
Send Orders for Reprints to reprints@benthamscience.ae

20 The Open Cybernetics & Systemics Journal, 2016, 10, 20-40

1874-110X/16 2016  Bentham Open

The Open Cybernetics & Systemics
Journal

Content list available at: www.benthamopen.com/TOCSJ/

DOI: 10.2174/1874110X01610010020

Adaptive Learning Rate Elitism Estimation of Distribution Algorithm
Combining Chaos Perturbation for Large Scale Optimization

Qingyang Xu*, Chengjin Zhang, Jie Sun and Li Zhang

School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai, China

Abstract: Estimation of distribution algorithm (EDA) is a kind of EAs, which is based on the technique of probabilistic model and
sampling. Large scale optimization problems are a challenge for the conventional EAs. This paper presents an adaptive learning rate
elitism EDA combining chaos perturbation (ALREEDA) to improve the performance of traditional EDA to solve high dimensional
optimization problems. The famous elitism strategy is introduced to maintain a good convergent performance of this algorithm. The
learning rate of σ (a parameter of probabilistic model) is adaptive in the optimization to enhance the algorithm’s global and local
search  ability,  and  the  chaos  perturbation  strategy  is  used  to  improve  the  algorithm’s  local  search  ability.  Some  simulation
experiments are conducted to verify the performance of ALREEDA by seven benchmarks of CEC’08 large scale optimization with
dimensions 100, 500 and 1000. The results of ALREEDA are promising on majority of the testing problems, and it is comparable
with other EDAs and some other improved EAs.
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1. INTRODUCTION

Large-scale  continuous optimization problems using heuristic  algorithms have been one of  the  most  interesting
trends in the last few years. Many real world problems may be modeled as large scale problems in continuous domains,
such as large combinational problem [1], computer network management [2], industrial engineering [3], etc. Although,
evolutionary algorithms (EAs) have been successfully applied to various engineering and scientific problems for the last
two decades [4, 5], the classical EAs often lose their efficacy and advantages when applied to large scale and complex
problems [6]. Numerous improved heuristic algorithms have been developed to enhance the large scale optimization
ability  of  algorithms,  such as  improved particle  swarm optimization (PSO),  differential  evolution (DE),  ant  colony
optimization  (ACO)  [7,  8],  etc.  The  cooperative  coevolution  is  an  effective  approach  to  solve  large  and  complex
problems [6, 9]. A multilevel cooperative coevolution (MLCC) with a decomposer pool was proposed by Yang and
Tang [10], to divide the objective vector problem into several subcomponents.

In recent years, other type of algorithm called Estimation of Distribution Algorithm (EDA) has attracted a lot of
attention. It  was proposed by Miuhlenbein and Paaß [11], and emerged as a generalization of EAs, for overcoming
intrinsic disadvantages of EAs, like building blocks broken, poor performance in high dimensional problems and the
difficulty  of  modeling  the  solution  distribution.  Compared  with  blocks  building  in  EAs,  EDA  has  some  attractive
characteristics. It does not use the recombination or mutation operators.

Instead,  they  extract  the  global  statistical  information  from the  superiority  individual  and  build  the  probability
model of solution distribution. It is the main advantage of EDA over EAs that the explanatory and transparency of the
probabilistic  model  guide  the  search  process  [12,  13].  The  new  solutions  come  from  the  sampling  of  established
probability model which approximates the distribution of promising solutions [14]. Such reproduction procedure allows
EDA  to search for the global optimal  solutions effectively. Additionally,  the priori information  about the problem can
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captured by the probability model [15]. There are many researches about the EDAs. Karshenas and Santana [16] adopt
regularized method to improve the conventional EDA performance, which used some benchmarks with 100 dimensions
for testing. Valdez and Hernández [17] adopt Gaussian model to approximate the Boltzmann distribution, which can
analyze the minimization of the Kullback-Leibler divergence instead of computing the mean and variance of Gaussian
model, and the test suite is up to 50 dimensions. Ahn [4] combined PSO with EDA to improve the performance of
EDA. There are also many other improved EDAs to enhance the performance of EDA in various domains [14, 18 - 26].
However,  the  dimension  of  the  problems  is  up  to  100.  The  EDAs  rarely  seen  are  applied  to  solve  large  scale
optimization  problem.  Wang  and  Li  proposed  a  robust  univariate  EDA  (LSEDA-gl)  [27]  for  large  scalar  global
optimization, which made use of mixed Gaussian and Levy probability distribution for sampling. An Estimation of
Distribution and Differential Evolution Cooperation (ED-DE) algorithm [28] was proposed to form a new cooperative
optimizer, and used for large scale economic load dispatch optimization of power systems. Ata and Bootkrajang [29]
employed multiple random projections of the fit individual, and carried out model estimation and individuals sampling
in lower dimensional spaces. It is more efficient and reliable than working in the original high dimensional space.

