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Abstract: Autonomous multi-agent systems that are to coordinate mustbe designed according to models that accom-
modate such complex social behavior as compromise, negotiation, and altruism. In contrast toindividually rational
models, where each agent seeks to maximize its own welfare without regard for others,socially rationalagents have
interests beyond themselves. Such models require a new typeof utility function—a social utility—to ensure three de-
sirable properties: (a)conditional preferences—agents may adjust their preferences to account for the preferences of
others; (b)endogeny—group preferences are determined internally by interactions between individual agents; (c)fram-
ing invariance—reformulations of the social model using exactly the same information should not alter the conclusions;
and (d)social coherence—no individual’s welfare is categorically subjugated to the welfare of the group. Social utilities
in turn require a compatible solution concept—optimal failure-avoidance. Satisficing game theoryembodies both social
rationality and optimal failure-avoidance and provides a formal mathematical framework in which to balance group and
individual interests in mixed-motive societies. The satisficing approach is applied to two scenarios: the Ultimatum game
and a random graph search problem. The Ultimatum game is one for which game-theoretic analysis does not correspond
well to empirical data regarding human behavior; it is thus an important test case for a new theory. The graph search
scenario is an idealization of an important resource allocation problem in which the ability to compromise and negotiate
can greatly facilitate the search for a solution.

Keywords: Decision theory, rationality, multi-agent coordination,satisficing game theory.

INTRODUCTION

Multi-agent system design is essentially a problem in social
design. That is, successful systems must coordinate the be-
havior of individual members so as to accomplish tasks that
are beyond the reach of any individual. In the most interesting
systems, individual agents are assumed to be autonomous and
to have private as well as public concerns. For such systems
a successful design methodology must permit agents to make
decisions that balance individual and group welfare.

To make rational decisions agents must have (a) a set of cri-
teria to evaluate the effects that a choice has on its welfareand,
(b) a solution concept that selects the most suitable choices.
Agents are said to beindividually rational when the criteria
are defined by utility functions and the solution concept is
to maximize expected utility. This is the perspective of von
Neumann-Morgenstern game theory [1], in which agents form
their preferences prior to any social interaction and then seek
to maximize their individual welfare, subject to the constraint
that other agents are doing the same. The resulting solutionis
a Nash equilibrium [2].

The assumption of individual rationality is well-suited to
competitive societies, but in mixed-motive and potentially co-
operative situations the choices it prescribes can be both indi-
vidually and socially dysfunctional [3–5]. Arrow has observed
that “rationality in application is not merely a property ofthe
individual. Its useful and powerful implications derive from
the conjunction of individual rationality and other basic con-
cepts of neoclassical theory—equilibrium, competition, and
completeness of markets. . . When these assumptions fail, the
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very concept of rationality becomes threatened, because per-
ceptions of others and, in particular, their rationality become
part of one’s own rationality” [6, p. 203]. Thus it is not at all
clear that individual rationality is an appropriate model for the
synthesis of artificial multi-agent systems.

Luce and Raiffa observed a half-century ago that “general
game theory seems to be in part a sociological theory which
does not include any sociological assumptions. . . it may be
too much to ask that any sociology be derived from the single
assumption of individual rationality” [7, p. 196]. Since then,
numerous studies in experimental psychology and behavioral
economics have cast doubt on the adequacy of the individual
rationality hypothesis as a general model for social behavior
[3–5,8–11].

Schelling has observed [12] that societies take many forms,
ranging from purely competitive societies, in which it is dif-
ficult to define a coherent notion of group preference and for
which individual rationality is very appropriate, to purely coor-
dinative societies, where all participants are in completeagree-
ment regarding their preferences and actions. For these soci-
eties a group preference is easily defined by thePareto prin-
ciple: if an action is simultaneously preferred by all players,
then it is preferred by the group.

Between these two extremes lies the vast and important fam-
ily of mixed-motive societies, where opportunities for both
competition and coordination are present. In such societies the
assumption that individual preferences are completely deter-
mined without social interaction is not self-evident. Certainly,
competition implies no concern for the welfare of others, but
the very termcoordinationimplies “the harmonious function-
ing together of different interrelated parts” [13]. If an agent
truly has no interest in others, it seems that any coordination
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it might achieve would be accidental. On the other hand, we
would expect a society either disposed (human systems) or in-
tended (artificial systems) to coordinate to benefit from such
social behaviors such cooperation, compromise, negotiation,
and even altruism.

