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Socially Rational Models for Autonomous Agents

James K. ArchibalpWynn C. Stirling, and Matthew S. Nokleby

Electrical and Computer Engineering Department, Brighasang University, Provo, Utah, 84602, USA

Abstract: Autonomous multi-agent systems that are to coordinate mstesigned according to models that accom-
modate such complex social behavior as compromise, néigatiaand altruism. In contrast todividually rational
models, where each agent seeks to maximize its own welfal®utiregard for otherssocially rationalagents have
interests beyond themselves. Such models require a newofydity function—a social utility—to ensure three de-
sirable properties: (ajonditional preferences-agents may adjust their preferences to account for themetes of
others; (b)endogeny-group preferences are determined internally by intevastbetween individual agents; fcam-

ing invariance—reformulations of the social model using exactly the samfi@rmation should not alter the conclusions;
and (d)social coherence-no individual's welfare is categorically subjugated te thelfare of the group. Social utilities

in turn require a compatible solution conceptptimal failure-avoidanceSatisficing game theombodies both social
rationality and optimal failure-avoidance and providesmrfal mathematical framework in which to balance group and
individual interests in mixed-motive societies. The datisg approach is applied to two scenarios: the Ultimatumega
and a random graph search problem. The Ultimatum game isoomeéhfch game-theoretic analysis does not correspond
well to empirical data regarding human behavior; it is thosraportant test case for a new theory. The graph search
scenario is an idealization of an important resource atiosgroblem in which the ability to compromise and negetiat
can greatly facilitate the search for a solution.

Keywords: Decision theory, rationality, multi-agent coordinatisatisficing game theory.

INTRODUCTION very concept of rationality becomes threatened, because pe

Multi-agent system design is essentially a problem in dociaceptions of others and, in particular, their rationalitc e

design. That is, successful systems must coordinate the bBart of one’s own rationality” [6, p. 203]. Thus itis not at al
havior of individual members so as to accomplish tasks that!€@r thatindividual rationality is an appropriate modeithe

are beyond the reach of any individual. In the most intengsti SYNthesis of artificial multi-agent systems.

systems, individual agents are assumed to be autonomous and_uce and Raiffa observed a half-century ago that “general
to have private as well as public concerns. For such systemgame theory seems to be in part a sociological theory which
a successful design methodology must permit agents to maktoes not include any sociological assumptionsit may be
decisions that balance individual and group welfare. too much to ask that any sociology be derived from the single

To make rational decisions agents must have (a) a set of crassumption of individual rationality” [7, p. 196]. Sinceeth
teria to evaluate the effects that a choice has on its wedfade ~ numerous studies in experimental psychology and behdviora
(b) a solution concept that selects the most suitable choice€conomics have cast doubt on the adequacy of the individual
Agents are said to bimdividually rational when the criteria  rationality hypothesis as a general model for social beiravi
are defined by utility functions and the solution concept is[3-5,8-11].

to maximize expected utility. This is the perspective of von  gchelling has observed [12] that societies take many forms,
Neumann-Morgenstern game theory [1], in which agents formanging from purely competitive societies, in which it ig-di
their preferences prior to any social interaction and theks  ficult to define a coherent notion of group preference and for
to maximize their individual welfare, subject to the coaBit  \yhich individual rationality is very appropriate, to purebor-
that other agents are doing the same. The resulting soligtion ginative societies, where all participants are in compigtee-
a Nash equilibrium [2]. ment regarding their preferences and actions. For these soc
The assumption of individual rationality is well-suited to eties a group preference is easily defined byRaeeto prin-
competitive societies, but in mixed-motive and potengiah-  ciple: if an action is simultaneously preferred by all players,
operative situations the choices it prescribes can be Indih i then it is preferred by the group.
vidually and socially dysfunctional [3-5]. Arrow has obged
that “rationality in application is not merely a propertytbg
individual. Its useful and powerful implications deriveoifn
the conjunction of individual rationality and other basane
cepts of neoclassical theory—equilibrium, competitiond a
completeness of markets. When these assumptions fail, the

Between these two extremes lies the vast and important fam-
ily of mixed-motive societies, where opportunities for ot
competition and coordination are present. In such sosiétie
assumption that individual preferences are completelgreet
mined without social interaction is not self-evident. Ganrly,
competition implies no concern for the welfare of otherg, bu
*Address correspondence to this author at the Departmenécti€al and the very terrrt:oordlnatlonlmplles the harmonious function-
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it might achieve would be accidental. On the other hand, weSOCIAL RATIONALITY

would expe_c_t a society either dispos_ed (human sy_stems) orin A societyis any collection of agents such that its members
tended (artificial systems) to coordinate to benefit fromhsuc 5,6 the apility to influence each other’s behavior or welfar
social behaviors such cooperation, compromise, negmiati 5 g _societys any subset of a society. In particular, an indi-

and even altruism. vidual is a singleton sub-society. Lét= {X,,...,X,} be

Consider an alternate point of view, one admittedly not asa society with joint action spade = Uy x --- x U, and let
neat as individual rationality but far more amenable to mod-G* = {X,,,... , X;, } be any sub-society, with corresponding
eling social behavior. Let the proximate aim of the agents bection spacdJ, = U;, x --- x U;,. We assume four axioms
to avoid failure both for themselves individually and for the for autonomoussocially rational mixed-motive societies.

group as a whole. Failure-avoidance, while seemingly a mor@yijom 1 (Conditional Preferences)Sub-societies may condi-

modest goal than utility maximization, has important advan tjon, their preferences on the preferences of other subesiesi
tages: . .
9 Conditional preferences are hypothetical statementsthat

e Optimal behavior in multi-agent systems, either for indi- able a sub-society to define its preference_s as a_functidTeoft
viduals or the group, may be difficult or impossible to de- possﬁale preferences of another sub-society .WlthOUt ﬁy_tua
fine. However, failure-avoidance concepts such as funcknowing the preferences of the other, and without making a
tionality, reliability, robustness, flexibility, and stvabil- ~ categorical commitment to the other.
ity can always be formed. To develop the concept of conditioning, we must first define

e Even when well defined, the optimization of utility is a preference order. A sub-soci&t§ possesses a total prefer-
intrinsically an individual enterprise. If each individ- ence ordering if there exists a reflexive, antisymmetran-r
ual were to optimize, the resulting behaviors would notsitive, and complete preference relation pair,:, ~.:) over
necessarily be optimal, or even acceptable, to the groups; € U;, whereu; =.: u, means that;® strictly prefersu;
The opposite is also true. In contrast, as will be esto u}, andu ~.: u; means preferences for the two actions
tablished, failure-avoidance can apply simultaneously tare equivalent. The expression >=.: u; means that either
both groups and individuals. u; =g u; oru; ~g uj, in which caseu; is preferred tou

e Optimization produces a single solution, but failure- (but not strictly).
avoidance can often be achieved in more than one way. | ¢t (i and G/ be disjoint sub-societies af with corre-

This provides alternatives for negotiation and compro-gponding action subspaces and U, respectively. A con-
mise which can often reconcile group and individual in- gitional preference ordering fag? given G? corresponds to
terests to the satisfaction of both. a hypothetical proposition involving aantecedenand acon-
sequentThe antecedent corresponds to a hypothesized prefer-
S . o . . ence ordering fo6’; namely, thati; =, u/, forallu/, € U;.

for agents in mixed-motive societies. It differs from theliin = ¢ o hypotghesized prefeyrence ]oragjriné is denotedranit-

vidual rationality model in bOth (a) the criteria used_ to Ielya mentto u; by G7. Given this antecedent, the consequent corre-
ate choices, fmd (b) the .SOIUt'.On cqncept gsed t.o |de_n_t|afy aCsponds to the resulting preferences8f expressed as@n-
ceptable decisions. Social rationality requiresoaial utility ditional preference ordering-q: o, ~ i s ). The expression
functionthat permits agents to define their preference order{l_|u_ o o ul[u, means tﬁagi7stﬁ(:‘tcl;y oreforad, given
ings in a way that accounts for the preferences, as well as tl} S i

J i . L di J i
possible actions, of others. We further present a formaliza%at,G is committed tou;, /to }ll given thatGi IS comrr_u_tted
tion of the intuitive notion of failure-avoidance. This neg- 0 %> 81dui[u; ~g: e, uj|u; means thats” is condition-

. j . P
lution concent—satisfici - ally indifferent. The expression;|u; =i s uju} signifies
pt—satisficing game theory—accommodates so-. . . . 2
histi . . ; o either strict conditional preference or conditional ifeliénce.
p |st|pated socllall relatlonsh|p§ such as coordinatiom-co A conditional preference forms a total ordering when— w’
promise, negotiation, and altruism. A remarkable featdre o J

this theory is that coherent group and individual prefeesnc ~ To illustrate the notion of conditional preference, sup-

In the following we propose a model gbcial rationality

emerge as a result of agent interactions. pose G'’s action space is to choose the model of a car
We illustrate satisficing game theory with two applications (&1 Ui = convertible, sedan), and”’s action space is
" Isficing g y with two appiicat to choose the color (i.e.[/; = red,green). The ex-

The first, the Ultimatum game, gives results consistent Wiﬂbression convertibleed > ., sedafgreen means that
experimental data that departs from the game-theoretig-ana Gtla?

is Th di imulated h hb i R efers convertibles, given thét’ prefers red to green, over
sis. 1he second s a simulated graph search by a mufti-agey dans, given tha®’ prefers green to red. The expression

team;n autonomous agents must coordinate to visit all node% : : . .
. ’ | i S onvertibléred .. .; sedaired is somewhat simpler to in-
in a random graph with the constraint that they maintain com; & el fr P

o : o terpret; it means that’ prefers convertibles to sedansGf

munication with each other. We show that satisficing gam P P
o . . . . eprefers red to green.

theory is ideally suited to this problem since it accommedat N ) o
multiple solutions for each player, providing opportuestfor Conditional preferences permit the specification of well-
negotiation and compromise. We present simulation resultformed group goals, as well as operationally meaningfulgro
that quantify performance and demonstrate the emergence Bfeferences.
important coordinated behaviors. Axiom 2 (Endogeny) If preference orderings exist for a so-
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ciety, they must be determined by interactions between sulwhich G* can extend its sphere of interest beyond itself.

societies.

