzylidenehydrazino)-4-trifluoromethyl-pyrimidine crystals (compound I) are triclinic (space group P-1) and are solvated by a water molecule. On its turn, the 2-($N^{\prime}-2$-methyl-benzylidenehydrazino)-4-trifluoromethyl-pyrimidine molecules (compound II) crystallized in the tetragonal space group P41. The azomethine moiety of both compounds
showed a trans-planar conformation and a small electronic resonance in II. The crystal structures were stabilized by intermolecular hydrogen bonds of the type $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ in I and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ in II due to the presence of water in the asymmetric unit. The planarity found in the molecules is directly associated with the electronic resonance between the rings and the exocyclic fragments. The energy-minimized structures of the compounds compare well with those determined using X-ray crystallography. However, a remarkable difference between experimental and calculated data regarding to the molecule planarity were observed. These results can be explained in terms of the relevant intermolecular interactions that are present in the real structures which are not taken under consideration in the theoretical experiments. Finally, aromaticities of the pyrimidine and the phenyl rings of the compounds were calculated by the harmonic oscillator model of aromaticity (HOMA) and showed a high aromatic character for both. The aromaticity of the phenyl group was calculated and as the phenyl ring was slightly deformed in compound II its geometrical index of aromaticity was diminished.

ACKNOWLEDGEMENTS

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/PRONEX) and the Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) for financial support. The fellowships from CNPq (Simone S. Amaral, Patrick T. Campos, Josiane M. dos Santos and Liana da S. Fernandes), CAPES and FAPERGS are also acknowledged.

REFERENCES

[1] Liu W, Zhu Y, Wang Y, Liu B, Zou X, Yang H. Synthesis and herbicidal activity of 2-(3-(trifluoromethyl)-5-(alkoxy)-1H-pyrazol-1-yl)-4-aryloxypyrimidine derivatives. J Heterocycl Chem 2007; 44: 967-71 and references therein.
[2] Ram VJ, Srivastava P, Sing SK, Kandpal M, Tekwani BL. Functionalized azoles and triazolo[1,5-a]pyrimidines as latent leishmanicides. Bioorg Med Chem Lett 1997; 7: 1087-90. novel pyrimidines on ATP and ADP hydrolysis in synaptosomes from rat cerebral cortex. Chem Res Toxicol 2003; 16: 1433-9.
El-Tombary AA, Ismail KA, Aboulwafa OM, Omar A-M ME, ElAzzouni MZ, El-Mansoury ST. Novel triazolo[4,3-a]quinazolinone and bis-triazolo[4,3-a:4,3'-c]quinazolines: synthesis and antitoxoplasmosis effect. Il Farmaco 1999; 54: 486-95.
Alagarsamy V, Solomon VR, Dhanabal K. Synthesis and pharmacological evaluation of some 3-phenyl-2-substituted-3 H -quinazolin-4-one as analgesic, anti-inflammatory agents. Bioorg Med Chem 2007; 15: 235-41.
[6] Savini L, Chiasserini L, Travagli V, et al. New $\alpha-(N)$-heterocyclichydrazones: evaluation of anticancer, anti-HIV and antimicrobial activity. Eur J Med Chem 2004; 39: 113-22.
[7] Peresypkina EV, Bushuev MB, Virovets AV, Krivopalov VP, Lavrenova LG, Larionov SV. Three differently coloured concomitant polymorphs: synthesis, structure and packing analysis of (4($3^{\prime}, 5^{\prime}$ 'dimethyl-1H-pyrazol-1'-yl)-6-methyl-2-phenylpyrimidine) dichlorocopper(II). Acta Cryst 2005; B61: 164-73 and references therein.
[8] Zanatta N, Amaral SS, dos Santos JM, et al. Convergent synthesis and cruzain inhibitory activity of novel 2-(N^{\prime}-benzylidenehydrazino)-4-trifluoromethyl-pyrimidines. Bioorg Med Chem 2008; 16: 1023643.
[9] Zanatta N, Amaral SS, Brondani PB, et al. Synthesis and Characterization of Some Novel 2-(Trifluoromethyl)pyrimido[1,2a]benzimidazoles and Pyrimido[1,2-a]benzimidazol-2 H -ones of Biological Interest. Synthesis 2006; 14: 2305-12.
[10] Costa VE, Pinheiro MLB, de Souza ADL, et al. Full NMR analysis of annomontine, methoxy- annomontine and N -hydroxyannomon-

Amaral et al.