Consider an alternate point of view, one admittedly not as
neat as individual rationality but far more amenable to mod-
eling social behavior. Let the proximate aim of the agents be
to avoid failure, both for themselves individually and for the
group as a whole. Failure-avoidance, while seemingly a more
modest goal than utility maximization, has important advan-
tages:

• Optimal behavior in multi-agent systems, either for indi-
viduals or the group, may be difficult or impossible to de-
fine. However, failure-avoidance concepts such as func-
tionality, reliability, robustness, flexibility, and survivabil-
ity can always be formed.

• Even when well defined, the optimization of utility is
intrinsically an individual enterprise. If each individ-
ual were to optimize, the resulting behaviors would not
necessarily be optimal, or even acceptable, to the group.
The opposite is also true. In contrast, as will be es-
tablished, failure-avoidance can apply simultaneously to
both groups and individuals.

• Optimization produces a single solution, but failure-
avoidance can often be achieved in more than one way.
This provides alternatives for negotiation and compro-
mise which can often reconcile group and individual in-
terests to the satisfaction of both.

In the following we propose a model ofsocial rationality
for agents in mixed-motive societies. It differs from the indi-
vidual rationality model in both (a) the criteria used to evalu-
ate choices, and (b) the solution concept used to identify ac-
ceptable decisions. Social rationality requires asocial utility
function that permits agents to define their preference order-
ings in a way that accounts for the preferences, as well as the
possible actions, of others. We further present a formaliza-
tion of the intuitive notion of failure-avoidance. This newso-
lution concept—satisficing game theory—accommodates so-
phisticated social relationships such as coordination, com-
promise, negotiation, and altruism. A remarkable feature of
this theory is that coherent group and individual preferences
emerge as a result of agent interactions.

We illustrate satisficing game theory with two applications.
The first, the Ultimatum game, gives results consistent with
experimental data that departs from the game-theoretic analy-
sis. The second is a simulated graph search by a multi-agent
team;n autonomous agents must coordinate to visit all nodes
in a random graph with the constraint that they maintain com-
munication with each other. We show that satisficing game
theory is ideally suited to this problem since it accommodates
multiple solutions for each player, providing opportunities for
negotiation and compromise. We present simulation results
that quantify performance and demonstrate the emergence of
important coordinated behaviors.

SOCIAL RATIONALITY

A societyis any collection of agents such that its members
have the ability to influence each other’s behavior or welfare.
A sub-societyis any subset of a society. In particular, an indi-
vidual is a singleton sub-society. LetG = {X1, . . . , Xn} be
a society with joint action spaceU = U1 × · · · × Un, and let
Gi = {Xi1 , . . . , Xik

} be any sub-society, with corresponding
action spaceUi = Ui1 × · · · × Uik

. We assume four axioms
for autonomous,socially rational, mixed-motive societies.

Axiom 1 (Conditional Preferences)Sub-societies may condi-
tion their preferences on the preferences of other sub-societies.

Conditional preferences are hypothetical statements thaten-
able a sub-society to define its preferences as a function of the
possible preferences of another sub-society without actually
knowing the preferences of the other, and without making a
categorical commitment to the other.

To develop the concept of conditioning, we must first define
a preference order. A sub-societyGi possesses a total prefer-
ence ordering if there exists a reflexive, antisymmetric, tran-
sitive, and complete preference relation pair(≻Gi ,∼Gi) over
ui ∈ Ui, whereui ≻Gi u

′
i means thatGi strictly prefersui

to u
′
i, andu ∼Gi u

′
i means preferences for the two actions

are equivalent. The expressionui �Gi u
′
i means that either

ui ≻Gi u
′
i or ui ∼Gi u

′
i, in which caseui is preferred tou′

i

(but not strictly).

