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Abstract: In this paper, the classical binary classification problem is investigated. Necessary and sufficient criterion is 

presented to guarantee the linear binary separability of the training data in the Euclidean normed space. A suitable 

hyperplane that correctly classifies the training data is also constructed provided that the necessary and sufficient is 

satisfied. Based on the main result, we offer an easy-to-check criterion for the linear binary separability of the training set. 

Finally, a numerical example is provided to illustrate the feasibility and effectiveness of the obtained result. 
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INTRODUCTION 

 For convenience, we define 
 
p := 1, 2, , p{ }  and 

A B := x x A and x B{ }  that will be used throughout 

this paper. Let X n
 and Y := 1, 1{ } . Suppose we are 

given the training set 

S := z i , yi( ){ }
i=1

l
X Y . 

 If the primal form (or dual form) of Rosenblatt’s 

perceptron algorithm converges in a finite number of 

iterations, then the training set is linearly separable [1]. 

Furthermore, in this case, the modified Rosenblatt’s 

perceptron algorithm can be used to find a separating 

hyperplane [2]. However, if we find that the primal form (or 

dual form) of Rosenblatt’s perceptron algorithm does not 

converge in five days, we know nothing about the linear 

separability or linear inseparability of the training set. It is 

clear that the given training set may not be linearly 

separable. In this case, it is common to transform the training 

data via a nonlinear map, called the feature map, into another 

space, called the feature space, so that the transformed 

training data may possibly be separable. If the training set is 

linearly separable and the modified Rosenblatt’s perceptron 

algorithm does not converge in five days (or even in one 

month), we ought to find other criteria to guarantee the linear 

separability of the training set. It is the purpose of this paper 

to investigate other criteria for the linear separability of the 

training data in the Euclidean normed space. 

 We wish to point out that we will use in this paper only 

the Euclidean space 
n

, equipped with the usual inner 

product x, z := xT z , x, z n
, and normed product 

z := zT z , z n
, with the metric space 

d x, z( ) := x z , x, z n
, since it is the simplest to work  
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with and if the original input space X is finite-dimensional, it 

is isomorphic to some Euclidean space 
n

. 

MAIN RESULTS 

 For the simplicity of notation, suppose the training set is 

given by 
 
S = S1 S2 , where 

S1 := z i , yi( ){ }
i=1

l1
, yi = 1  

for all i = 1, 2, ..., l1 ,         (1a) 

S2 = z i , yi( ){ }
i=l1+1

l
, yi = 1  

for all i = l1 +1, l1 + 2, ..., l ,        (1b) 

z i z j  for all i j , 

z1, j{ }
j=1

l1
:= z i{ }i=1

l1
,          (1c) 

z2, j{ }
j=1

l l1
:= z i{ }i=l1+1

l
.         (1d) 

 Define 

 l2 := l l1 , z1 :=
1

l1
z i

i=1

l1

, z2 :=
1

l2

z i
i=l1+1

l

,       (2a) 

 r1 := max
i l1

z1 z i,1 , r2 := max
i l2

z2 z i,2 .       (2b) 

 Obviously, z1  is the mean of all elements of S1  and z2  

is the mean of all elements of S2 . In addition, r1  is the 

farthest distance between the point z1  and the elements of 

S1  and r2  is the farthest distance between the point z2  and 

the elements of S2 . 

Definition 2.1 [3] 

 The training set S is said to be linearly separable if there 

is a hyperplane that correctly classifies the training data, i.e., 

there exist w n
 and b  such that 
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yi w, z i + b > 0  for all i l . 

 Now we present the modified Rosenblatt’s algorithm as 

follows. 

Lemma 2.1 [4] Modified Rosenblatt’s Algorithm 

 Data: the training set S := z i , yi( ){ }
i=1

l
X Y  and a 

learning rate > 0 . 

 Goal: a hyperplane w,b( )  that correctly 

classifies the training set. 

 Step 1: w0 0 ; b0 0 ; k 0 ; 

   IS
+ := i l : yi = 1{ } ; 

   IS := j l : yj = 1{ } ; 

Step 2:  Choose Q V := max min
i IS

+

xi ,min
j IS

x j ; 

Step 3:  repeat 

   for i = 1  to l 

   if yi wk , z i + bk 0 , then 

   wk+1 wk + yiz i ; 

   bk+1 bk + yiQ
2

; 

   k k +1 ; 

   end if 

   end for 

 until no misclassification within the for loop 

 return k, wk ,bk( )  where k is the number of mistakes 

 Before presenting the main result, we introduce the 

necessary and sufficient criterion for the linear binary 

separability of the training set S. 

(A1) There exist O1
n

, O2
n

, and two non-

negative numbers r1  and r2  such that the 

following conditions are satisfied. 

(i) O1 z i,1 r1, i l1 ; 

(ii) O2 z i,2 r2 , i l l1 ; 

(iii) r1 + r2 < O1 O2 . 