Consider the problem where we are given arbitrary disjoint

Axiom 2 prohibits the exogenous or external imposition of sub-societies:* andG of societyG, utility p.; (for G7) and

a social preference. In particular, it prohibits the use ofa-
sical social welfare function. If some notion of collectjmef-
erence exists for a society, it must emerge internally. Ehés
rather broad interpretation of autonomy, broader perhiags t

conditional utility p.: .s, and we wish to aggregate the given
utilities to determine the social utility of sub-socigty U G”.
With respect to Axiom 2, we say th&@ possessesndoge-
nously aggregatedtilities if, for any two disjoint sub-societies

many applications currently require, but one that we believ G* andG?, p.: s, the social utility of sub-societgz’ U G7,

will become increasingly important as multi-agent systemnes

is a function of the given utilityp,; and the given condi-

deployed for long periods of time in dynamic environmentstional utility p.: ;. Thatis, there exists a functiafi, non-

without human supervision.
Axiom 3 (Framing Invariance) If a social model can be

framed in more than one way using exactly the same infor-

mation, all framings should yield the same decisions.

decreasing in both arguments, such that

(1)

(Note that, according to Axiom 3, reversing the rolesiof

Peivei (ui7 uj) = F[pcj (uj)apci\c:j (ui|uj)]-

A consequence of framing invariance is that there must b@nd j would yield an identical aggregated utility for the new

some concept of reciprocity; that is, if the preference dnde

sub-society.) For this form of aggregation to correspond to

over one sub-society is conditioned on the preferences-of amyroup preference it must be a total orderindibf x U;. For-

other sub-society, then it is theoretically possible tdregne

tunately this property is immediate, since the binary retat

the problem such that the preference ordering of the secor’(qli,uj) = ives (u),u)) for the sub-societys U G7 is in-

- J

sub-society can be expressed in terms of conditional prefegyced by the functiofr, and hence is reflexive, antisymmetric,

ence orderings given the preferences of the first sub-godiet

transitive, and complete. A reasonable and intuitively dmp

this assumption is violated, then either (a) some inforameti tant property of a group ordering is thatif|u; > .: s u)|u)
has been lost or ignored in the re-framing, (b) the informaandu; ~.; u’, or if u;|u; ~aigi Wiws anduy =g o,

tion has not been applied consistently, or (c) one of the subthen (u;, ;) Zgises (u),w)). This condition obtains if and

societies is intransigent and unwilling to take into coesid
tion a different context when defining its preferences. Tass
concern can be problematic if multiple decision makersmre i
volved. However, if a society is to be robust and enduring,

is reasonable to assume that the individuals do not form thei
preferences in a social vacuum, but rather in a social contex

only if F'is non-decreasing in both arguments.
Framing invariance requires thapg: qi(u;,u;)

iiPeruat (u;,u;) or, in other words,

Flpei(uj),peijei (wilug)] = Flpgi (W), pesei (wjwi)].
2

that takes into account the fact that they must interact with

others. This is particularly true for an artificial sociehat is
designed to be cooperative.

It is important to appreciate that endogenous aggregation i
strictly a mathematical operation, and may or may not cor-

Axiom 4 (Social CoherenceNo sub-society must be categor- respond to harmonious, or even purposeful, group behavior.

ically required to subjugate its own welfare to the societgli
situations in order to benefit the society.

Such a preference ordering is emergent, in that it may not be
anticipated or explicitly modeled, and it can take many ferm

Axiom 4 is a weak notion of social equity which requires If the members of a society are in total opposition, such as
only that a society must allow for the possibility (but noeth in a zero-sum game, then the group “preference” should be
guarantee) that each Sub-society can get its way, at leanst so 1O compete. At the other extreme, a Society in which coordi-
of the time. It is tantamount to avoiding sure subjugation,nated behavior yields high rewards for participating agethe
whereby an individual or sub-society is required to saaific group preference should be consistent with that behaviue. T

its welfarein all circumstancesn order to benefit the larger absence of any meaningful concept of group preference would
group. be an indication that the group is dysfunctional.

None of these axioms is compatible with the classical for- Compliance with Axiom 4 requires that social utilities pos-
mulation. To accommodate these four axioms we require &8ss the additional property of social coherence. A society
new utility function, called aocial utility. G hassocially coherentitilities if, for any two disjoint sub-
societiesG" and G, pqi(u;) > pei(u}) implies that there
existsu; € Uj such thalpgiies (Wi, uf) > peives (U, uf)
(Whereuj; may depend om;). Social coherence means that
if one sub-society prefers one action over another, then, fo
any other sub-society, there exists some action such tkat th
resulting joint action is preferred by the combined subiesyc
The violation of social coherence would result in a conditio
Peijei (Uf|0}) <= u;lu; =sie ujuj. This structure al-  of sure subjugationin the sense that under no condition would
lows G* to define its preferences as functions of eaclyé6  such a sub-society be able simultaneously to benéefit itself a
possible most-preferred choices, and it is the mechanism bihe society.

Social Utilities

The function p,: is a social utility if pgi(uw;) >
pei(u)) <= w; = ul[14,15). If G = G, p. is ajoint
social utility, and if G = { X}, a singleton sub-society, then
Pa, = Px, iS themarginal social utilityfor X;. The func-
tion pgi s is aconditional social utilityif pi s (uiju;) >
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Axioms 2 and 4 guarantee an important common-sense re-  To illustrate this notation, it = {X;, X», X3, X4}, the

sult. Suppose that,: . (ui|u;) > pgigi (ujjuy) forallu; € marginal social utility of X, X,} is
U;. Endogenous aggregation ensures fhat . (u;, u;) >

Poives (W), u;) for all u; € Uj. If this condition holds then, Praxy(U2,ua) = > pa(u)
by social coherencey.:(u;) > psi(u}). Thus, these axioms ~{us,us}

ensure that, il7* prefersu; to u} no matter what actioid=’
prefers, it is better for both the larger soci€ty U G’ andG*
thatG? implementu; rather tham}.

>0 palur, uz, us, ua). (5)

{ur} {us}

The Sociality Theorem ¢ Independenceif G7’s preferences have no influence on
There is in probability theory an important analogue to the preferences @&, then
avoiding sure subjugation, namely, the wagering concept of
avoiding sure loss—a betting situation such that, no matter Paijer (Wiluy) = pei (ws), (6)
what the outcome, the gambler loses. The Dutch Book theo-
rem [16,17] and its converse [18] state that it is not posditbl
construct a bet such that the individual will lose money né-ma
ter what happens if and only if the gambler acts in accordance
with a probability measure that describes the individud#s
grees of belief in the propositions under consideratiorthSu
belief system is said to bmoherent

Probability theory is chiefly concerned with the epistemo-
logical domain (i.e., the classification of propositionstbe
basis of knowledge and belief), and it is used to express th
degrees of belief regarding the truth of propositions. Have
the mathematical structure of probability can also be agpli
to the praxeological domain (i.e., the classification ofcact

on the basis of effectiveness and efficiency) to expressahe d : o ) ) e
grees of suitability of a set of actions. To this end, we de- Social utilities differ from classical utilities in sevéraays.
fine apraxeological mass functioms a non-negative fu’nction First, classical utilities are assumed to be invariant desand

that is normalized to sum to unity over its domain space; thag€ro-1evel, but social utilities are not. Second, intespeal

is, p.: is a praxeological mass functionif.: (w;) > 0 Vu; comparisons of utility are not permitted with classicalitiis,

andy pei(w) = 1, andpyi s is @ conditional prax- but such comparisons are both natural and desirable withlsoc
w, €U, PGIAML) = GG

eological mass function if,:,q; (u;u;) > 0 Yau,, Vu, and utilities. Third, classical _thilitigg,_are function_s of thetions of

S o Peire (Wiluy) = 1 Vu,. all agepts, whereas soggl utilities are fqnchonpm‘fergnces
wEU; St AT / for action, and only within the sub-society over which they

Theorem 1 (The sociality theorem)Let {p..:} be a family ~are defined. However, because sub-society utilities areeter

of social utilities for all sub-societies af and let{p.:;}  from joint social utilities by marginalization, they eneodll

be a family of conditional social utilities associated wigh ~ relationships from the global context that are importarthe

pairs of disjoint sub-societies @¥. These social utilities are Sub-society.

endogenously aggregated if and only if they are praxeoldgic OPTIMALITY

mass functions, in which case

and G* and G’ are praxeologically independergub-
societies.

The concept of conditioning, as defined earlier, is the prop-
erty that underlies the probabilistic syntax (albeit witlaxye-
ological rather than epistemological semantics) of thiiies.
Thus, there is a distinct analogy between the use of thiggynt
as an epistemological model of belief regarding the truth of

ropositions and a praxeological model of efficiency and ef-
ectiveness of taking action. It should be noted that it goal
possible to define conditional probability (in the conventl
epistemological sense) axiomatically, rather than as waler
tive of the traditional Kolmogorov axioms [19, Chapter 2].

For social utilities to be of practical value, two fundanant
Flpei (W), poiies (Wil u;)] = peijes (Wilu)pes (n;).  (3)  issues must be addressed: (a) how they can be used for mod-
eling mixed-motive societies, and (b) how the performance
A proof of this theorem for” differentiable in both argu-  of agents who use social utilities can be evaluated. In other
ments is prOVided inthe Appendix. Social utilities thusm Wordsy some notion of Optimization must be defined.
all OT th? syntactical properties of probapility mass fuows, A classical way to achieve an optimal group decision re-
albeit with praxeological, rather than epistemologicaman- quires the maximization of a social welfare function, tylig

tics. defined as an aggregation of individual welfare functiort§.[2

e Marginalization let G be an arbitrary sub-society of However, this violates the autonomy of participating agent

G and letG™* denote the complementary sub-society ofIf attempted, there would likely be a lack of consensus re-
G'. Then the social utility of" is obtained by sum- garding what is best. Indeed, one may view a social welfare

ming p.(u) over all actions inG™. It is convenient to function as a mathematical “dictator” which imposes a sng|
express this sum vimot-sum” notationy™__, , which value system on potentially independent and possibly uncoo

sums over all elements not equahig yielding dinated decision makers, and so creates a group, in the sense
of a super-individual, bfiat.
Poi (W) = Z pe(u). (4) An alternative approach is to broaden the applicabilityhef t

—~{us} classical approach by including social considerations ihe
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utility functions, such as inequity aversion, fairnessg aa-  proach to the error-avoidance formulation of the decisiatp
ciprocal kindness. Researchers report more accurate ingdel lem. As discussed above, the proximate aim of the agent is to
of human behavior in certain realistic settings [21-24]wHo avoid error, but this aim is tempered by a demand for infor-
ever, as discussed earlier, accounting for social corsidess  mation. Information, in this context, is obtained by eligin

via classical utility functions is tantamount to simula@tiso-  ing propositions from serious consideration. Levi congsu
cial behavior with a mechanism designed for asocial belaviotwo utilities to account for these competing criteria: aroer
Simply put, it is the wrong tool. The challenge is to develop aavoidance utility and an informational value utility.

methodology that (a) possesses some form of logical and inte | ot ;7 — {uy, us, ... ,un)} be a finite set of propositions,
nal consistency between individual and group-level irdesie oo of which is true, and le denote a Boolean algebra of
and (b) admits a well-defined concept ofpptimality._T_hisIgoa subsets of/. Then for any setd € B, A is true if and only
requires a new approach to the formulation of decision prob 4 contains the true element. The error-avoidance utility is
lems. then defined as