Let Gi and Gj be disjoint sub-societies ofG with corre-
sponding action subspacesUi andUj , respectively. A con-
ditional preference ordering forGi given Gj corresponds to
a hypothetical proposition involving anantecedentand acon-
sequent. The antecedent corresponds to a hypothesized prefer-
ence ordering forGj ; namely, thatuj �Gj u

′
j for all u′

j ∈ Uj .
Such a hypothesized preference ordering is denoted acommit-
menttouj byGj . Given this antecedent, the consequent corre-
sponds to the resulting preferences ofGi, expressed as acon-
ditional preference ordering(≻Gi|Gj ,∼Gi|Gj ). The expression
ui|uj ≻Gi|Gj u

′
i|u

′
j means thatGi strictly prefersui given

thatGj is committed touj , to u
′
i given thatGj is committed

to u
′
j , andui|uj ∼Gi|Gj u

′
i|u

′
j means thatGi is condition-

ally indifferent. The expressionui|uj �Gi|Gj u
′
i|u

′
j signifies

either strict conditional preference or conditional indifference.
A conditional preference forms a total ordering whenuj = u

′
j .

To illustrate the notion of conditional preference, sup-
pose Gi’s action space is to choose the model of a car
(i.e., Uj = convertible, sedan), andGj ’s action space is
to choose the color (i.e.,Uj = red, green). The ex-
pression convertible|red ≻Gi|Gj sedan|green means thatGi

prefers convertibles, given thatGj prefers red to green, over
sedans, given thatGj prefers green to red. The expression
convertible|red ≻Gi|Gj sedan|red is somewhat simpler to in-
terpret; it means thatGi prefers convertibles to sedans ifGj

prefers red to green.

Conditional preferences permit the specification of well-
formed group goals, as well as operationally meaningful group
preferences.

Axiom 2 (Endogeny) If preference orderings exist for a so-
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ciety, they must be determined by interactions between sub-
societies.

Axiom 2 prohibits the exogenous or external imposition of
a social preference. In particular, it prohibits the use of aclas-
sical social welfare function. If some notion of collectivepref-
erence exists for a society, it must emerge internally. Thisis a
rather broad interpretation of autonomy, broader perhaps than
many applications currently require, but one that we believe
will become increasingly important as multi-agent systemsare
deployed for long periods of time in dynamic environments
without human supervision.

Axiom 3 (Framing Invariance) If a social model can be
framed in more than one way using exactly the same infor-
mation, all framings should yield the same decisions.

A consequence of framing invariance is that there must be
some concept of reciprocity; that is, if the preference ordering
over one sub-society is conditioned on the preferences of an-
other sub-society, then it is theoretically possible to re-frame
the problem such that the preference ordering of the second
sub-society can be expressed in terms of conditional prefer-
ence orderings given the preferences of the first sub-society. If
this assumption is violated, then either (a) some information
has been lost or ignored in the re-framing, (b) the informa-
tion has not been applied consistently, or (c) one of the sub-
societies is intransigent and unwilling to take into considera-
tion a different context when defining its preferences. Thislast
concern can be problematic if multiple decision makers are in-
volved. However, if a society is to be robust and enduring, it
is reasonable to assume that the individuals do not form their
preferences in a social vacuum, but rather in a social context
that takes into account the fact that they must interact with
others. This is particularly true for an artificial society that is
designed to be cooperative.

Axiom 4 (Social Coherence)No sub-society must be categor-
ically required to subjugate its own welfare to the society in all
situations in order to benefit the society.

Axiom 4 is a weak notion of social equity which requires
only that a society must allow for the possibility (but not the
guarantee) that each sub-society can get its way, at least some
of the time. It is tantamount to avoiding sure subjugation,
whereby an individual or sub-society is required to sacrifice
its welfarein all circumstancesin order to benefit the larger
group.

None of these axioms is compatible with the classical for-
mulation. To accommodate these four axioms we require a
new utility function, called asocial utility.

Social Utilities

The function pGi is a social utility if pGi(ui) ≥
pGi(u′

i) ⇐⇒ ui �Gi u
′
i [14, 15]. If Gi = G, pG is a joint

social utility, and ifGi = {Xi}, a singleton sub-society, then
pGi

= pXi
is the marginal social utility for Xi. The func-

tion pGi|Gj is a conditional social utilityif pGi|Gj (ui|uj) ≥
pGi|Gj (u′

i|u
′
j) ⇐⇒ ui|uj �Gi|Gj u

′
i|u

′
j . This structure al-

lows Gi to define its preferences as functions of each ofGj ’s
possible most-preferred choices, and it is the mechanism by

whichGi can extend its sphere of interest beyond itself.