tine pyrimidine- β-carboline alkaloids. Magn Reson Chem 2008; 46: 69-74.
[11] Cobo J, Rodrigo AS, Montiel MN, Low JN, Glidewell C. 4,5,6-Triamino-2-(methylsulfanyl)pyrimidine: π-stacked hydrogenbonded sheets of $R_{2}{ }^{2}(8), R_{2}{ }^{2}(10)$ and $R_{6}{ }^{6}(32)$ rings. Acta Cryst 2006; C62: o142-o144.
[12] Rybalova TV, Krivopalov VP, Gatilov YV, Nikulicheva ON, Shkurko OP. Supramolecular structure of 6-phenyl-2-chloro-pyrimidine-4-carboxamide and its complexes with dioxane and ethanol. J Struct Chem 2007; 48: 318-24.
[13] Avasthi K, Farooq SM, Bal C, Kumar R, Tewari AK, Maulik PR. Design and synthesis of pyrazolo[3,4- $d]$ pyrimidine and triazolo [4,5- d]pyrimidine based dissymmetrical 'Leonard linker' compounds: ${ }^{1} \mathrm{H}$ NMR and crystallographic evidence for folded conformation due to arene interactions. J Mol Struct 2007; 842: 100-8.
[14] Cysewski P. An ab initio study on nucleic acid bases aromaticities. J Mol Struct Theochem 2005; 714: 29-34.
[15] Terán C, Teijeira M, Santana L, Uriarte E, Castiñeiras A. 1cyclopentyluracils: synthesis and conformational analysis by X-ray crystallography and AM1 theoretical calculations. J Mol Struct 1998; 448: 69-75.
[16] Craciun L, Custelcean R, Mager S. Molecular structure of an isocytosine analog: combined X-ray structural and computational study of 2-diethylamino-6-methyl-5-n-propyl-4(3H)-pyrimidinone. Struct Chem 1999; 10: 303-10.
[17] Bruker APEX2 (Version 2.1), COSMO (Version 1.56), BIS (Version 2.0.1.9), SAINT (Version 7.3A) and SADABS (Version 2004/1) \& XPREP (Version 2005/4). Bruker AXS Inc., Madison, Wisconsin 2006; USA.
[18] Sheldrick GM, SHELXS-97, Program for crystal structure solution, University of Göttingen, Germany 1997.
[19] Coppens P, Leiserowitz L, Rabinovich D. Calculation of absorption corrections for camera and diffractometer data. Acta Cryst 1965; 18: 1035-8.
[20] Farrugia L J. ORTEP-3 for Windows - a version of ORTEP-III with a Graphical User Interface (GUI). J Appl Cryst 1997; 30: 565.
[21] Dewar MJS, Zoebisch EG, Healey EF, Stewart JJP. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc 1985; 107: 3902-9.
[22] HYPERCHEM ${ }^{(T M)}$ Professional 7.52, Hypercube, Inc., 1115 NW $4^{\text {th }}$ Street, Gainesville, FL 32601, USA 2002.
[23] Julg A, Françoise P. Recherches sur la géométrie de quelques hydrocarbures non-alternants: son influence sur les énergies de transition, une nouvelle définition de l'aromaticité. Theor Chim Acta 1967; 8: 249-59.
[24] Krygowski TM and Cyrański MK. Separation of the energetic and geometric contributions to the aromaticity of π-electron carbocyclics. Tetrahedron 1996; 52: 1713-22.
[25] Krygowski TM, Cyrański MK. Separation of the energetic and geometric contributions to the aromaticity. Part IV. A general model for the π-electron systems. Tetrahedron 1996; 52: 1025564.
[26] Cyrański MK, Krygowski TM. Two sources of the decrease of aromaticity: Bond length alternation and bond elongation. Part I. An analysis based on benzene ring deformations. Tetrahedron 1999; 55: 6205-10.
[27] Mrozek A, Karolak-Wojciechowska J, Amiel P, Barbe J. Fivemembered heterocycles. Part I. Application of the HOMA index to 1,2,4-trizoles. J Mol Struct 2000; 524: 151-7.
[28] Minkin VI, Glukhovtsev MN, Simkin BY. Aromaticity and antiaromaticity. Electronic and Structural Aspects. New York Wiley: 1994.
[29] Quesada A, Marchal A, Melguizo M, Lowb J N, Glidewell C. Symmetrically 4,6-disubstituted 2-aminopyrimidines and 2-amino-5-nitrosopyrimidines: interplay of molecular, molecular-eletronic and supramolecular structures. Acta Cryst 2004; B60: 76-89.
[30] Yu W, Yang L, Zhang T, et al. Crystal structure and geometryoptimization study of 4-methyl-3',5'-dinitro-4'-methyl benzylidene aniline. J Mol Struct 2006; 794: 255-60.
[31] Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R. Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J Chem Soc Perkin Trans 2 1987; S1-S19.
[32] Sobczyk L, Grabowski SJ, Krygowski TM. Interrelation between H-Bond and π-Electron Delocalization. Chem Rev 2005; 105: 3513-60.
[33] Kruszewski J, Krygowski TM. Definition of aromaticity basing on the harmonic oscillator model. Tetrahedron Lett 1972; 383942.
[34] Krygowski TM. Crystallographic studies of inter- and intramolecular interactions reflected in aromatic character of .pi.-electron systems. J Chem Inf Comput Sci 1993; 33: 70-8.

© Amaral et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by$\mathrm{nc} / 3.0 /$) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

[^0]: *Address correspondence to this author at the Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, CEP -- 97.105-900, Santa Maria, RS, Brazil;
 Tel: +55 553220 8756; Fax: +55 553220 8756;
 E-mail: zanatta@base.ufsm.br