Decision Formulation

To motivate a re-formulation of the multi-agent decision 1 if Aistrue
problem, it will be helpful to change the context and conside T(4) = {0 otherwise ’ Y
first an epistemological decision problem. Suppose an agent
is confronted with a number of propositions, all of which are

possibly true, but only one of which is in fact true. The agemwhereA is the set 0]‘ propqs_itions that will not be eliminated.
could insist on a single answer—"the truth and nothing bet th Note that a conventional utility would have the same stnggtu

truth"—but if the evidence is not sufficient to identify agla ~ Put requiresA to be a singleton set. Itis straightforward to see
proposition as true, such behavior would be temerarious. AhatT(U) = 1 and thatT" is additive over disjoint sets (i.e.,
more circumspect investigator would, in the interest ofidvo 1 (A1 U A2) = T(A1) + T(A2) if A1 N Ay = 2). Thus,T'is

ing error, eliminate from consideration only those podisis @ Normalized measure ovBr

that are unlikely to be true or that, even if true, are ofdittbn- An agent can guarantee tha{A) = 1 only by setting
sequence (as Popper noted, “Yet we must also stresstttat A = U, but this results in no information gain. To temper
is not the only aim of scienc&Ve want more than truth: what the desire to avoid error with the demand for informatiome, th
we look for isinteresting truthi [25, p. 229, emphasis in orig- agent must compute the informational value of eachisétor
inal]), and continue to investigate until sufficient evideris  reasons that will become clear, this value will be determhine
obtained to identify the true proposition. by considering the informational value of rejectidg

The pragmatic philosopher William James referred to this \Wwhether or not it is trueA is assumed to have some in-
formulation of a decision problem asror-avoiding “There trinsic informational value. Such abductive inferencestay-
are two ways of looking at our duty in the matter of opinion,— pothetical statements of informational importance whehe+
ways entirely different, and yet ways about whose diffeeenc porarily ignoring considerations of veracity. They mayeak
the theory of knowledge seems hitherto to have shown verynany forms, including economic, political, moral, cogvej
little concern. We must know the truth, and we must avoidaesthetic, or personal. The following assumptions cartstit
error,—these are our first and great commandments as woulck reasonable model for informational value: (a) informagio
be knowers; but they are not two ways of stating an identicaalue is non-negative; (b) the informational value of réjes
commandment, they are two separable lawsBelieve truth!  the union of two disjoint sets of propositions is equal to the
Shun error'—these, we see, are two materially differenslaw sum of the informational values of rejecting the individsets;
and by choosing between them we may end by coloring differand (c) the informational value of rejectirig is unity. This
ently our whole intellectual life. We may regard the chase fo structure implies that informational valuations complytwhe
truth as paramount, and the avoidance of error as secoraary; rules of classical measure theory. l3tdenote a measure that
we may, on the other hand, treat the avoidance of error as MOFAaps elements ds to the unit interval P, (A) is a utility that
imperative, and let truth take its chance” [26, pp. 17,18; emrepresents the informational value that accrues to thetagen
phasis in original]. A is rejected. Defining informational value in this way cor-

Simply put, an error-avoider is a cautious truth-seekee; onresponds to the error-avoiding view of rejecting proposis,
who does not insist on identifying a unique solution in atk ci rather than the conventional view of accepting one and only
cumstances. There are various degrees of error-avoiddgce, one proposition.

pending on the amount and quality of information available. The utility P, is not a classical utility because it is a map-
Ideally, one is able to eliminate all but one propositiorseby  phing of sets of propositions—elements of the Boolean alge-
exposing the true one. But in general, there may be severg}a B over the proposition spadé—rather than a mapping
non-eliminated propositions, each with a claim to bein@tru of individual propositions if/. However, if the Boolean al-
An error-avoider refines its choices to the extent warrabted gebra contains all singleton sets, the resulting classitial
the information, but is not obligated to settle on a unigua-so ity function p,(u) = Pi({u}). pn(u)is a mass function,
tion. that is, pr(u) > 0 forall u € U and ), . pa(u) = 1,
The philosopher Isaac Levi [27] has defined a rigorous apso Pr(A) = >, .4 Pr(u). The informational value of non-
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rejection ofA is then defined as Settingg = 1, only u; andwug are retained. Even though
is by far the most likely cause of the symptoms,is not re-
I(A) =1~ Pr(4). (8) jected, because the informational value of that hypothesis
quires a great deal of evidence that it is not the correct thgo
sis before it can be eliminated from consideration. Hypsithe
ug, on the other hand, is not sufficiently important, even iétru
to be retained as a serious possibility.
$(A) = aT(A) + (1 - a)I(A), ) In the interest of avoiding error while acquiring infornaati
where0 < o < 1. The parameten represents the relative X is_ more corjservative than an agentdemandingaunique res-
importance that is attached to avoiding error versus awgyir 0lutionin the interest of seeking only the truth. With theoer
information. Settingx = 0 puts a premium on avoiding error, @veiding approach, the probability of erroris, and with the
and settingy = 1 places a premium on the desire for informa- ruth-seeking approach, the probability of error is either
tion regardless of its veracity. As a practical issaeshould ~ OF 0-9. Of course, the price paid for avoiding error is that

be restricted to the intervél /2, 1] to ensure that no erroneous d0€s notachieve a unique resolution of the issue. Nevesisel
answer is preferred to any correct answer. by rejecting the hypotheses for which the informationateal

of rejection exceeds the probability of being true, theinetd
hypotheses can be used to guide the search for additional evi
dence to narrow the decision to a single hypothesis.

The utility of both avoiding error and acquiring informatio
is given by a convex combination @f(A) andI(A), yielding
Levi's epistemic utility function

By construction is a von Neumann-Morgenstern utility,
even though it is a function afetsof propositions, rather than
of single propositions. Consequently, it is invariant talsc

and zero level, and an equivalent utility is Satisficing Theory
1 1-a An epistemologist makes decisions to gain information,
9*(4) = afb(A) - while a praxeologist makes decisions to achieve goals (suc-
= T(A) - qPu(A) cess). The analogue to a set of epistemological proposition
o is a set of possible actions. The degree to which the obgectiv
1 —qPr(A) if Aistrue (10 is not achieved is the degree of failure, and the analogue to
—qPr(A) if Aisfalse error-avoidance is failure-avoidance. While Levi’s folligia

for optimal error-avoidance is motivated by a lack of suéfiti
whereg = (1 — a)/a. Thus,0 < ¢ < 1. information to justify a unique answer, it is also well sdite
To complete the framework, consider the evidence regardinghe analogous praxeological situation of having severasipo
the propositions. LePs denote a probability measure over the ble actions that can be justified as being adequate.
Boolean algebra such thatP; (A) is the probability (€..,be- 5 ngitioning from the epistemological to the praxeolagic
lief or other evidential support) that contains the true propo- requires an appropriate analogue to the informationakvefu

sition, and letp; denote the associated mass function. Therejection. Informational value is a resource that is coveser

expected epistemic utility is if the proposition is rejected and consumed if a proposiison
E¢*(A) = [1— qPa(A)Ps(A) — qPp(A)[1 — Ps(A)] retained. For example, if a proposition with little mongtar
value (and consequently a high informational value of rejec
= Ps(A) — qPr(A). (112) i . .
ion) were rejected, the agent would conserve its monetary r
It is now evident that expected epistemic utility is maxiedz source. Similarly, if an expensive act (e.g., one that coseat
by the largest element ¢ for which the probability of truth is  deal of money) were rejected, the agent would not expend the
as least as great agimes the informational value of rejection. corresponding money—it would be conserved. By rejecting
Thus, expected epistemic utility is maximized by rejectatly  an act, the agent effectively conserves the associatedneso
and only those elements @f for which ps(u) < gpr(u).  (such as monetary costs, damage to needful equipment, expo-
Here,q may be interpreted as thedex of caution As ¢ in-  sure to hazards, loss of social status, consumption of gnerg
creases, the agent rejects more propositions and becomes maisk to personnel, etc.). Thus, whereas the intent of the-epi
willing to risk error in the interest of obtaining more infoa-  temologist is to acquire information while avoiding errtire
tion. intent of the praxeologist is to conserve resources whibédav

To illustrate the application of Levi's theory, suppoe ing failure.
were to consider three hypotheses to explain some observedMany theorists (e.g., [28—31]) have argued that it is unwise
symptoms:u; = “indigestion”, us = “food poisoning”, and to aggregate conflicting interests into a single prefereee
ug = “ulcer”. SupposeX'’s belief regarding the truth of these dering. Some have asserted that in a social setting indilsdu
three hypotheses agg (u1) = 0.8, ps(u2) = ps(uz) = 0.1.  have two selves. These selves are similar to the “faceti®r “
Also, supposeXs considersu, to be twice as information- pects” of a self as defined by [32], who maintain that an agent,
ally valuable asu;, andus to be ten times as information- although an indivisible unit, nevertheless is capable ol
ally valuable as:;. A reasonable way to compute the infor- ering his or her choice from different points of view, andttha
mational value of rejection is to defing,(u;) as the normal- separate utilities may be defined to correspond to eachdécet
ized reciprocal of the informational value of retentiorelgi  an individual. A natural way to classify attributes is aator
ingpr(ui) = 0.625, pr(uz) = 0.3125, andpy (uz) = 0.0625. ing to their effectiveness and efficiency. Each individial
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may be viewed as being composed of two selvess#iecting
self denotedS;, who evaluates actions in terms of effective-
ness without concern for efficiency, and ttegecting self de-
notedR;, who evaluates actions in terms of efficiency, without
concern for effectiveness. When viewed simultaneousiyfro
both perspectives, the agent is denoted as the concatenétio
these two selves, i.eX; = S; R;.

Archibald et al.

more sophisticated than simply following heuristic rulpeg-
itive). The idea of viewing an action from two perspectives—
one focused on the positive consequences of adopting it and
the second focused on the negative consequences—is a pow-
erful concept, and one for which a mathematically rigorous
formalization is long overdue.

Just as the colloquial notion of achieving “the best and only

Praxeological interpretations may now be given to the util-the best” is useful once it has been mathematically forraeliz

ity functionsp, andps,, which are mass functions and, hence,
marginal social utilities. For eacly € U, ps,(u;) is a mea-
sure of the effectiveness af, and we call it theselectability
mass function. The relationshig, (u;) > ps, (u;) means that
u; is more effective tham, in terms of avoiding failure. Sim-
ilarly, pr, (u;) is a measure of the inefficiency af, and we
refer to it as theejectability mass function. The relationship
Pr, (ui) > pgr,(u;) means that; is less efficient than; in
terms of conserving resources. The set

g = {ui € Uit ps, (wi) > qipr, (wi) } (12)
constitutes the set of actions for which effectiveness, aa-m
sured by the selectability function, is at least as greadg;as
times the inefficiency, as measured by the rejectabilitycfun

tion. The sebjz is called thesatisficing sefor X ;. The praxe-
ological interpretation of; is a measure of caution, as before.

as maximizing utility, the colloquial notion of “getting eis
money'’s worth” is useful once it is formalized. The diffecen
between these two concepts is significant: the former is in-
trinsically an individual enterprise, while, as shall be»si,

the latter can be extended naturally to groups and indivédua
simultaneously.