Consider the problem where we are given arbitrary disjoint
sub-societiesGi andGj of societyG, utility pGj (for Gj) and
conditional utilitypGi|Gj , and we wish to aggregate the given
utilities to determine the social utility of sub-societyGi ∪ Gj .
With respect to Axiom 2, we say thatG possessesendoge-
nously aggregatedutilities if, for any two disjoint sub-societies
Gi andGj , pGi∪Gj , the social utility of sub-societyGi ∪ Gj ,
is a function of the given utilitypGj and the given condi-
tional utility pGi|Gj . That is, there exists a functionF , non-
decreasing in both arguments, such that

pGi∪Gj (ui,uj) = F [pGj (uj), pGi|Gj (ui|uj)]. (1)

(Note that, according to Axiom 3, reversing the roles ofi
andj would yield an identical aggregated utility for the new
sub-society.) For this form of aggregation to correspond toa
group preference it must be a total ordering ofUi × Uj . For-
tunately this property is immediate, since the binary relation
(ui,uj) �Gi∪Gj (u′

i,u
′
j) for the sub-societyGi ∪ Gj is in-

duced by the functionF , and hence is reflexive, antisymmetric,
transitive, and complete. A reasonable and intuitively impor-
tant property of a group ordering is that ifui|uj �Gi|Gj u

′
i|u

′
j

anduj ∼Gj u
′
j , or if ui|uj ∼Gi|Gj u

′
i|u

′
j anduj �Gj u

′
j ,

then(ui,uj) �Gi∪Gj (u′
i,u

′
j). This condition obtains if and

only if F is non-decreasing in both arguments.

Framing invariance requires thatpGi∪Gj (ui,uj) =
pGj∪Gi(uj ,ui) or, in other words,

F [pGj (uj), pGi|Gj (ui|uj)] = F [pGi(ui), pGj |Gi(uj |ui)].
(2)

It is important to appreciate that endogenous aggregation is
strictly a mathematical operation, and may or may not cor-
respond to harmonious, or even purposeful, group behavior.
Such a preference ordering is emergent, in that it may not be
anticipated or explicitly modeled, and it can take many forms.
If the members of a society are in total opposition, such as
in a zero-sum game, then the group “preference” should be
to compete. At the other extreme, a society in which coordi-
nated behavior yields high rewards for participating agents, the
group preference should be consistent with that behavior. The
absence of any meaningful concept of group preference would
be an indication that the group is dysfunctional.

Compliance with Axiom 4 requires that social utilities pos-
sess the additional property of social coherence. A society
G hassocially coherentutilities if, for any two disjoint sub-
societiesGi and Gj , pGi(ui) ≥ pGi(u′

i) implies that there
existsu

∗
j ∈ Uj such thatpGi∪Gj (ui,u

∗
j ) ≥ pGi∪Gj (u′

i,u
∗
j )

(whereu
∗
j may depend onui). Social coherence means that

if one sub-society prefers one action over another, then, for
any other sub-society, there exists some action such that the
resulting joint action is preferred by the combined sub-society.
The violation of social coherence would result in a condition
of sure subjugation, in the sense that under no condition would
such a sub-society be able simultaneously to benefit itself and
the society.
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Axioms 2 and 4 guarantee an important common-sense re-
sult. Suppose thatpGi|Gj (ui|uj) ≥ pGi|Gj (u′

i|uj) for all uj ∈
Uj . Endogenous aggregation ensures thatpGi∪Gj (ui,uj) ≥
pGi∪Gj (u′

i,uj) for all uj ∈ Uj . If this condition holds then,
by social coherence,pGi(ui) ≥ pGi(u′

i). Thus, these axioms
ensure that, ifGi prefersui to u

′
i no matter what actionGj

prefers, it is better for both the larger societyGi ∪ Gj andGi

thatGi implementui rather thanu′
j .

The Sociality Theorem

There is in probability theory an important analogue to
avoiding sure subjugation, namely, the wagering concept of
avoiding sure loss—a betting situation such that, no matter
what the outcome, the gambler loses. The Dutch Book theo-
rem [16, 17] and its converse [18] state that it is not possible to
construct a bet such that the individual will lose money no mat-
ter what happens if and only if the gambler acts in accordance
with a probability measure that describes the individual’sde-
grees of belief in the propositions under consideration. Such a
belief system is said to becoherent.