In some EDAs, many probability models and mixtures of pdfs are involved [30]. However, the probability models
cannot reflect the problem completely, especially for the increases of number of variables and the number of mixture
components,  the  optimization  results  become  unreliable  [31].  Additionally,  the  computational  cost  is  huge  when
considering  all  the  possible  (in)  dependencies  among  the  variables  [32].  Therefore,  in  this  paper  we  only  adopt
univariate  Gaussian  model  to  approximate  the  solution  distribution.  In  the  Gaussian  model,  some  parameters  are
learnable. In this paper, we propose an adaptive learning rate elitism EDA combining chaos perturbation search strategy
for large scale optimization problem. The learning rate of Gaussian parameter is adaptive in the optimization process.
We also adopt an elitism strategy to enhance the convergent performance of the algorithm, which is a popular strategy
in EAs. In order to improve the local search ability, a chaos perturbation operator is designed. The local search operator
enhances the diversity of population in the iteration.

2. ESTIMATION OF DISTRIBUTION ALGORITHM

Estimation of distribution algorithm is a series of EAs based on probability theory, which makes use of estimation
and sampling technology to approximate solutions distribution and generate new solutions. The Fig. (1) is the flowchart
of EDA.

Fig. (1). Flowchart of EDA.
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2.1. The Probability Model Build and Updating Mechanism

The most important and crucial step of EDAs is how to build the probabilitic model P (x) to express the promising
solutions. In EDAs for global continuous optimization problem, the Gaussian distribution is a common one. Some other
complex models, like Gaussian mixture, histogram etc., are also used [33]. It must be noted that, different dependency
relations can appear between variables for large-scale optimization problems. Considering all the dependencies needs a
complex  probability  model,  which  is  hard  to  realize.  Therefore,  we  specifically  focus  on  the  use  of  univariate
probability model to reduce the amount of calculation. Even though the dependency between variables is very important
for system modeling, the optimum solution is the most important issue for optimization problem. Hence, every variable
is assumed independent of any variable in the probability model. The Gaussian model is used to model and estimate the
distribution of promising solutions in every dimension of the problem.

In order to construct a Gaussian pdf model of the promising solutions, we should obtain the statistical information
of  promising  solutions.  Hence,  statistical  techniques  have  been  extensively  applied  to  the  optimization  problems.
Fortunately, these parameters can be efficiently computed by the maximum likelihood estimations [31]. In the algorithm
assuming full independence, every variable is assumed independent of any variable. That is, the probability distribution
P(x1, x2, … , xD) of the vector (x1, x2, … , xD) of m variables is assumed to consist of a product of the distributions of
individual variables:

(1)

where µk
i is the mean and σk

i is the standard deviation of k-th generation and i-th variable. D is the dimension size.
This is very suitable for calculation. Different from the discrete EDAs, the number of parameters to be estimated does
not grow exponentially with D.

The pdf  for variables xi  is parameterized by the mean σk
i  and the standard deviation ,  which is

defined by

(2)

Therefore, the probability distribution P(x1, x2, … , xD) of the vector (x1, x2, … , xD) of m variables is

(3)

The parameters (µk
i, σ

k
i) can be estimated according to the selected best individuals. The parameters (μi, σi) can be

updated every iteration.