The termsatisficingwas originally introduced by Simon
[33] as a type of bounded rationality. He proposed to halt
searching for the optimal solution when the expected imgrov
ment is insufficient to justify the costs of continuing to isda
The halting criterion is a heuristically defined aspiratievel.
Thus satisficing, in Simon’s sense, is firmly rooted in indivi
ual rationality and is a heuristic approximation to utilityaxi-
mization.

The failure-avoidance formulation motivates a new and

As g, increases, so does the number of actions that are rejecte®athematically precise definition of satisficing. Reduding

indicating that the agentis increasingly willing to riskdae in

set of non-rejected alternatives to the minimum eliminates

the interest of conserving resources. As will become more aghany options as possible; each of the remaining alterrstive

parent in the multi-agent case, an appropriate interpoetaf
q; is as arnindex of negotiationsince loweringy; enlarges the
satisficing set, thereby increasing the opportunities éach-
ing a compromise. Of course, loweripgis tantamount toX;
lowering its standards of what is deemed to be acceptable.

The most fundamental way the error-avoidance formula
tion differs from the classical optimization formulatianthat,
whereas the classical formulation involves comparisona o
single attribute (utility) between multiple actions to idiéy
the best one, the error-avoidance formulation involvespam
isons between multiple attributes (effectiveness andeffay)
for each action to decide whether or not to reject.

f

To motivate this alternative concept of decision making,

consider three separate notions: superlative, comparatnd

is “good enough” in the sense that its effectiveness outigeig
its inefficiency. Satisficing decisions are optimal in tHaayt
eliminate the maximum number of failure-prone actiofsus,
satisficing agents are optimal failure-avoideRurthermore, if
they succeed in eliminating all but one action, they will be-

come optimizers in the classical sense (as Stirling [34] has

shown, an optimal solution is also a satisficing solutiomjug,
rather than a heuristic approximation to classical optatian,
satisficing is a generalization of classical optimization

To illustrate the satisficing way of making decisions, sup-
pose thatX is in the market for a new automobile and must
choose from among five alternatives, denotedhrough E.
Three criteria are considered: performance, reliabiihg af-
fordability. Table 1 displays the utility of each of the veleis

positive. Much of human decision making employs one offo" €ach of these attributes.

these notions. Individual rationality is an example of the s

perlative, where decision makers make global comparisbns o
their options and choose the best one. In contrast, heuristi

decision making is an example of the positive, where degisio

makers rely upon the belief that a rule that has worked in the

past will also work well in the future (e.g., rule-based expe
systems). Although economic, psychological, philosoahic
engineering, and computer science literatures are repigte
discussions of these two notions, they are relatively silen
garding decision making that is comparative, even though pe
ple often seem to work toward a decision by first eliminating

Table 1: Utility of vehicle attributes.

Vehicle Performance Reliability Affordability
u p(u) r(u) a(u)
A 3 1 5
B 5 3 1
C 2 4 4
D 1 5 3
E 4 2 2

bad choices before settling on acceptable ones. They cempar
the pros versus the cons, upsides versus downsides, benefitsThe optimizer's formulation of this multi-attribute deidia
versus costs, etc. This way of making decisions is more primproblem is to demand the best deal by defining a utility func-

itive than a total rank-ordering of options (superlativa)t is

tion to be maximized. Assuming that weights the three at-



Socially Rational Models for Autonomous Agents The Open Cybernetics and Systemics Journal, 2008, Volume2 129

tributes equally in importance, a global utility may be fatn optimal solution is also satisficing. A key difference bedwe
as the sum of the three attribute-level utilities, yielding these two methods is that the satisficing approach provides i
sight into the attributes of all alternatives, while the ioyatl
¢(u) = p(u) +r(u) +a(u) (13) approach focuses exclusively on identifying the best smiut
foreachu € {A, B,C, D, E}, as displayed in the second col- without distinguishing between non-optimal alternativesr
umn of Table 2. Clearly, the unigue optimal optior(is But ~ example, althougll and B have the same global utility, they
demanding the best deal is not the only way to frame the probare not equal in terms of satisficing: one givedts money’s
lem. Another way is fofX to demand to get its money’s worth. worth, while the other does not. Of course, at the moment
This formulation does not involve making inter-vehicle com of truth, X must decide betweed andC. Since satisficing
parisons; rather, it involves intra-vehicle comparisohse  decision theory is not designed to provide a unique solution
tributes for each alternative. To make these comparis@ins, ancillary criteria must be evoked to make a final choice. Ways
requires operational definitions of selectability andeggbil-  to do this will be discussed subsequently.
ity. Accordingly, X identifies performance and reliability as pULTI-AGENT SATISEICING
selecting attributes, and cost as a rejecting attributes Vit . e .
ues associated with these attributes are combined, naedali In the 5|.ngle-agent case, ;at|sf|C|ng theory .she(ljs new light
on the decision problem, butis otherwise of limited interés

and tabulated in the last two columns of Table 2 (the OrOIer'real ower becomes evident when extended to multi-agent sys
ing on the affordability attribute has been reversed to eanv P g y

it to cost). Setting; = 1, selectability exceeds rejectability for tems. Classical theory interprets optimality in terms difus

. i . o solutions, but in the case of multi-agent decisions thigsins
optionsA andC, selectability equals rejectability fdp, and ) . .
. o . tence overreaches: the number of different perspectivéssna
rejectability exceeds selectability fér and E.

it logically impossible to choose a single best solutiomdro
considerations internal to the group. In contrast, thesBati

ing approach preserves opportunities for negotiation ana-c
promise by preserving a set aflequatechoices rather than

Vehicle Global Utility _Selectability _Rejectability selecting a single “best” solution. As shall be established

Table 2: Global performance and selectability/rejectbil
functions.

u d(u) ps(u) pa(u) is possiblle.for a group and all its members to obtain optimal
A 9 0.133 0.067 error-avoiding solutions.

B 9 0.267 0.333 To ensure well-formedness, the concepts of effectiveness
C 10 0.200 0.133 and efficiency must not be re-statements of the same at-
D 9 0.200 0.200 tribute. Consequently, for a single-agent decision prob-
E 8 0.200 0.267 lem, it is reasonable to assume that the selectability of an

attribute should not depend on its rejectability, and vice
versa. Thus,S and R are praxeologically independent.

Figure 1 provides a cross plot of selectability versus re4n a multi-agent setting, however, the interaction between
jectability asw is varied over its domain, with, the ab-  one agent's efficiency/effectiveness and another agefis e
scissa ang the ordinate. The diagonal line correspondingciency/effectiveness can generate praxeological depeiete
to ¢ = 1 constitutes a threshold dividing the satisficing andpetween the various selves of a society. Thus, in group set-
non-satisficing alternatives. Although bathand D are satis- tings, the selectability and rejectability measures dased
ficing, D costs more tha6’ without offering increased benefit. with effectiveness and efficiency cannot be specified indepe
As will be discussed(’ dominatesD. Thus, optionsd andC'  dently of each other. A critical aspect of modeling the behav
are the non-dominated satisficing solutions. ior of a multi-agent society, therefore, is the represéomaf

the interdependence of both effectiveness and efficienayl of

q=1 possible joint actions that could be undertaken.

B The Interdependence Function

Let G = {Xi1,...,X,} be a society ofn agents with
oC D eFE joint action spaceU = U; x --- x U,. LetGs =
{S1,...,S,} denote the collection of selecting selves, and
e A let G, = {Ri,...,R,} denote the collection of reject-
ing selves. Then an equivalent representation of the soci-
ety in terms of the selecting and rejecting selve&ris, =
{S1---SpR1---R,}. LetG' = {X,,,...,X,,} be a sub-
society ofGG. Expressed in terms of the corresponding selves,
G, = {Si,---Si, Ri, --- Ri, }. Theinterdependence func-
tion of G is a mass function ofn variables of the form
Pesp(u;v) whereu,v € U. Itis sometimes useful to em-
This example illustrates the fact that, when the same @iter ploy the equivalent notatiops, s, », ..z, (u; v). Also, the
are used to define both the optimal and satisficing soluttbes, interdependence function of the sub-sociétyis of the form

bs

PR
Figure 1: Cross-plot of selectability versus rejectafilit



130 The Open Cybernetics and Systemics Journal, 2008, Volume 2 Archibald et al.

per,, (0';v'), whereu', v/ € U = U;, x -+ x U, children. The interdependence function thus has the form

The interdependence function is a social utility, as defined
earlier, that accounts for all possible effectiveness dfid e .
ciency relationships that exist between the selves inbine [Ti21 Psitpa (s (il P2 (u))PR, | pa (r2) (vil P2 (0:)),(14)
a multi-agent decision problem. It does this in the same way ,
that a multivariate probability mass function accounts&tr where, if pa(S;) = &, then ps,|pa(s;) (uil pa(uw)) =

statistical dependencies between multiple random phename PS: (u;), the uncon_ditional margingl social utility. .The inter—_
Thus, to formulate a multi-agent satisficing problem, thg ke dependence function corresponding to the DAG illustrated i

PS,...S,R1...R,, (ula cee,Upy VL, ... 7Un) =

task is to define the interdependence function. Figure 2is
Efficient Representations Dy 5955 Ry Ry Ry (UL, U2, U3 V1, V2, V3) =
The interdependence function is a mass function and may Ps, (1) - Dsyis, (u2fur) - psyis, (uslur) -
be most simply represented by factoring it into the proddict o Pryisy (V1|U2)  Dryjs, (V2|ur) - Pryjs, (V3|uz).
conditional and marginal mass functions. Graph theory is a
powerful way to express this factorization. In particuldue For societies that can be characterized by marginal and con-

flow of influence between selves may be expressedfmae  ditional social utilities defined over small clusters of iirid-

eic networkthat is, a directed acyclic graph (DAG) analogousuals, a graphical representation provides a convenientavay
to a Bayesian network (e.g., see [35, 36]). A praxeic networkconstruct a global society model from local relationshifa.

for n agents comprise3n vertices (one for each self), with important advantage of viewing a multi-agent satisficingi-de
edges representing influence relationships (either éfsatss  sion problem in terms of graph theory is that it leads to com-
or efficiency) as modeled by conditional social utilities. putationally efficient algorithms such as Pearl’s Beliehpa-

Consider the praxeic network of the three-agent system disgation Algorithm [35] for computing the selectability anetr

R tability functions for the society, any sub-societyaay in-
played in Figure 2. Thparentsof a vertexl”, denoteca (V), Jec .
is the set of vertices that influence it. By inspection it isrse dividual. Although Cooper [38] proved that the computasibn

thatS, — S — G) — R.) ands, — R — .comple?dty of a genergl .Bayesian network is [\lP-hard, many
pa (Rl) Fl’faé \2/zzrte>€?/( hga)\s nrc))ar()arze?nts ttha (I‘D/a)( :1)® interesting networks will involve only sparsely linked tiees,
The cghilldren of a vertexV . denotedch (’V) is the set C') in which case the published algorithms offer tractable grerf

vertices that are directly influenced By. Thus,ch(S5;) = mance.
{85, 83, R} and ch (S3) = {Ri,R3}. The descendants Satisficing Games

de (V) of V is the set of all vertices that are influenced, di- A satisficing game, as defined by Stirling [34], is a triple
rectly or indirectly (via children, children’s childrentce) by (G,U,ps,,). Given the game scenario, the first step is to
the given vertex. Thusle (S1) = {52, 53, R1, Rz, Rs}, and  igentify operational definitions of selectability or rejebility

de (S2) = ch (S2). for each of the2n selves in am player game. The next step is
to define the relationships that exist between the variduese
and to construct the praxeic network that consequently e&fin
the interdependence function. Once the interdependence fu
tion is defined, the selectability and rejectability fuocis of
the society and all sub-societies may be obtained by mdrgina
ization.