Probability theory is chiefly concerned with the epistemo-
logical domain (i.e., the classification of propositions onthe
basis of knowledge and belief), and it is used to express the
degrees of belief regarding the truth of propositions. However,
the mathematical structure of probability can also be applied
to the praxeological domain (i.e., the classification of actions
on the basis of effectiveness and efficiency) to express the de-
grees of suitability of a set of actions. To this end, we de-
fine apraxeological mass functionas a non-negative function
that is normalized to sum to unity over its domain space; that
is, pGi is a praxeological mass function ifpGi(ui) ≥ 0 ∀ui

and
∑

ui∈Ui
pGi(ui) = 1, andpGi|Gj is a conditional prax-

eological mass function ifpGi|Gj (ui|uj) ≥ 0 ∀ui, ∀uj and
∑

ui∈Ui
pGi|Gj (ui|uj) = 1 ∀uj .

Theorem 1 (The sociality theorem)Let {pGi} be a family
of social utilities for all sub-societies ofG and let{pGi|Gj}
be a family of conditional social utilities associated withall
pairs of disjoint sub-societies ofG. These social utilities are
endogenously aggregated if and only if they are praxeological
mass functions, in which case

F [pGj (uj), pGi|Gj (ui|uj)] = pGi|Gj (ui|uj)pGj (uj). (3)

A proof of this theorem forF differentiable in both argu-
ments is provided in the Appendix. Social utilities thus possess
all of the syntactical properties of probability mass functions,
albeit with praxeological, rather than epistemological, seman-
tics.

• Marginalization: let Gi be an arbitrary sub-society of
G and letG¬i denote the complementary sub-society of
Gi. Then the social utility ofGi is obtained by sum-
ming pG(u) over all actions inG¬i. It is convenient to
express this sum via“not-sum” notation

∑

¬{ui}
, which

sums over all elements not equal toui, yielding

pGi(ui) =
∑

¬{ui}

pG(u). (4)

To illustrate this notation, ifG = {X1, X2, X3, X4}, the
marginal social utility of{X2, X4} is

pX2X4
(u2, u4) =

∑

¬{u2,u4}

pG(u)

=
∑

{u1}

∑

{u3}

pG(u1, u2, u3, u4). (5)

• Independence: if Gj ’s preferences have no influence on
the preferences ofGi, then

pGi|Gj (ui|uj) = pGi(ui), (6)

and Gi and Gj are praxeologically independentsub-
societies.

The concept of conditioning, as defined earlier, is the prop-
erty that underlies the probabilistic syntax (albeit with praxe-
ological rather than epistemological semantics) of the utilities.
Thus, there is a distinct analogy between the use of this syntax
as an epistemological model of belief regarding the truth of
propositions and a praxeological model of efficiency and ef-
fectiveness of taking action. It should be noted that it is also
possible to define conditional probability (in the conventional
epistemological sense) axiomatically, rather than as a deriva-
tive of the traditional Kolmogorov axioms [19, Chapter 2].

Social utilities differ from classical utilities in several ways.
First, classical utilities are assumed to be invariant to scale and
zero-level, but social utilities are not. Second, interpersonal
comparisons of utility are not permitted with classical utilities,
but such comparisons are both natural and desirable with social
utilities. Third, classical utilities are functions of theactions of
all agents, whereas social utilities are functions ofpreferences
for action, and only within the sub-society over which they
are defined. However, because sub-society utilities are derived
from joint social utilities by marginalization, they encode all
relationships from the global context that are important tothe
sub-society.

OPTIMALITY

For social utilities to be of practical value, two fundamental
issues must be addressed: (a) how they can be used for mod-
eling mixed-motive societies, and (b) how the performance
of agents who use social utilities can be evaluated. In other
words, some notion of optimization must be defined.

A classical way to achieve an optimal group decision re-
quires the maximization of a social welfare function, typically
defined as an aggregation of individual welfare functions [20].
However, this violates the autonomy of participating agents.
If attempted, there would likely be a lack of consensus re-
garding what is best. Indeed, one may view a social welfare
function as a mathematical “dictator” which imposes a single
value system on potentially independent and possibly uncoor-
dinated decision makers, and so creates a group, in the sense
of a super-individual, byfiat.