The mean and standard deviation parameters of promising population can be computed adaptively by the maximum
likelihood technique according to the selected promising solutions.

(4)

(5)

µi (k) is the mean of i-th variable in k-th iteration, NB is the selected individuals size. σ2
i (k) is the covariance of i-th

variable in k-th iteration.
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Fig. (2). Cartogram of sampling data.

2.2. Probabilistic Sampling

The  probability  sampling  is  used  to  generate  new individuals  using  the  learned  probabilistic  models  instead  of
crossover  or  mutation  operators.  The  sampling  method  depends  on  the  type  of  probabilistic  model  and  the
characteristics of the problem. For normal pdf problem, a conversion can be used in order to convert the normal pdf to a
standard normal pdf.

Supposing,

(6)

The normal pdf about x is converted to a standard normal pdf about y.

(7)

The variable x can be calculated by

(8)

In the probability models, every variable (x1, x2, … , xm) is assumed independent of any variable. The mean and
standard deviation of variable xi is μi and σi, when n→∞,

(9)

If xi is the evenly distributed random number of [0, 1]

(10)

(11)
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(12)

when n→∞, y→N(0, 1). We can select an appropriate n to generate a normal pdf for probability sampling. Fig. (2)
shows the cartogram of sampling data in different n. From the figure we can see the sampling data follow the pdf better
with the increasing of n.

3. ADAPTIVE LEARNING RATE ELITISM GAUSSIAN EDA

In this section, we will introduce some special parts in the adaptive learning rate elitism Gaussian EDA, including
the adaptive learning rate, chaos perturbation operator and elitism strategy, which are different from standard EDA.

3.1. Adaptive Learning Rate

The parameters  of  Gaussian model  are always learnable in the process of  optimization.  Some iterative learning
approaches are used in some literatures [34 - 37], and we can conclude as follows.

(13)

(14)

where α and β are a fixed weights of µi (k) and µi (k-1). The learning method depending on the class of models used,
this step involves parametric or structural learning, also known as model fitting and model selection, respectively. This
can improve the performance of EDAs, no matter how simple or complex the learning rule is. In order to update the
probability model in this paper, we adopt a different learning rule for u and σ.u is the candidate of optimum solution.
Therefore,  we  hope  it  updated  in  real-time.  Hence,  we  adopt  a  fast  learning  rule  for  u  (α=1,  β=0).  The  standard
deviation  σ  should  be  a  large  value  to  search  widely  at  beginning  [34].  Thus,  the  σ  is  set  a  squared  size  of  1/2  of
domain. In order to update the P(x), the learning rule of σ is shown in equation (15).

(15)

w is the learning rate. A bigger w can provide better real time ability of σ. A smaller w can ensure better robust of σ.
In the paper, the value of w is adaptive to the iterations.

Fig. (3). Population operation diagram.

(16)

12
/)

2
(

1

nn
xy

n

i

i
=

=

   

)1()()( += kkk
iii

μμμ  

)1()()( += kkk
iii

)1()1()()( += kwkwk
iii

 

1_

1

min

max
min )(=

FEsMax

FEs

w

w
ww   



Adaptive Learning Rate Elitism Estimation of Distribution Algorithm The Open Cybernetics & Systemics Journal, 2016, Volume 10   25

where wmax  and wmin  are the maximal and minimal value of w.  FEs  is the current iterations, and Max_FEs is the
maximal iterations.

3.2. Elitism Strategy

Elitism strategy is an effective strategy to ensure the best individual(s) is selected as the next generation in EAs,
because the best individual(s) maybe include the information of optimal solution. Therefore, elitism can improves the
convergence performance of EAs in many cases [38], and elitism has long been considered an effective method for
improving the efficiency of EAs [39]. This is achieved by simply copying the best individual(s) directly to the new
generation [40]. However, the number of best individuals selected as the next generation must be handled properly and
carefully otherwise may lead to premature convergence or can not improve the efficiency of algorithm. Fig. (3) is the
process of new population generation. The elitism individuals will be selected as the new generation directly, and the
best individuals are used to establish a probability model to generate other individuals of next generation.