Thejoint selectability and rejectability mass functiooka
societyG are given as

Pcg (U-) = ZPGSR(U-§ V) (15)

Figure 2: A praxeic network for a three-agent society. v
Pcr (V) = ZPGSR(U-§ V) (16)

The key property of DAGs is th#larkov property non- {u}

descendant non-parents of a vertex are conditionally ietep o . .
dent of the vertex, given the state of its parent verticeds Th and, for any sub-sociey’ of G, the corresponding marginal

property may be used to prove the equivalence of a DAGs_eIectalety and rejef:tal_alhty social _utllltles are, faf € U
whose edges are conditional mass functions with a joint magdn the not-sum notation introduced in Theorem 1),
function for all of the vertices in the graph (for a proof, see

[35,37]). Thus, if local influence relationships can be ex- per (W) = ) peg(u) 17)
pressed with a directed acyclic graph, then the influence re- ~{uw}
lationships can be represented by conditional mass furgtio per, (W) = Z P, (). (18)

where the dependencies flow in only one way: from parents to S}
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In particular, theindividual marginal selectability and re- The individually satisficing sets also induce agent-level
Jectab|l|ty mass fUnCtionare, fori = 1, oo, n, preference re|ati0nshiq§_i7 ,.f,l}’ where
ps,(wi) = D pos(w) (19) wi S ifug € X1 andul ¢ B
~{ui} ' noootn (26)
w; Aol if ug,ul € B orug,ul ¢ B
Dr; (ul) — Z Pap (u) (20) a; a;
—{us} These individual and group preference orderings provide a

means for reconciling group and individual preferencese Th
compromise sef.; consists of all joint actions that are simulta-
neously satisficing for the group and for each of its constitu
members, and is defined by the intersection of the jointly sat
(1) isficing set and the satisficing rectangle:

Once the marginal selectability and rejectability funoto
have been computed, the individually satisficing sets asityea
obtained for each agent as

th = {Uz c U Ps; ;) = QipRi(ui)}

fori = 1,... ,n. Notice that each agent may have its oyn Ce =RaN 2;;@- (27)
value, which controls its openness to negotiation. Theezart ) .
sian product of the individually satisficing sets is calleg t  1hiS set may be empty, but that is not a weakness of the the-

satisficing rectangle ory. Rgt_her, itis the recogni.tion thgt societies can be faipd
by individuals who are so diametrically opposed to eachrothe
Re = E;I X X X (22)  that they reach an impasse and cannot agree to do anything

jointly satisficing. However, the following weak relatidrip
The satisficing rectangle is the set of all option vectors thaalways exists betweeR andX; .

are simultaneously satisficing for all of the individuatddes
not, however, represent a group preference. The set of oprheorem 2 (The negotiation theorem)Let G be a society
tion vectors that are jointly satisficing for the groGgis com-  and letG' andG? be arbitrary disjoint sub-societies with ac-
puted from the joint selectability and rejectability fuiets  tion subspacedJ; and U,, respectively. Ifu; € 3, and
(15) and (16), and for any sub-society, the corresponding ¢, < ¢.1, then there exists; € U, such that(u;,u3) €
sub-society selectability and rejectability functions given X1 2.

by (17) and (18). For a society thejointly satisficing seis
Proof This result is established by the contra-positive,

a .
T = {u € Uipag(u) 2 gepe, (W)}, (23) namely, that if(u;,us) & Y12 for all uy € U, then

whereqg is theg-value for the group. Furthermore, for any W ¢ et Supposepe (u1,u2) < gepey,(ur,uz) for
sub-societyG! = GLGL, the sub-society satisficing set with all u; € Uy Thenpg(wi) = 3y, Pog(w,ug) <

corresponding action subspakke is e D uy}y Por (W1, U2) = Py (01) < go,por, (wr), hence
; up ¢ EGI. O
G . .
chl = {m € Ui poy (W) 2 4o, pay, (W)} (24) Although this theorem is simple, it is important: it estab-

lishes thatz! need not be subjugated in order to accommodate

the interests of the society. In particular, &8f = { X}, every
The satisficing solution concept induces an emergent prefndividual has a seat at the table in the sense that, if anracti

erence ordering for the society. Define the group preferenci individually satisficing for it, then that action is an elent

Endogeny and Social Coherence

relationship{;G, R}, where of at least one jointly satisficing solution. This conditin
perhaps the weakest possible for meaningful negotiations t
s .
u-quifueX;andu ¢ X, (25) occur.

The ability of an agent to adjust its index of negotiatign
provides a mechanism for autonomously exploring the effect
It is important to appreciate that this group-level prefee  of constraints on the decision problem. This is an important
ordering is determined by the endogenous relationships thaaew capability. If a given set of constraints leads to a smiut
exist among the individuals, and need not correspond to ajudged to be inadequate, conventional methodologies requi
externally conceived notion of group functionality. It is a the constraints to be revised by trial-and-error—theieet
emergent manifestation of the social welfare of the group asannot be judged without generating a new solution. By repre
a function of the way the unconditional and conditional pref senting explicitly the effects of social constraints onugprale-
erences of its members combine. Social welfare, in thisesenscisions, satisficing game theory makes those constraiatk av
thus accounts for all tendencies for cooperation and campetable for dynamic modification by the agents themselves, thus
tion that exist among the individuals, but is not an aggtiegat increasing the environmental variability with which thegp
of individual welfares. Since it is emergent, its exact matu can cope. For example, agents may resolve an impasse by re-
will generally not be predictable in advance, even for a eooplaxing their standards of performance. This may be done by
eratively disposed group. each player incrementally reducing igs and re-computing

ul v ifuu €T oruu €3,
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the compromise set until it becomes non-empty. An impor-altruism, the willingness to always relinquish one’s own self-
tant feature of this procedure is that each agent can cdtgrol interest, andconditional altruism a willingness to relinquish
own standards of performance. Once an agent has reached thiee’s own self-interest if, and only if, (a) the other wishes
limit of its willingness to reduce its standards, it may hitd take advantage of the offered largesse (for benevolent-altr
¢; value constant. If the compromise set remains empty afteism), or (b) the other wishes to act in a way that elicits plnis
some agent has reducedqtdo its minimum acceptable level, ment (for malevolent altruism). This more sophisticated ex
then an impasse cannot be avoided. Such a society is dysfungression of altruism is simply not possible with classiddl u
tional. However, it may still be possible for some sub-stycie ities, since they are functions of possible player actiom,

to break away from the larger group and continue to negotiategreferences for action.

The compromise set represents the set of all decision \&ector In contrast, a socially rational agent may dynamically atlju
that are simultaneously acceptable to the group and to eadts preferences as a function of the preferences of others. F
member. Assuming that, perhaps as a result of negotiation, @xample, supposk; were willing to defer taX, by preferring
is non-empty, there is no guarantee that it is a singletmrgth « if X, were to prefen,, otherwise, X; would preferuf.
may be multiple compromise decisions. The compromise sefhis accommodation can be implemented by setting
can be reduced by first eliminating any satisficing solutions {

— ! !
that are dominated by superior solutions. For ewery U let Tu=u, up = ug

/! —a/
0wy #u, ug = ub

Bg(u) ={v € U: pr(v) < pr(u) andps(v) > ps(u)} Psyis, (U1luz) = ) . (30)
Br(u) = {v € U : pr(v) < pr(u) andps(v) > ps(u)}, {O = g, Uz 7
(28) 1 Uy = ’U,ll/, u9 75 ’LLIQ

Conditional social utilities permit the agent to examinetea
possible hypothetical situation and adjust its prefersraceif
the other agent actually most preferred to select or repxtt e
of its possible alternatives. These specifications can ber-de
mined before the actual preferences\afbecome available to
in both selectability and rejectability. Th@n-dominatedet X1 Onc_ep52 Is given, X1’s marginal Ser:?%tablll'ty pecomes
o e U Ba) - ] Py (1) = 33, iy ()i, (1), which takes ino ac-
) ] . count both its own an&»’s preferences. From this construc-
Theoptimal compromise sés tion it is clear that, ifX, does not strongly prefer,, thenX’s
0. —N.AC (29) preferences are essentially unaltered. In this wWé&yconsid-
¢ @ e ers X,'s preferences but does not need to “throw the game”

Al elements of the optimal compromise set lay claim categorically in order to demonstrate a willingness to giet

and define the set of alternatives that ateéctly betterthan

u: B(u) = Bg(u) U Bg(u); that is, B(u) consists of all
possible alternatives that are either less rejectable ahigss
selectable tham, or more selectable and not more rejectable
thanu. If B(u) = @, then no alternative can be preferredito

to some notion of optimality.  For examplea,, =  €rencetaXs.

arg maxyeqs{Ps(1) — ¢epr(u)} maximizes the difference  THE ULTIMATUM GAME

between group selectability and group rejectability; = The Ultimatum game is a much-studied example of a sim-
arg minyeq, pr(u) Minimizes group rejectability, ands = ple social relationship where it is difficult to reconcilesgived

arg maxyeq,; ps(u) maximizes group selectability. The re- pehavior with the classical game-theoretic solution [5.24.
maining elements of2. represent other optimal tradeoffs be- |p, this two-player game, a propos&r offers a respondek
tween effectiveness and efﬁciency. If the indices of n@m a fraction of a sum of money, anm2 chooses whether to ac-
for the agents are sufficiently reduced, an optimal compsemi  cept (in which case the two divide the money as proposed) or
will eventually exist. to refuse (in which case neither player receives anythihg).
Altruism either case, the game is over. Within the framework of atasi
Social utilities and the satisficing solution concept pdavi 92Me theory, the unique subgame perfect equilibrium soiuti
a rigorous approach to the longstanding problem of altruism'S fOr X1 to offer the smallest possible non-zero amount, and
for X, to accept what is offered. Interestingly, such a strategy