An alternative approach is to broaden the applicability of the
classical approach by including social considerations into the
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utility functions, such as inequity aversion, fairness, and re-
ciprocal kindness. Researchers report more accurate modeling
of human behavior in certain realistic settings [21–24]. How-
ever, as discussed earlier, accounting for social considerations
via classical utility functions is tantamount to simulating so-
cial behavior with a mechanism designed for asocial behavior.
Simply put, it is the wrong tool. The challenge is to develop a
methodology that (a) possesses some form of logical and inter-
nal consistency between individual and group-level interests,
and (b) admits a well-defined concept of optimality. This goal
requires a new approach to the formulation of decision prob-
lems.

Decision Formulation

To motivate a re-formulation of the multi-agent decision
problem, it will be helpful to change the context and consider
first an epistemological decision problem. Suppose an agent
is confronted with a number of propositions, all of which are
possibly true, but only one of which is in fact true. The agent
could insist on a single answer—”the truth and nothing but the
truth”—but if the evidence is not sufficient to identify a single
proposition as true, such behavior would be temerarious. A
more circumspect investigator would, in the interest of avoid-
ing error, eliminate from consideration only those possibilities
that are unlikely to be true or that, even if true, are of little con-
sequence (as Popper noted, “Yet we must also stress thattruth
is not the only aim of science.We want more than truth: what
we look for isinteresting truth” [25, p. 229, emphasis in orig-
inal]), and continue to investigate until sufficient evidence is
obtained to identify the true proposition.

The pragmatic philosopher William James referred to this
formulation of a decision problem aserror-avoiding: “There
are two ways of looking at our duty in the matter of opinion,—
ways entirely different, and yet ways about whose difference
the theory of knowledge seems hitherto to have shown very
little concern. We must know the truth, and we must avoid
error,—these are our first and great commandments as would-
be knowers; but they are not two ways of stating an identical
commandment, they are two separable laws. . . Believe truth!
Shun error!—these, we see, are two materially different laws;
and by choosing between them we may end by coloring differ-
ently our whole intellectual life. We may regard the chase for
truth as paramount, and the avoidance of error as secondary;or
we may, on the other hand, treat the avoidance of error as more
imperative, and let truth take its chance” [26, pp. 17,18, em-
phasis in original].

Simply put, an error-avoider is a cautious truth-seeker; one
who does not insist on identifying a unique solution in all cir-
cumstances. There are various degrees of error-avoidance,de-
pending on the amount and quality of information available.
Ideally, one is able to eliminate all but one proposition, thereby
exposing the true one. But in general, there may be several
non-eliminated propositions, each with a claim to being true.
An error-avoider refines its choices to the extent warrantedby
the information, but is not obligated to settle on a unique solu-
tion.

The philosopher Isaac Levi [27] has defined a rigorous ap-

proach to the error-avoidance formulation of the decision prob-
lem. As discussed above, the proximate aim of the agent is to
avoid error, but this aim is tempered by a demand for infor-
mation. Information, in this context, is obtained by eliminat-
ing propositions from serious consideration. Levi constructs
two utilities to account for these competing criteria: an error-
avoidance utility and an informational value utility.

Let U = {u1, u2, . . . , uN} be a finite set of propositions,
one of which is true, and letB denote a Boolean algebra of
subsets ofU . Then for any setA ∈ B, A is true if and only
if A contains the true element. The error-avoidance utility is
then defined as

T (A) =

{

1 if A is true

0 otherwise
, (7)

whereA is the set of propositions that will not be eliminated.
Note that a conventional utility would have the same structure,
but requiresA to be a singleton set. It is straightforward to see
that T (U) = 1 and thatT is additive over disjoint sets (i.e.,
T (A1 ∪ A2) = T (A1) + T (A2) if A1 ∩ A2 = ∅). Thus,T is
a normalized measure overB.

An agent can guarantee thatT (A) = 1 only by setting
A = U , but this results in no information gain. To temper
the desire to avoid error with the demand for information, the
agent must compute the informational value of each setA. For
reasons that will become clear, this value will be determined
by considering the informational value of rejectingA.