(17)

where Elitism() is the operator to copy the best solution to Pop(k+1), and Sample() is the sampling function. N is the
population size, NB is the number of best individuals selected to build probability model.

3.3. Local Search Strategy

It is widely accepted that a local search procedure is efficient in improving the solutions generated by the EDA.
Kinds of strategies are proposed to enhance the performance of EDA, including the combing with PSO [4] and DE [18],
quantum  EDA  [13],  etc.  In  this  paper,  we  use  a  chaos  perturbation  as  the  local  search  strategy.  The  principle  of
perturbation is shown as Fig. (4).

Fig. (4). The principle of perturbation.

The running of chaos operator is conditional. In this paper, the chaos perturbation is running under the condition of
slower convergence.

(18)

where  is the  i-th variable of j-th individual of k-th iteration. η is a perturbation coefficient.  zi  is  the
chaotic variable, which can be generated by chaotic models. There are many chaotic models to generate the chaotic
variables [41], such as Logistic mapping, Cube mapping or infinite folding mapping. Logistic chaotic model is the most
popular one, which folded within a limited number under a limited range [42]. The logistic model is shown as follows.

(19)

NBNPNB kSamplekElitismkPop =+ )()()1(

 
><=

><+=

criteriameet not  does else  )()(

criteriameet  if  )()(

kPopkPop

zkPopkPop

j

i

j

i

i

j

i

j

i

)(kPop ji

1 (1 )
k k k
z z zμ

+
= , 0,1,2,3...n =  



26   The Open Cybernetics & Systemics Journal, 2016, Volume 10 Xu et al.

It is a typical chaotic system. is the control variable, and a definite time series can be generated by iteration for any
.

The model of infinite folding mapping is shown as equation (20):

Fig. (5). Distribution property of logistic, cube and infinite folding mapping.

(20)

The cube mapping is shown as equation (21)

(21)

The Cube and infinite  folding  mapping do  not  need  control  variable  u.  The  distribution  of  chaotic  sequence  in
logistic mapping is asymmetric, which follows the property of Chebyshev. The three mappings have 10000 iterations,
and  the  statistics  the  results  of  the  distribution  properties  of  the  mappings  are  shown  in  Fig.  (5).  The  distribution
property  of  infinite  folding mapping is  better  than other  one.  Therefore,  the  infinite  folding mapping is  adopted to
generate the chaotic variables. Additionally, the infinite folding mapping is insensitivity to the initial value [42].

The above way to generate new solutions does not take into account the feasibility of the solutions. The individuals
could be out of the domain due to the perturbation. Therefore, a repair procedure is needed if illegal individuals are
constructed.

(22)

[lbi ubi] is the domain of i-th variable.

3.4. Procedure of ALREEDA

With the design above, the procedure of the ALREEDA is illustrated as following.
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Begin

Initialization:  Set  parameters:,  Max_FEs,  NP,  NB,   and generate population
Pop(0).

While (stop criteria ?)

Generate w according FEs.

Evaluation: Calculate the fitness of all individuals, and store the elitism.

Statistical information obtaining: Select NB individuals to estimate the parameter of the probabilistic model, and
update the parameter.

Probabilistic model building: According to estimated parameters, build the probabilistic model of each variable xi

Probabilistic sampling:

Make use of the sampling technology sampling (NP-NB) individuals.

Elitism strategy: Combine the sampling individuals with elitism and generate new Pop(k).

Chaos perturbation (perturbation criteria ?):

End While

End Begin

In summary, in the iteration of ALREEDA, the elitism strategy can maintain a better convergent performance, and
the adaptive learning rate of σ will make the σ adaptive to the requirement of the algorithm. In the optimization, the
promising region of the solution space may be found by the EDA. Then, the chaos perturbation search strategy can
search the promising region to obtain better solutions. The benefits of the EDA and the local search are combined to
balance global exploration and local exploitation.