 Lemma 2.2 If the training set of S is linearly separable, 

then (A1) is satisfied. 

 Proof: Without loss of generality, we assume that 

w, z i,1 + b > 0 , i l1 , and w, z i,2 + b < 0 , i l l1 . 

Define P := x w,x + b = 0{ } . Apparently, there exists a 

z0 P  such that z i L := tw + z0 t{ } , i l . Let us 

define 

 a1 := max
i l1

d z i,1, L( ) , a2 := max
i l l1

d z i,2 , L( ) , 

 c1 :=
1

2
min

i l1
d z i,1, P( ) , c2 :=

1

2
min
i l l1

d z i,2 , P( ) , 

 b1 :=
a1

2c1

, b2 :=
a2

2c2

, 

O1 :=
b1 + 2c1

w
w + z0 , O2 :=

b2 + 2c2

w
w + z0 , 

r1 := b1 + c1 , r2 := b2 + c2 , 

qi,1 :=
b + z i,1,w

w 2 w + z0 , qi,2 :=
b + z i,2 ,w

w 2 w + z0 . 

 Thus, one has qi,1 L , qi,2 L ,  

d z i,1, P( ) = d qi,1, L( ) =
w, z i,1 + b

w
, 

d z i,2 , P( ) = d qi,2 , L( ) =
w, z i,2 + b

w
, 

z i,1 qi,1, rw = 0, r , and 

z i,2 qi,2 , rw = 0, r . It can be readily obtained that 

O1 z i,1

2

= O1 qi,1( ) + qi,1 z i,1( )
2

 

O1 qi,1

2
+ qi,1 z i,1

2
 

= O1 z0 z0 qi,1

2
+ qi,1 z i,1

2

b1 + 2c1( ) 2c1

2
+ a1

2
 

= b1
2

+ a1
2

 

= b1
2

+ 2b1c1  

b1 + c1( )
2

 

= r1
2 , i l1,  (3) 

which implies that O1 z i,1 r1, i l1 . Similarly, for 

every 
 
i = l1 +1, l1 + 2, , l , it is easy to see that 

 
O2 z i,2

2

= O2 qi,2( ) + qi,2 z i,2( )
2

 

 O2 qi,2

2
+ qi,2 z i,2

2
 

 = O2 z0 z0 qi,2

2
+ qi,2 z i,2

2
 

 b2 + 2c2( ) 2c2

2
+ a2

2
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 = b2
2

+ a2
2

 

 = b2
2

+ 2b2c2  

 b2 + c2( )
2

 

 = r2
2 ,             (4) 

which implies that 

 
 
O2 z i,2 r2 , i l1 +1, l1 + 2, , l . 

 In addition, one has 

 O1 O2 = b1 + 2c1 + b2 + 2c2   

> b1 + c1 + b2 + c2 = r1 + r2 .          (5) 

 This completes the proof in view of (2)-(5).  

 Lemma 2.3  The training set of S is linearly separable 

provided that (A1) is satisfied. In this case, a suitable 

hyperplane that correctly classifies the training set of (1) is 

given by w,x + b = 0 , where w := O1 O2  and 

b := w, O2 + 1( )O1 , with 

r1
O1 O2

< <
O1 O2 r2

O1 O2

. 

 Proof: For every 
1
li , one has 

 
yi w, z i + b

= w, z i + b
 

 = w, z i + w, O2 + 1( )O1  

 = w, z i O2 + 1( )O1  

 = w, O1 + z i O1( ) O2 + 1( )O1

 = w, O1 O2( ) + z i O1( )  

 = w, O1 O2( ) + z i O1( )  

 = w, w + z i O1( )  

 = w,w + w, z i O1( )  

 w,w w z i O1  

 O1 O2

2
O1 O2 r1  

 = O1 O2

2 r1
O1 O2

> 0.         (6) 

 For every i l l1 , one has 

 

yi w, z i + b

= w, z i b

= w, z i w, O2 + 1( )O1

 

 = w, z i O2 + 1( )O1  

 = w, O2 + z i O2( ) O2 + 1( )O1

 = w, ( 1) O1 O2( ) + z i O2( )  

 = w, ( 1)w + z i O2( )

 = 1( ) w,w w, z i O2( )  

 1( ) w,w w z i O2

 1( ) O1 O2

2
O1 O2 r2  

 = O1 O2

2
1

r2

O1 O2

> 0.          (7) 

 This completes the proof in view of (6) and (7).  

 Based on Lemma 2.2 and Lemma 2.3, the necessary and 

sufficient criterion for the linear binary separability of the 

training set S is stated as follows. 

 Theorem 2.1 The training set of (1) is linearly separable 

if and only if (A1) is satisfied. 

 Thus, based on Theorem 2.1 with Lemma 2.3, we present 

an easy-to-check criterion for the linear binary separability 

of the training set of (1). 