Whether or not it is true,A is assumed to have some in-
trinsic informational value. Such abductive inferences are hy-
pothetical statements of informational importance while tem-
porarily ignoring considerations of veracity. They may take
many forms, including economic, political, moral, cognitive,
aesthetic, or personal. The following assumptions constitute
a reasonable model for informational value: (a) informational
value is non-negative; (b) the informational value of rejecting
the union of two disjoint sets of propositions is equal to the
sum of the informational values of rejecting the individualsets;
and (c) the informational value of rejectingU is unity. This
structure implies that informational valuations comply with the
rules of classical measure theory. LetPR denote a measure that
maps elements ofB to the unit interval.PR(A) is a utility that
represents the informational value that accrues to the agent if
A is rejected. Defining informational value in this way cor-
responds to the error-avoiding view of rejecting propositions,
rather than the conventional view of accepting one and only
one proposition.

The utility PR is not a classical utility because it is a map-
ping of sets of propositions—elements of the Boolean alge-
braB over the proposition spaceU—rather than a mapping
of individual propositions inU . However, if the Boolean al-
gebra contains all singleton sets, the resulting classicalutil-
ity function pR(u) = PR({u}). pR(u) is a mass function,
that is, pR(u) ≥ 0 for all u ∈ U and

∑

u∈U pR(u) = 1,
so PR(A) =

∑

u∈A pR(u). The informational value of non-
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rejection ofA is then defined as

I(A) = 1 − PR(A). (8)

The utility of both avoiding error and acquiring information
is given by a convex combination ofT (A) andI(A), yielding
Levi’s epistemic utility function

φ(A) = αT (A) + (1 − α)I(A), (9)

where0 ≤ α ≤ 1. The parameterα represents the relative
importance that is attached to avoiding error versus acquiring
information. Settingα = 0 puts a premium on avoiding error,
and settingα = 1 places a premium on the desire for informa-
tion regardless of its veracity. As a practical issue,α should
be restricted to the interval[1/2, 1] to ensure that no erroneous
answer is preferred to any correct answer.

By construction,φ is a von Neumann-Morgenstern utility,
even though it is a function ofsetsof propositions, rather than
of single propositions. Consequently, it is invariant to scale
and zero level, and an equivalent utility is

φα(A) =
1

α
φ(A) −

1 − α

α
= T (A) − qPR(A)

=

{

1 − qPR(A) if A is true

−qPR(A) if A is false
(10)

whereq = (1 − α)/α. Thus,0 ≤ q ≤ 1.

To complete the framework, consider the evidence regarding
the propositions. LetPS denote a probability measure over the
Boolean algebraB such thatPS(A) is the probability (e.g., be-
lief or other evidential support) thatA contains the true propo-
sition, and letpS denote the associated mass function. The
expected epistemic utility is

Eφα(A) = [1 − qPR(A)]PS(A) − qPR(A)[1 − PS(A)]

= PS(A) − qPR(A). (11)

It is now evident that expected epistemic utility is maximized
by the largest element ofB for which the probability of truth is
as least as great asq times the informational value of rejection.
Thus, expected epistemic utility is maximized by rejectingall
and only those elements ofU for which pS(u) < qpR(u).
Here,q may be interpreted as theindex of caution. As q in-
creases, the agent rejects more propositions and becomes more
willing to risk error in the interest of obtaining more informa-
tion.

To illustrate the application of Levi’s theory, supposeX
were to consider three hypotheses to explain some observed
symptoms:u1 = “indigestion”, u2 = “food poisoning”, and
u3 = “ulcer”. SupposeX ’s belief regarding the truth of these
three hypotheses arepS(u1) = 0.8, pS(u2) = pS(u3) = 0.1.
Also, supposeX2 considersu2 to be twice as information-
ally valuable asu1, andu3 to be ten times as information-
ally valuable asu1. A reasonable way to compute the infor-
mational value of rejection is to definepR(ui) as the normal-
ized reciprocal of the informational value of retention, yield-
ing pR(u1) = 0.625, pR(u2) = 0.3125, andpR(u3) = 0.0625.

Settingq = 1, only u1 andu3 are retained. Even thoughu1

is by far the most likely cause of the symptoms,u3 is not re-
jected, because the informational value of that hypothesisre-
quires a great deal of evidence that it is not the correct hypothe-
sis before it can be eliminated from consideration. Hypothesis
u2, on the other hand, is not sufficiently important, even if true,
to be retained as a serious possibility.