Fig. (6). The graph of f1 and f2.
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Fig. (7). The graph of f3 and f4.

4. SIMULATION EXPERIMENTS

To testify  the performance and scalability  of  the proposed algorithm, the seven benchmarks of  CEC’08 special
session on large scale global optimization are adopted. The testing suites have different features, such as unimodal or
multimodal, separable or non separable. In order to prevent search the symmetrical domain and the typical zero global
optimum, the global optimum location of classical functions are shifted to a certain place different from zero and the
global  minimum  are  not  zero.  f1  is  a  shifted  Sphere  function,  f2  is  a  shifted  schwefel  function,  f3  is  a  shifted
Rosenbrock function,  f4 is  a  shifted Rastrigin  function,  f5 is  a  shifted Griewank function,  and f6 is  shifted Ackley
function. f7 is a special function with complex structure. The concrete formulas of functions are shown as follows, and
we also give a graphical expositions to express the complexity of the functions.

 , D is the dimensions. (01, 02, … , 0D) is the shifted global optimum. f1
is an unimodal separable function. The global minimal is -450 at point (01, 02, … , 0D).

,

 D is the dimensions. is the shifted global optimum. f2 is a unimodal non-
separable function. The global minimal is -450 at point (01, 02, … , 0D) as shown in Fig. (6).

f1 and f2 are unimodal functions. f1 is a slanted plane, and the minimum is at tip of the bottom. f2 is a squared
funnel, and it is a non separable function which is harder for optimization than f1.

 is  the dimensions.  (01, 02, … , 0D) is the shifted global optimum. f3 is a
multimodal non separable function. The global minimal is 390 at point (01, 02, … , 0D).
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 D  is  the  dimensions.  (01,  02,  …  ,  0D)  is  the  shifted  global  optimum.  f4  is  a
multimodal separable function with huge local minimal. The global minimal is -330 at point (01, 02, … , 0D) as shown in
Fig. (7).

Fig. (8). The graph of f5 and f6.

f3 and f4 are multimodal functions as shown in. f3 is a slanted and curved surface. The minimum of f3 is located at
wide and plane zone with similar value. f4 is slanted and waved surface, and there are huge minimum on the surface. f3
is a non-separable function and f4 is a complex function, which are a challenge for any algorithm.

,

 is the dimensions. (01, 02, … , 0D) is the shifted global optimum. f5
is a multimodal non-separable function. The global minimal is -180 at point (01, 02, … , 0D).

 is the dimensions. (01, 02, … , 0D) is the shifted global optimum. f6
is a multimodal separable function. The global minimal is -140 at point as shown in Fig. (8).

f5 is a slanted plane, and the minimum is located at the bent bottom. f6 has graphic of conical funnel. f5 and f6 are
easier for optimization.

 D is the  dimensions,  is  a pseudorandomly chosen funciton, with seed o
and equal probability from the interval [10, 1], and having the precision of double. ran2(o) is also pseudorandomly
chosen fucntion, with seed o and equal probability from the set {0,1,2}. fractal1D(x)is an approximation to a recursive
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algorithm, it does not take account of wrapping at the boundaries, or local re-seeding of the random generators. f7 is a
multimodal non-separable function. The global minimal is unknown as shown in Fig. (9).

Fig. (9). The graph of f7.

We can see from the graph of f7, f7 is a very complex function. It looks like mountain range profile. There are many
bigger maintains and also many narrow and dense peaks. The global optimum of f7 is unknown so far. The function f7
always takes negative value. In this case, we use (f7(x)-f7(x

*)) as the result value. Therefore, the f7 values of figures will
be negative.