While usually understood to mean that one is willing to sac-, o )
rifice to benefit another, altruism could also take a maleole 'S rarély adopted by human decision makers. Proposers-are in
clined to offer fair deals and responders are inclined teatej

form, in which an agent sacrifices to injure another. In &ithe _

case, an altruistic agent by definition takes into constoera unfair deals.
the preferences of others when defining its own preferences. Ultimatum is relevant to the multi-agent systems commu-
By design, classical utilities accommodate only selfiiest,  Nity as, for example, a model of bargaining and negotiatsn f
and in this framework altruism can be accommodated only byarious applications including electronic commerce [43¢-
redefining self-interest. This has proven highly probldémat cause of its simplicity, the game has become a prototype for
not only philosophically but also in practice. It is possith  decision problems where social behavior is not adequately e
simulate benevolence or malevolence in particular sibnati ~ Plained by the hypothesis of individual rationality.

but the redefinition tends to be too specific and context depen In an attempt to bring the classical game-theoretic results
dent. In particular, it can not distinguish betwesategorical into line with experimental results, researchers in bebrabi
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economics have proposed to alter the payoff for the UltimaSatisficing Formulation of the Ultimatum Game

tum game by modifying the utility functions. For example, 1o frame Ultimatum as a satisficing game, the payoff matrix
Fehrand Schmidt [22] augment utility by non-pecuniary ®rm st be replaced with a social utility function that accetfot
that account for both disadvantageous and advantageous ifye preferences of the four selves involvest, Ss, Ri, and
equity, and show that, with this modified utility, itis pdse . |n this formulation thentemperancef X; and theindig-

to achieve equilibria that are “fair” from the perspectids pationof X, are the dominant social attributes of the players.
both players. Their approach fundamentally changes thegamypese attributes are denoted by an intemperance indexd
however, because the players adopt new utility functioas th 5, indignation index, respectively, wher® < 7 < 1 and
categorically re-define their preferences. As Sen obseffed < 5 < 1. The conditionr ~ 1 means thafX; is extremely

is possible to define a person’s interests in such a way that N aricious, whiler ~ 1 means thatX; is willing to restrain
matter what he does he can be seen to be furthering his oW gesire for wealth. 2The conditioh ~ 1 means thatXs is
interests in every act of choice. no matter whether you are easily offended, whilé ~ 0 means thaf is easily pleased.

a single-minded egoist or & raving altruist or a class-GOSC oy the present purpose, assume that these parametersalre fix
militant, you will appear to be maximizing your own utilith i properties of the playersy; may temper its avarice because
this enchanted world of definitions” [44, p. 29]. of benevolence toward», because of an aversion to inequity,

The following analysis demonstrates that a socially ration O Pecause of suspicion thak, may refuse an unfair offer—

formulation of the game provides a natural way to incorprat the precise motive is not important here. The k_ey point is tha
social attributes directly into the game description. leslaot (1€ Parameters are treated as endogenous attributesenet th

rely on anad hocredefinition of utility functions that, by their Sult of exogenous forces that cause the players to change the

structure, are designed only for individually rational age  Utilities.

Although the model makes specific predictions about behavio  There is not a unique way to define the selecting and reject-

we do not claim that this represents actual human behavior. ing selvesS;, So, Ry, andR; of the players, but it is reason-
able to associate the selecting self with the goal of the game

Classical Formulation of the Ultimatum Game which is to receive as much of the fortune as possible. The

rejecting self is associated with the efficiency with whible t

tum game is a continuum (the unit interval). Fortunately,goal IS p.ursued. This attribute, however, must t_)e mdepmde.
of effectiveness, and hence cannot be a function of the ratio

the minigame of Gale et al. [45], in which the proposer can .
) ' of the fortune one receives. It must therefore be a functfon o
make only one of two offers, preserves Ultimatum’s essence

while simplifying the analysis. Lef; have the action set Whether or noanyreward is received. Thus, both players are

Uy = {us,u!}, and letS; and R, denote the respective select- |neff|C|ent if, and qnly if, :che .r-esponder refuses the offer. .
ing and rejecting selves far= 1,2. Let X,’s two offers beh SinceX; plays first,X’s utility structure need not be condi-

and/ (high and low), with0 < ¢ < h < L, corresponding to tioned onX5y's response (although this remains a possibility).
the fraction of the fortune offered tKQ_ '|2'he responder’s op- Thus,X’s social utilities are unconditionak;’s selectability
tions arez (accept) and (refuse). The standard payoff matrix (&S @ function of intemperance) is expressed as

for t_h_is _minigame is displayed in Table 3. The unique Nash ps,(h)=1—7 and ps (0) =T (31)
equilibrium is forX; to play/ and X5 to playa.

The action set for the proposer of the original Ultima-

S1's rejectability is a function ofX»’s indignation as well as
its own intemperance, and is expressed as

Table 3: Payoff matrix for the Ultimatum minigame. pa(h) = 7(1—8) and po () =1—7(1—06) (32)

X3

that is, if X5 were highly indignant{ ~ 1), offering the high

fraction to the responder would have low rejectability.

i (1-¢,6 (0,0) Since X>; makes the second move, the preferenceX g6
’ ’ selves will be conditioned oi;’s choice. Defines, s, as

Psyis, (alh) =1 and pg, s, (r|h) = 0. (33)
In the classical formu_latlon,_ _SOCIa| cohe_rence can be V|o—|f, however,S; were to select, thenS, would be indignant
lated by the exogenous imposition of a social preference. Fo : . i .

. i : and would prefer to seleetwith weighté anda with weight
example, there is strong empirical evidence that groupsalev
) . . 1—14. Thus,

a preference for fair treatment [46,47]. In the minigame, in
inidual rationality_ d_ictates that =, h. If fair treatment is Psyis, (@) =1 -5 and pg, s, (r]¢) = 0. (34)
imposed on the minigame théh, a) > (¢,a) and(h,r) =«
(¢,r). SinceX;’s preference is never preferred by the group, Next considerX,'s rejecting self,R,. If S; were to select
social coherence is violated. In this case at least, engpiric &, thenR, would prefer to reject. Thus,
behavior appears to be more consistent with social coherenc

than with individual rationality. Pryisy (alh) =0 and pg, s, (r[h) =1.
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If S; were to select, then R, would be indignant and would Now recall that the satisficing set for a decision maker is
prefer to reject with weightd andr with weightl — §. Thus,  the set of actions for which the selectability is at leastreay
o o as the product of, the index of caution, and the rejectability.
Proisi (alf) =6 and prys, (r6) =1 —9. Thus, settingg = 1 and comparing (31) with (32) and (37)
The resulting two-agent interdependence function can bwith (38), the satisficing sets for the proposer and responde
factored according to the chain rule of probability. In gethe are
there are many ways to apply this rule, but for this applarati

an obvious factorization is Li(r,0) = {wr € Urips, (u) = le (u1)}
h if 7 < 5=
pslsleRz(U17u2;U17U2) :psg\isle(U2|U1;U17U2) _ j:ié}} if > i
Pry1syra (V1[U1502) - Pryys, (V2]ur) - ps, (ur). (35) oy = ¥
; 25
Consider each of the factors on the right hand side of (35) in
turn. In the Ultimatum game§,’s conditional preferences de- Yo(1,0) = {ug € Usips,(u) > pr,(u1)}
pend only on the choic§; makes and are not influenced by {a} if 7 < &
Ry or Ry, SOpg, s, r, r, feduces teg, s, . Becauser; is not _ r} if - > L

influenced by any other self, the tegm, s, », may be replaced
by pr,. The final terms are already in a form defined by the
game model. Substituting the simplified terms into (35)dsel

{a,r} if7=5

PsisqR1 Ry (Ul,uz;vl,vz) =

Ps, (U1) * Psyis, (u2|ur) - pr, (V1) - Prys, (v2|u1)(36)

The Ultimatum game provides an opportunity for categori-
cal altruism by the proposer, and conditional altruism by th
responder [see (31)]. If the proposer is purely selfish or-com
pletely intemperater(= 1), no deference would be shown for T
the responder’s welfare (or no concern for retaliation) wHo o4
ever, if 7 < 1, the proposer accommodates the preferences of
the responder (or acts to reduce the potential for retafiti
at its own expense. The responder exhibits malevolent eondi
tional altruism (to the degree defined by by sacrificing its
own welfare to punish the proposer for an unfair offer [see 0z 04 06 08 i
(34)]. But if the proposer makes a fair offer, then the respon s
der’s utility function reflects acceptance [see (33)].

The Satisficing Rectangle

The Ultimatum minigame is such that its marginals are eas- Figure 3 displays the satisficing rectangle for the Ultimatu
ily computed without resorting to a formal algorithm. Ap- game as a function 0fand5 Values ofr andé that lie above
plying (15) and (16), then (19) and (20) in sequence, the sethe curve labeled = 51 (regionsI and V) result in the

11

Figure 3:(r, ¢) regions for the satisficing rectangles.

lectability and rejectability marginals for the respondes proposer offering a low fraction, and values that lie belbis t
curve result in a high fraction. Fdr, d) pairs that lie on the
Ps,(u2) = D psyis, (ualwr) - pr, (v1) - line, bothk and¢ are satisficing for the proposer. Next, con-
{ur} {vi} {v2} sider the responder. Values-ofindd that lie above the curve
Drots, (V2|U1) - s, (U1) labeledr = 21—5 (regionsIII and V) result in the responder
_ Z uslu (u1) refusing the offer, and values that lie below this curve itéau
Psaisy (U2t accepting the offer. Fofr, d) pairs that lie on the line, both
{ua} a andr are satisficing for the responder. The two curves di-
— { 1—76 foruz=a (37) vide the(r, §) square into four regions, corresponding to four
70 forug =r different satisficing rectangles (ignoring boundaries):
and Ro(r,6) = Si(r,8) x To(r,5)
Pr(V2) = DY Payis, (uzlur) - pa, (v1) {(¢,a)} for(r,0) €
{ur} {ua} {v1} - {(h,a)} for(r,d) € II
pRz\Sl(v2|u1)'p51(u1) N {(h,T)} for (7—75) el -
_ ZPRQ\sl(UﬂUl)'psl(Ul) {([,T’)} fOI’ (T 5) clV
{u1} In region, a low fraction is offered and accepted, which is

) forve = a the Nash solution. It obtains when the proposer is intemper-
- 1—76 forva=r (38) ate and the responder is not readily indignant. In redibn
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a high fraction is offered and accepted. This solution oistai

when the proposer is temperate and the responder reasonable

In region/ 11, a high fraction is offered and refused, revealing
an unreasonable indignation on the part of the responder.

region/V, a low offer is refused, since the responder is indig-

nant in the face of an intemperate proposer.
Group Satisficing Solutions

The satisficing set for a society constitutes all joint atsio
that are good enough for the society collectively. For thi Ul
matum game witly = 1,