 Corollary 2.1 The training set of (1) is linearly separable 

provided that r1 + r2 < z1 z2 . In this case, a suitable 

hyperplane that correctly classifies the training set of (1) is 

given by w,x + b = 0 , where w := z1 z2  and 

b := w, z2 + 1( ) z1 , with 

 
r1

z1 z2

< <
z1 z2 r2

z1 z2

. 

 Proof: This proof can be immediately obtained by 

Lemma 2.3 and Theorem 2.1 with the choice of O1 := z1 , 

O2 := z2 , r1 := d1 , and r1 := d2 .  

 Remark 2.2 Support vector learning is one of the most 

exciting tools for machine learning, data mining, hand-

written character recognition, image classification, 

biosequence analysis, etc; see, for example [1, 5-16], and the 

references therein. We wish to point out that Lemma 2.3 (or 

Corollary 2.1) provides only a suitable hyperplane that 

correctly classifies the training set of (1). Such a hyperplane 

may not be “optimal” from the computational point of view. 

In principle, the powerful support vector learning algorithm 

can be employed to find the maximal margin hyperplane (or 

called the optimal hyperplane) in the Euclidean normed 

space of 
n

 for the sake of generalization performance [3]. 

Suppose the training set of S is linearly separable (or 

equivalently the condition of (A1) is satisfied). Using the 

support vector learning method of [3], the maximal margin 

hyperplane is given by w* ,x + b*
= 0 , where 



104    The Open Cybernetics and Systemics Journal, 2008, Volume 2 Yeong-Jeu Sun 

 w* = i
*yizi

i=1

l

= i
*yiz i

i Isv

, 

 

b* = yk w*, zk = yk i
*yiz i

i Isv

, zk

= yk i
*yi z i , zk ,

i Isv

 

Isv := i l : i
*

> 0{ } , 

and i
*
, 

 
i = 1, 2, , l , is the solution of the following 

optimization problem: 

 maximize i
i=1

l

2 1
i j yi yj xi ,x j

j=1

l

i=1

l

 

 subject to i yi
i=1

l

= 0  and i 0  for all i l . 

 It is noted that the sequential minimal optimization 

algorithm [3] can be used to solve the foregoing optimization 

problem. 

ILLUSTRATIVE EXAMPLE 

 In this section, we provide a simple example just to 

illustrate the main result. The training data is given as 

follows.  

 
i

z  iy  

i=1 (2.7,-1,7,0.2,-0.7) 1 

i=2 (-0.1,-1.5,-4,-5) 1 

i=3 (-0.7,1.7,-4.2,-5.3) 1 

i=4 (2.1,1.5,0,-1) 1 

i=5 (3.8,-3,1.3,0.2) -1 

i=6 (5.2,-4.2,3.7,2.7) -1 

i=7 (3,-1.8,1,0.1) -1 

 

 Comparison of the training data with (1), it can be readily 

obtained that n = 4 , l = 7 , l1 = 4 , l2 = 3 , 

 
S1 = (2.7,-1,7,0.2,-0.7), (-0.1,-1.5,-4,-5),{

(-0.7,1.7,-4.2,-5.3), (2.1,1.5,0,-1)},
 

 
S2 =

(3.8,-3,1.3,0.2), (5.2,-4.2,3.7,2.7), (3,-1.8,1,0.1){ }.
 

 In addition, from (2), one has 

 z1 = z1 + z2 + z3 + z4( ) 4 = 1 0 2 3[ ]
T

, 

 r1 = 3.99 , 

 z2 = z5 + z6 + z7( ) 3 = 4 3 2 1[ ]
T

, 

 r2 = 2.94 . 

 This implies that z1 z2 = 50 > 6.93 = r1 + r2 . 

Consequently, by Corollary 2.1 with the choice = 0.58 , 

we conclude that the hyperplane of 

3x1 + 3x2 4x3 4x4 +12 = 0  correctly classifies this 

training set in 
4

. In this case, the support vector learning 

algorithm can be used to find the maximal margin 

hyperplane in 
4

 for high generalization ability. To save 

the space, the details refer to the Remark 2.2 and omitted 

here. 

CONCLUSIONS 

 In this paper, the classical binary classification problem 

has been investigated. Necessary and sufficient criterion has 

been presented to guarantee the linear binary separability of 

the training data in the Euclidean normed space. A suitable 

hyperplane that correctly classifies the training data has also 

been constructed provided that the necessary and sufficient 

criterion is satisfied. Based on the main result, an easy-to-

check criterion has been offered to guarantee the linear 

binary separability of the training set. Finally, a numerical 

example has been given to illustrate the use of the main 

result. The necessary and sufficient criterion for the linear 

multi-class classification in the Euclidean normed space is 

still remains unanswered. This constitutes an interesting 

future research problem. 
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