4.1. The Selection of NP and NB

In  the  iteration  optimization  algorithm,  such  as  EAs,  the  maximal  iteration  number  (Max_FEs)  is  an  essential
parameter [19], while it is maybe varied. The Max_FEs is set to 3E+6 in this paper. For EDAs, the population size NP
and the promising solution number NB are important except for Max_FEs. It is obvious that for an easy problem, a
small  value  of  NP  is  sufficient,  but  for  difficult  problems,  a  large  value  of  NP  is  recommended  in  order  to  avoid
trapping to a local optimum. The large NP may provide better optimization with larger calculation [16]. However, it
may vary from problem to problem. We pay attention to the performance of EDA instead of the population size. We
provide  some  choices  (100,  200,  300,  500,  1000)  to  obtain  better  performance  for  the  ALREEDA.  We  have  a
comparisons of different population size, and select the best population size as the final decision of the algorithm on the
problem with the given problem size. The NB is also an important parameter for the probabilistic model learning of
EDA, and we also have a comparison to determine a proper NB. In the comparisons, the error recorded finally is the
absolute margin between the fitness of the best solution found and the fitness of the global optimum. The semi-log
graphs show log10 (error) vs. FES for the first 6 functions.

In Fig. (10), it is the testing result when the dimension D is 100 and has different NP and NB. We can see from the
figure,  the  optimization results  are  similar  for  f1,  f3,  f5,  f6  and f7  when the  population size  is  100,  200,  300 or  500.
According to f2 and f4, it is a proper choice that the population size is 500. Further more, the algorithm have a better
performance when NP is 500 and NB is 50.

We also do some tests when the dimension D is 500. Firstly, we test the algorithm under different population size
100, 200 or 500. From Fig. (11), we can see the performance of the algorithm on f1, f3, f5 and f6 are similar regardless of
population size. It only effect the optimization time. According to the performance of the algorithm on f2, f4 and f7, the
population size is selected as 500. 50 is a suitable value for NB according to the comprehensive performance of the
algorithm on the benchmarks.



Adaptive Learning Rate Elitism Estimation of Distribution Algorithm The Open Cybernetics & Systemics Journal, 2016, Volume 10   31

Fig. (10). Convergence graph for function 1-7 (D=100, different NP).
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Due to  the  time reason,  we didn’t  do the  population size  test  for  D=1000.  We testify  the  algorithm directly  on
NP=500  and  NB=50.  Fig.  (12)  shows  the  performance  of  the  algorithm,  and  also  have  a  comparison  of  different
dimension size when NP=500 and NB=50.

According to  Fig.  (12),  we also  can conclude  that  f1,  f5 and f6 are  easy  to  solve  for  different  dimension sizes.
However, the performance is promising for f2 when D=100, the results are worse when D is 500 or 1000 with D=100.
For f3 and f4, the error is increasing with the dimension.

From the above mentioned, the population size is selected as 500, and NB is 50 for dimension 100, 500 and 1000.
We also can conclude that the ALREEDA is scale to the dimension size except for the f2.

We also do a small test to testify the effect of the elitism strategy. The optimization process partial enlarge graph of
f7, f4, and f2 are shown in Fig. (13). f7 is the most obvious one. The optimization process is concussive without elitism
strategy due to the complex f7 function, though the optimization is convergent finally. The stability of optimization
process for f4 is better, and it only has a small shock. For f2, it has tiny fluctuation due to the characteristics of function.
The convergence is smooth and steady when the elitism strategy is added to the algorithm.

4.2. Comparison with EDAs

In this section, we compare ALREEDA with LSEDA-gl. LSEDA-gl is a robust univariate EDA, which is proposed
for large scale optimization and has good performance. In LSEDA-gl, an effective sampling under mixed Gaussian and
Levy probability distribution is introduced to balance optimization and learning. And a restart mechanism is used to
stop some variables shrinking dramatically to zero solely. The optimization results of 100-D, 500-D, and 1000-D are
indicated  in  Table  1.  The  results  of  ALREEDA  on  f3,  f4,  and  f7  outperform  LSEDA-gl.  The  results  of  the  two
algorithms are similar on f1, f5 and f6. For f2, the two algorithms are similar on 100-D. However, the performance of
LSEDA-gl is better than ALREEDA on 500-D and 1000-D. The better and comparable results are marked by bold type
in Table 1.