Yo(r,d) =
{(u1,u2) € Uy x Uzl ps, s, (w1, u2) > pryr, (u1,u2)},

where the joint selectability and joint rejectability mdasac-
tions are computed as

pslsz(ulv'uﬂ) = Zzps2\sl(u2|ul)'pm(vl)
{v1}{v2}

‘Pryis, (’U2|U1) *Ps,y (ul)

PryRs (U17'02) = Z Z ENEN (U2|U1) *Pry ('Ul)
{u1} {uz}
‘Pry|sy (U2|U1) *Psy (Ul)

The resulting joint selectability and joint rejectabilftynctions
are

Psis, (h, CL) = 1—7

Psyss (h,T) = 0

Dsys,(bya) = T—79

Ps;s, (év T) = 7

and

Pryny(hya) = 7285 — 7252
pR1R2(h7T) = T—T5—725_|_7-252
pRlRQ(é,CL) = 7'5_7—26_|_7_262
Primy(fr) = 1—7+7% — 7262,

Settingg = 1, the jointly satisficing set for the group is ob-
tained by comparing the above functions for each joint actio
Figure 4 displays this set as a functionradindd as defined by

{(¢,a)} for (r,6) € A
{(¢,a),(L,1)} for (r,0) € B
{(¢,r)} for (r,0) € C
Yo(r,d) = {¢,a),t,r),(h,a)} for(r,d)€ D
{(¢,7),(h,a)} for (1,6) € £
{(h,a),(£,a)} for (1,0) € F
{(h,a)} for (1,0) € G

Notice that regions3, D, F, and F' do not have unique
solutions. In regionB, for example, both joint actiond, a)

In

Figure 4:(r, 0) regions for the jointly satisficing sets.

and (¢,r) are jointly satisficing for the&r, §) values in that
region (high intemperance, low to moderate indignatiome T
society, if it were to act as a single entity, would not reject
either of these joint actions—either would be good enough.

Itis important to understand that a jointly satisficing sedi
purely context-free mathematical result that need not laave
obvious operational interpretation, but it is certainlysgible
to impose one. For regions, F', andG, a group preference
to obtain the fortune can be deduced. For regigrthere is
a group preference to be fair. For regidha possible group
preference is to at least do something that is logical (ssch a
not punishing without cause). For regi6h the only possible
group preference is to be dysfunctional. Regi®amounts to
indifference.

Compromise
By inspection, the compromise set for the Ultimatum game
is

Ca(r,0) = Re(1,0) N X6 (T, 9)

(¢,a) for(r,0) e IN(AUBUDUF)=1I\FE
) (hya) for(r,0) e IIN(EUFUG)=1II
) @ for (r,0) e (IIIUI)NE

(4,r)y for(r,0) e IVN(BUCUE)=1V

Figure 5 displays thér, §) regions that correspond to joint
actions in the compromise set. For@ll ) ¢ (IITUI)NE,
there is a unique pair of individual choices consistent \thin
society’s choice—an optimal compromise. It is possible to
operationalize society/individual satisficing for eachtloése
joint actions. For joint actiongh, a) and (¢, a), the optimal
compromise is to share the fortune. For the joint actiom),
it is to be dysfunctional—players are so mismatched in tempe
ament that failure cannot be avoided. The joint acfibyr) is
never a compromise solution.

COORDINATED GRAPH SEARCH

A team of mobile autonomous agents is tasked to visit all of
the nodes of an undirected graph whose edges represent paths
between the nodes. Each agent possesses a copy of the graph
and is able to communicate with other agents within a speci-
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Recall that the aim of the decision maker (individual or grpu

is to conserve resources (associated with rejectabilityijew
avoiding failure (associated with selectability). In thentext

of this game, failure occurs if one or more nodes are not vis-
ited, and resources are consumed if connectivity is lost.

The Individual Model

The individual model requires each agent to calculate its se
lectability and rejectability marginals at each timesing only
knowledge of the state of the system (i.e., agent positiads a
node status) but without explicitly accounting for the fgu

T T + preferences of other agents. Because the calculationgare s
5 ple, each agent can determine the satisficing sets for aitage
and hence the entire satisficing rectangle at eachitime
Figure 5:(7, ) regions for the compromise set. Individual selectabilityps, for each agent is determined as

, . o . follows. If the option set contains unvisited nodes, then
fied radius. As long as the group maintains full communica-

tion connectivity (relaying messages if necessary), eaggnt (ust) 1 if u has been visited prior to time

will be continuously updated regarding which nodes have beelsi 5 if u has not been visited prior to tinte ’
visited. The performance criteria for this society is tregtdll
nodes are visited by at least one agent such that dupliciation
kept small, and (b) full communication connectivity is main , i i
tained. It is assumed that the agents are homogeneous, t gents option set, the agent performs a breadth-first sarc

e nodes connected to each of the nodes in its action sét. Eac
nodes are of equal value to the search effort, and the commu- ; ) .

o o . uch actioru is then weighted based on the depiu), of
hication range is identical for all agents. When at a node, ar§1e first unvisited node encountered:ifs adopted. A smaller
agents option set consists of the node itis at and all adjace depth will receive a larger weight. These weFi) hté are then no
nodes. While on an edge, its option set will consist of themarl)ized across the act?on S agce. ieldin 9
nodes that define the edge. pace,y 9

This scenario can be viewed as a generalizeaent ver- e, (u;t) _
sion of the classic traveling salesman problem, the conitglex ' D(u)
of which grows combinatorically with the number of nodes.

) . . . : Since it is associated with the loss of connectivity, the re-
The computational complexity of an optimal solution to this. Y

n-agent problem arows even faster. since it depends on th|ectability of an action for agenk; should be a function of
9 P 9 ’ P t%e current distancé;. betweenX; and its nearest neighbor.

number of nodes in the graph, the number of agents, and .ﬂ]?taking actionu causesl;, 1o approachi, .., the maximum

need to satisfy the communication constraint. Althougls it i o : - .

. i . . communication range, the rejectability must increasehar
impractical to compute_ th_e_ optlmallsolutlon, there are MaNY, order to avoid communication failure. Léf(u) denote the
ways to f-ormulate a satisficing solution. distance betweeX; and its nearest neighbor that will result if
The Social Model actionu is taken. A simple mechanism to increase rejectability

Since the search scenario is dynamic, the associated socifll Proportion to the propensity of an option to result in com-
utilities must evolve in time as agents make decisions amd tr Mmunication failure is
verse the graph. It is assumed that time flows in discretes step
at each timeg = 0,1,2,..., and that each agent has knowl- P, (u5t) o< 2

edge of the positions of all agents as well as the status of alfhys, if no action increases the distance to the nearesh-neig
nodes (visited or not visited) up to tinte- 1. Thus, the social por, or moves the agent to more than half of the maximum
utilities for this prOblem will be functions of time as web af communication distance from its nearest neighbor’ the re-
the options. jectability of all options is uniform. But if an action causse
Many social models could be defined to characterize thi¢he agent’s position to exceed either of those limits, tien t
application. In contrast with the Ultimatum game, in which rejectability of that action increases exponentially witte
behavior is conditioned on the preferences of others, we enamount the limitation is exceeded.
ploy two social models—one for the group and one for the Each agent then forms its individually satisficing set as
individuals—and identify solutions that are consistenthwi
both. This approach demonstrates the versatility of the sat ~ 2i(di,t) = {ui € Uil ps, (wist) > qipr, (uist)}.  (41)
isficing approach to group and individual decision making.

where the symbok implies that the values are normalized to
become mass functions. If there are no unvisited nodes in the

(39)

2d;(w)

di(w)
max{l,w —} (40)

’dmax

The satisficing rectangle is then
Although two separate models are employed, both use the
same operational definitions of selectability and rejeititab R(t) = (g1, 1) X Xa(g2, 1) X -+ X B (gn, 1).  (42)
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The Group Model If the compromise set contains more than one vector, ties
are broken by a simple lexicographical ordering. At the first
Each agent can also compute its version of a jointly satisteyvel, only those jointly satisficing options most seletéaio
ficing set. To do this, it needs operational definitions of wha the group (visiting the greatest number of new nodes) are re-
is selectable and rejectable for the group. Since this 8ocie gined. If this set contains multiple elements, the secenelll
is cooperatively disposed, a simple group social model is imof ordering is to rank the agents dynamically based on the
mediate: group selectability is proportional to the numbler  nymper of unvisited nodes in their option sets. The agents
unvisited and unique nodes directly accessible by the grougnen select the vector which is mastlividually selectable to
and group rejectability is determined by the loss of conmect  the highest-ranking agent. Further ties are broken by deer

ity. to the individual preferences of lower-ranking agents luati
The selectability at time of a group action vecton = unigue solution results.
(U1y... ,up) € U = Uy x Uy x --- x Uy, is proportional A Simple Example: 5x5 Grid

to: (a) the number of unique unvisited nodeseaches and (b) ) i .

the total number of unique nodes accessiblaibfyhether or As a simple example, consider a square grid of 25 nodes
not visited). The first criterion encourages the group tdt vis With nearest neighbor connections. Five agents start in the
new nodes, and the second encourages the group to spread iR)ter left comer and are assigned to traverse the graph with
and seek new territory. For example, in a five-agent system, & communication radius of 1.6 times the distance between
u causes the group to move to four unique unvisited nodes arfPdes. The agents, denotedthroughas, travel along paths
one visited node, it will receive a larger selectabilityrthg, ~ depicted in Figure 6.

which causes the group to move to three unvisited nodes and

two visited nodes. If, however, there are no currently add 8s % | _8;  _fs8s

options that will take the group to unvisited nodes, then the
group will at least be encouraged to move to as many different 3s a, a:
nodes as possible, thereby spreading out in an attemptko see 3z
the remaining unvisited nodes. To formalize this structlete T =3
N, (u,t) denote the number of unique unvisited nodes acces- i
sible by joint actionu at timet, and letNy,:(u, t) denote the : 83
total number of unique nodes (whether or not visited) acces- : -
sible byu at timet. Then the group selectability at timds a3 : :
given by a: az

DPsq (u7 t) X Ny (U-a t) + Ntot(u7 t)- (43) : a. a: a ' Fa-

34

Since the group as a whole shares the requirement to main-
tain connectivity, group rejectability is concerned witmd

only with, maintaining group connectivity. This criterioa- B 2 2 2
sults in an extremely simple group rejectability function:
0 if umaintains comm. at time Figure 6: 5x5 Traversal Paths

Pig (1) :{ 1 otherwise - (44)
The group selectabilitys., encourages the agents to fan
Al joint options that do not disrupt connectivity are joint ~ Out as they traverse the graph. After simultaneously wigiti

satisficing, and the joint satisficing set has the form the middle nodes, they converge as they approach the top righ
corner of the graph. A minimum number of nodes are visited
3o(t) = {u: pr,(u,t) = 0}. (45) by more than one agent, and the graph is searched quickly and
efficiently. Connectivity is maintained throughout, aliogy
The Negotiation Process information to be relayed to all agents.