Table 1. Error values for functions 1-7 with D=100, 500 and 1000.

Algorithms f1 f2 f3 f4 f5 f6 f7
D=100

LSEDA-gl 5.68E-14 2.21E-13 2.81E+02 1.31E+02 2.84E-14 9.78E-14 -1.46E+03
ALREEDA 5.68E-14 1.53E-12 9.61E+01 1.99E+01 0.00E-14 5.96E-13 -1.50E+03

D=500
LSEDA-gl 2.27E-13 2.72E-10 8.67E+02 8.55E+02 1.14E-13 3.13E-13 -6.83E+03
ALREEDA 1.14E-13 7.27E+00 4.92E+02 2.32E+02 5.68E-13 1.99E-13 -7.15E+03

D=1000
LSEDA-gl 3.22E-13 1.04E-05 1.73E+03 5.45E+02 1.71E-13 4.26E-13 -1.35E+04
ALREEDA 2.27E-13 3.93E+01 8.01E+02 6.53E+02 1.14E-13 3.41E-13 -1.40E+04

The  convergent  graph  on  1000-D of  the  two  algorithms  is  shown in  Fig.  (14).  From the  figure  we  can  see  the
convergent process of ALREEDA is gentle than LSEDA-gl. In comparison, ALREEDA outperforms LSEDA-gl on f3,
f4 and f7 even though the convergence is kindly. However, the performance of ALREEDA is wore on f2 than LSEDA-
gl on 1000-D.

4.3. Comparison with other Algorithms

In  order  to  indicate  the  performance  of  the  algorithm,  we  compare  the  algorithm  with  other  state  of  the  art
algorithms,  like  the  cooperative  coevolution  DE  algorithm  MLCC  [10],  the  dynamic  multi-swarm  particle  swarm
optimizer DMS-PSO [43], the efficiency population utilization strategy based PSO EPUS-PSO [44], the improved PSO
DEwSAcc [45] and jDEdynNP-F [46], and the multiple trajectory search algorithm MTS [47], which took part in the
competition of CEC’08 on large scale optimization. According to the competition result,  a comparison is shown in
Table 2 on D=100, 500 and 1000. In the table, in order to express the results clearly, the better and comparable results
are marked by bold type.
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Fig. (11). Convergence graph for function 1-7 (D=500, different NP).
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Fig. (12). Convergence graph for function 1-7 (different D, the same NB).
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Fig. (13). The optimization process partial enlarge graph of f7, f4 and f2.
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Fig. (14). Convergence graph for function 1-7 (D=1000).
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Table 2. Error values for functions 1-7 with D=100, 500 and 1000.

Algorithms f1 f2 f3 f4 f5 f6 f7
D=100

MLCC 6.82E-14 2.53E+01 1.49E+02 4.39E-13 3.41E-14 1.11E-13 -1.54E+03
EPUS-PSO 7.47E-01 1.86E+01 4.99E+03 4.71E+02 3.72E-01 2.06E+00 -8.55E+02

JDEdynNP-F 5.68E-14 4.29E-01 1.12E+02 5.46E-14 2.84E-14 5.68E-14 -1.48E+03
MTS 0.00E+00 1.44E-11 5.17E-08 0.00E+00 0.00E+00 0.00E+00 -1.49E+03

DewSAcc 5.68E-14 8.25E+00 1.45E+02 4.38E+00 3.07E-14 1.13E-13 -1.37E+03
DMS-PSO 0.00E+00 3.64E+00 2.83E+01 1.83E+02 0.00E+00 0.00E+00 -1.14E+03
ALREEDA 5.68E-14 1.53E-12 9.61E+01 1.99E+01 0.00E-14 5.96E-13 -1.50E+03

D=500
MLCC 4.30E-013 6.67E+01 9.25E+02 1.79E-11 2.13E-13 5.34E-13 -4.44E+03

EPUS-PSO 8.45E+01 4.35E+01 5.77E+04 3.49E+03 1.64E+00 6.64E+00 -3.51E+03
JDEdynNP-F 9.32E-14 8.46E+00 6.61E+02 1.47E-12 4.21E-14 1.49E-13 -6.88E+03