Since each agent is able to compute the satisficing rectangi®andom Graph Simulations
and the jointly satisficing set, it may also form the compraeni

set More complicated graphs were created by randomly gener-

ating 100 nodes within a 2825 region using a uniform distri-
Co(t) = Re(t) N Bs(t). (46) bution. Edges were added to connect each node with its four

nearest neighbors. An example graph is shown in Figure 7.

If C, is empty, then the negotiation mechanism of satisficingThree search scenarios were conducted for each graph: (a) a

game theory is used: agents incrementally lower thewal-  five-agent search with a communications range of two units;
ues until the compromise set is no longer empty. This modelgb) a three-agent search with a communication range of three
a form of autonomous negotiation in which each agent comunits; and (c) a single-agent search. For consistencyisigen
promises and gives up a little performance to find a solutiorgin their search from a randomly selected node near thercente
that is satisfactory to the entire group. of the graph.
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in a similar manner, as the ratio of the lower bound of dis-
tance traveled in the baseline (total distance traveledhaped
per agent) to the actual average distance traveled per.agent

Table 4: Results averaged over 10 randomly generated graphs
The bottom row is the boundedly-rational baseline.

Agts ComRad Nds/Agt NdEff Dst/Agt Dst Eff

5 2 40 56% 17.3 50%
3 3 52 71% 21.5 67%
1 n/a 121 92% 46.3 94%
1* n/a 111 100% 43.5 100%

As the number of agents increases, each agent visits fewer
nodes and travels a shorter distance, but both measures of ef
ficiency also decrease. There are three principal causéssof t
behavior. First, all agents start at the same point, andésta

Ideally, simulation results should be compared with thosetlme to spread outand search the graph. Second, agents must

of an optimal search, but this is computationally infeasfiolr remain near egch other to remain in communication. Third,
. : . .certain nodes in the sparse graph become natural hubs for
graphs of this complexity. To create a baseline for compari- . S
. . ) agents to remain and serve as communication relays.
son, we implemented a boundedly-rational single agentalgo ) i .
rithm that searches until the search cost exceeds thepzattci The. S'mU|a¥'0n3 pr0\_/|(_je numerous examples of emergent
improvement of further search. The algorithm systemdyical Pehavior that is not anticipated by the modeling assumption
conducts a depth-first search of possible tours starting fro For example, as the group spreads out, the more centralsagent
each node in the graph. After 30 minutes of CPU time, thdend to sacrifice individual preferences (searching new-ter
algorithm switches to the next node in the graph as thestarti tory) to maintain the connectivity of the group by remaining
point. Each level in the search tree corresponds to the ehoicStationary while outlying agents continue to search, ail th
of next unvisited node to visit; a greedy algorithm is empgloy ~ continues until the outlying agents return to the group. The

and nodes are considered in the order of their proximity éo th Willingness to act as a relay is not explicitly programmetgin
previous node. the agents, and it is a significant example of emergent coordi

nation as agents balance the interests of the group with thei
individual interests.

Figure 7: Sample Random Graph with 100 Nodes

The boundedly-rational search algorithm differs from the
satisficing search algorithm in three significant ways. tFits ] ) ) ) )
is free to start from any node in the graph. Second, its dessi Figure 8 illustrates typical emergent behavior. The sniall ¢

are based on an extensive global search rather than corgitioC!€ representing each node is filled if visited, and the lafge
local to the agents and limited look-ahead, so itis pooritests _C1€ centered on each agent represents its communicatige.ran

to real-time operation. Finally, since it involves a singgent, [N the first irame, all three agents are heading towards eniqu

it has Nno movement constraints to ensure communication idnVisited nodes. In the second frameg,anda, are moving

maintained. Thus, although the boundedly-rationalregutt- (0 the left whilea; moves to the right. In the third frame,

vide bounds on the efficiency of satisficing multi-agentskar the 2gents are approaching the limits of their communiatio

algorithms, the bounds are not particularly tight. range. To avoid communication l0ss, is returning to an area
with no unvisited nodes so that it can relay messages between

Table 4 displays results averaged over 10 graphs for thg, anda,, as they cannot directly communicate. In the fourth

three satisficing scenarios (top three rows) along with thgrame o, andas continue their search, facilitated by's sac-
boundedly-rational baseline (bottom row). From left ttig ifice.

the columns list the number of agents, the communication ra-

dius, the average number of nodes visited per agent durinlaISCUSSION

the search, a measure of search efficiency referred hods The Ultimatum game and the random graph search illus-
efficiency the average distance traveled per agent during th&ate the wide range of applications for which satisficingiga
search, and a second measure of efficiency cali@nce ef- theory is applicable. In the Ultimatum game, the behavior
ficiency Node efficiency is a measure of the extent to whichof the players is governed by their social attributes, ared th
duplication of visited nodes is avoided; the repetitionibited  emergent group-level preferences can range from fair atid we
by the boundedly-rational search is considered a lowentiou coordinated to dysfunctional and ill-coordinated. Thardi#-
(total nodes visited prorated per agent). The measure éngiv tum game is a static (one-move per player) game, whereas the
by the ratio of this lower bound to the actual average numgraph search is a dynamic decision problem. In the graph-
ber visited by each agent. Distance efficiency is determinedearch problem, the goal of the agents is to find functional
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utility-maximization formulation of the graph search plein
would require the identification of an optimal strategy (nos
likely in the sense of bounded rationality), which would re-
quire extensive computation. Even if an optimal solution fo
the group were known, there would be no way to determine
whether it would be acceptable to each of the individual &ggen
With the failure-avoidance formulation, however, it is pitde

to identify in real-time potential solutions that are sitanle-
ously acceptable to all agents and to the group. The key to
this success is that the agents, and the group as a whole, each
identify multiple choices that are good enough according to
a mathematically precise criterion, thus providing therthwi
negotiating room to settle on a compromise.

Conflict can be resolved either by competition or by cooper-
ation. Because it is based on the premise of individualmatio
ity, classical game theory virtually forces competitiomee if
cooperation would be more natural and beneficial to the play-
ers individually and to the group as a whole. On the other hand
satisficing game theory permits conflict to be treated eitiser
competition or cooperation with equal facility. It thereggro-
vides a neutral foundation upon which to frame decision prob
lems.

Satisficing game theory provides a framework within which
procedures for negotiation and compromise can be imple-
mented. By contrast, solution concepts associated with ind
vidual rationality provide existence proofs only; they ai
constructive. For example, although a Nash equilibrium al-
ways exists, the theory does not provide a procedure for the
agents to follow to arrive at the prescribed solution. Also,
rather than simulating social relationships with an irgically
asocial model, conditional altruism—a willingness eitter
defer to or to punish others according to the situation—can
be modeled without completely redefining the game.

Social utilities and satisficing game theory together pevi
a systematic methodology for the design of socially rationa
multi-agent systems. Domain knowledge and the rules of the
game are encoded into the social utility functions that cosep
the interdependence function. Because they possess the mat
ematical properties of multivariate probability mass fiims,
social utilities account for all possible social interacs, take
advantage of whatever independence and conditioning prop-
erties are relevant, and make it impossible to assign high se
Figure_8: A sequence of frames showing emergent coordinatqgctabi"ty (or rejectability) to an action set and its cdep
behavior. ment. Satisficing game theory makes explicit the conditions
under which group and individual preferences can be recon-

compromises as the agents function in a multi-move dynamigiled, and provides a mechanism for altruism, negotiatiuwh a
environment. Emergent behavior is manifest by the agents asompromise.

they self-select the different roles of searcher and conicadn
tion relay.

Social rationality and satisficing game theory generalize t
notions of individual rationality and competitive optiritgl

The two applications demonstrate the robustness of thbut at a price. The computational burden of the satisficing ap
failure-avoidance formulation of a decision problem. With proach grows combinatorically if all possible intercontigts
the Ultimatum game, the classical formulation as utilityxna between agents are considered. Fortunately, as with Bayesi
imization is a poor model of actual human behavior. Formu-networks, it is reasonable to expect that in practical sitna
lated in terms of failure avoidance, the social attributethe  and especially for large groups, the connectivity of prexeit-
agents can be explicitly included in the model as parametersvorks will be somewhat sparse. The use of hierarchical and
and their effect on the decisions can be observed. A traditio Markov structures can simplify the construction of the inte
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dependence function and further reduce computation. Multi In terms of general arguments, this equation becomes
agent decision making is, by its very nature, a complex en- B
terprise. Moreover, the enterprise of analyzing complex na FF(z,y),z] = F [z, F(y,2)], (52)

ural systems or synthesizing complex artificial systemsiis i called theassociativity equationwhich has been studied ex-
trinsically difficult and challenging. But, as Palmer ob&st,  tensively [49,50]. It has been shown by [51] (see also [52])

“Complexity is no argument against a theoretical appro&ich ithat if F is differentiable in both arguments, then the general
the complexity arises not out of the theory itself but out of so|ution of (52) is

the material which any theory ought to handle” [48]. While
it is desirable in the interest of tractability to simplifysacial fIF(z,y)] = f(z)f(y) (53)

model as much as possible, eliminating important sociatrel ¢, come positive continuous monotonic increasing fumcfip

tionships in order to comply with individual rationality ma \yhich is otherwise arbitrary. Takinfjas the identity function,
provide an inadequate model of the society under investigaz o ptain

tion.
A key contribution of this paper is the demonstration that paivgi (wi,uj) = F[pci (i), pgi o (uj|uz')]
the syntax of probability theory, which is of immense value = pei(W)peijei(ulug),

as a means of modeling epistemological phenomena, can also .
be of value as a model of praxeological phenomena. In a pe%nown as theproduct rule It can also be shown, following
sonal communication to Judea Pearl, Glenn Shafer observe%OX [51], that

that “probability is not really about numbers; it is aboué th ey ci(uss) =

structure of reasoning” [35, p 15]. The thesis of this paper Z Pot() Z Pomi(u-i) =1 4
is that the mathematical structure of probability theisrglso ‘
about the structure of coherent social interactidie combi-  for all sub-societies+*, which is known as theum rule Fi-
nation of social utilities and satisficing game theory foties  nally, the non-decreasing property requires that all pesfee

basis of a unified treatment of group and individual decisiorfunctions be non-negative, thus the preference functiomst m
making. be mass functions.

APPENDIX: PROOF OF THE SOCIALITY THEOREM We note that, regardless of the functipnso long as it is
positive, continuous, monotonic, and increasing, the pcbd

and sum rules apply, and the preference functions are mass
Flpei(w)), paijei (ui|u;)] = pgi i (wilu;)pei (). (47)  functions. Thus, we may takgto be identity without loss of

u; €U; u-;€U-;

Sufficiency is established by setting

The non-negativity condition ensures ttfats non-decreasing generality.
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