MTS 0.00E+00 7.32E-06 5.03E-03 0.00E+00 0.00E+00 6.18E-12 -7.08E+03
DewSAcc 2.09E-09 7.57E+01 1.81E+03 3.64E+02 6.90E-04 4.80E-01 -5.75E+03
DMS-PSO 0.00E+00 6.89E+01 4.67E+07 1.61E+03 0.00E+00 2.00E+00 -4.20E+03
ALREEDA 1.14E-13 7.27E+00 4.92E+02 2.32E+02 5.68E-13 1.99E-13 -7.15E+03

D=1000
MLCC 8.46E-13 1.09E+02 1.80E+03 1.37E-10 4.18E-03 1.06E-12 -1.47E+04

EPUS-PSO 5.53E+02 4.66E+01 8.37E+05 7.58E+03 5.89E+00 1.89E+01 -6.62E+03
JDEdynNP-F 1.14E-13 1.95E+01 1.31E+03 2.17E-04 3.98E-14 1.47E-11 -1.35E+04

MTS 0.00E+00 4.72E-02 3.41E-04 0.00E+00 0.00E+00 1.24E-11 -1.40E+04
DewSAcc 8.79E-03 9.61E+01 9.15E+03 1.82E+03 3.58E-03 2.30E+00 -1.06E+04
DMS-PSO 0.00E+00 9.15E+01 8.98E+09 3.84E+03 0.00E+00 7.76E+00 -7.51E+03
ALPSEA 3.58E+04 1.47E+02 2.33E+09 1.89E+02 3.04E+02 1.13E+01 N/A

ALPSEA-100M 1.80E-05 9.30E+01 1.77E+03 1.53E-02 1.17E-06 4.40E-04 N/A
ALREEDA 2.27E-13 3.93E+01 8.01E+02 6.53E+02 1.14E-13 3.41E-13 -1.40E+04

ALREEDA has a good performance on f1, f5, f6 and f7, and it is comparable with the MLCC and JDEdynNP-F with
dimensions 100, 500 and 1000. For function f2, ALREEDA has a good performance than other algorithms on D=100.
However, it becomes worse suddenly, although the results are comparable with other algorithms on D=500 and 1000.
This may be caused by the using of simple probabilistic model, and also f2 is a non-separable function. MTS has a
better performance than other algorithms for f2, f3 and f4 are multimodal functions with separable and non-separable
characteristic,  which  are  a  challenge  for  any  algorithms.  For  function  f3,  MTS  has  a  good  performance.  MLCC
outperformed other algorithms with high precisions on f4, especially for D=1000. Although the ALREEDA is not the
best solver for f3 and f4, it has the similar performance as others, and it scales well on D=100, 500 and 1000. f7 is a
very complex function, the performance of ALREEDA is promising.

CONCLUSION

In this paper, we present the adaptive learning rate elitism EDA combining a chaos perturbation search strategy. We
demonstrate the ALREEDA’s ability in scaling up to large scale optimization problem. Several strategies have been
designed  to  enhance  the  large  scale  optimization  capability  of  ALREEDA.  The  performance  of  ALREEDA  is
promising, and it is scale to dimensions (100, 500 and 1000). Furthermore, ALREEDA was compared with the LSEDA-
gl, and other algorithms. ALREEDA is competitive on f1, f5, f6 and f7, though the LSEDA-gl has a good performance
on f2. Compared with other algorithms proposed on CEC’08, the performance of ALREEDA on f1, f5, f6 and f7 is
promising, though other algorithms (MLCC, JDEdynNP-F, MTS) perform better on f2, f3 and f4. According to the test
on dimension 100, 500 and 1000, the ALREEDA is scale to the dimension size. It is just the beginning of us on large
scale optimization research. In future, we are planning to examine more effective strategies to enhance the large scale
optimization ability of EDAs.
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