In the interest of avoiding error while acquiring information,
X is more conservative than an agent demanding a unique res-
olution in the interest of seeking only the truth. With the error-
avoiding approach, the probability of error is0.1, and with the
truth-seeking approach, the probability of error is either0.2
or 0.9. Of course, the price paid for avoiding error is thatX
does not achieve a unique resolution of the issue. Nevertheless,
by rejecting the hypotheses for which the informational value
of rejection exceeds the probability of being true, the retained
hypotheses can be used to guide the search for additional evi-
dence to narrow the decision to a single hypothesis.

Satisficing Theory

An epistemologist makes decisions to gain information,
while a praxeologist makes decisions to achieve goals (suc-
cess). The analogue to a set of epistemological propositions
is a set of possible actions. The degree to which the objective
is not achieved is the degree of failure, and the analogue to
error-avoidance is failure-avoidance. While Levi’s formalism
for optimal error-avoidance is motivated by a lack of sufficient
information to justify a unique answer, it is also well suited to
the analogous praxeological situation of having several possi-
ble actions that can be justified as being adequate.

Transitioning from the epistemological to the praxeological
requires an appropriate analogue to the informational value of
rejection. Informational value is a resource that is conserved
if the proposition is rejected and consumed if a propositionis
retained. For example, if a proposition with little monetary
value (and consequently a high informational value of rejec-
tion) were rejected, the agent would conserve its monetary re-
source. Similarly, if an expensive act (e.g., one that cost agreat
deal of money) were rejected, the agent would not expend the
corresponding money—it would be conserved. By rejecting
an act, the agent effectively conserves the associated resource
(such as monetary costs, damage to needful equipment, expo-
sure to hazards, loss of social status, consumption of energy,
risk to personnel, etc.). Thus, whereas the intent of the epis-
temologist is to acquire information while avoiding error,the
intent of the praxeologist is to conserve resources while avoid-
ing failure.

Many theorists (e.g., [28–31]) have argued that it is unwise
to aggregate conflicting interests into a single preferenceor-
dering. Some have asserted that in a social setting individuals
have two selves. These selves are similar to the “facets” or “as-
pects” of a self as defined by [32], who maintain that an agent,
although an indivisible unit, nevertheless is capable of consid-
ering his or her choice from different points of view, and that
separate utilities may be defined to correspond to each facetof
an individual. A natural way to classify attributes is accord-
ing to their effectiveness and efficiency. Each individualXi
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may be viewed as being composed of two selves: theselecting
self, denotedSi, who evaluates actions in terms of effective-
ness without concern for efficiency, and therejecting self, de-
notedRi, who evaluates actions in terms of efficiency, without
concern for effectiveness. When viewed simultaneously from
both perspectives, the agent is denoted as the concatenation of
these two selves, i.e.,Xi = SiRi.

Praxeological interpretations may now be given to the util-
ity functionspRi

andpSi
, which are mass functions and, hence,

marginal social utilities. For eachui ∈ Ui, pSi
(ui) is a mea-

sure of the effectiveness ofui, and we call it theselectability
mass function. The relationshippSi

(ui) > pSi
(u′

i) means that
ui is more effective thanu′

i in terms of avoiding failure. Sim-
ilarly, pRi

(ui) is a measure of the inefficiency ofui, and we
refer to it as therejectabilitymass function. The relationship
pRi

(ui) > pRi
(u′

i) means thatui is less efficient thanu′
i in

terms of conserving resources. The set

Σi
q = {ui ∈ Ui: pSi

(ui) ≥ qipRi
(ui)} (12)

constitutes the set of actions for which effectiveness, as mea-
sured by the selectability function, is at least as great asqi

times the inefficiency, as measured by the rejectability func-
tion. The setΣi

q is called thesatisficing setfor Xi. The praxe-
ological interpretation ofqi is a measure of caution, as before.
As qi increases, so does the number of actions that are rejected,
indicating that the agent is increasingly willing to risk failure in
the interest of conserving resources. As will become more ap-
parent in the multi-agent case, an appropriate interpretation of
qi is as anindex of negotiation, since loweringqi enlarges the
satisficing set, thereby increasing the opportunities for reach-
ing a compromise. Of course, loweringqi is tantamount toXi

lowering its standards of what is deemed to be acceptable.

The most fundamental way the error-avoidance formula-
tion differs from the classical optimization formulation is that,
whereas the classical formulation involves comparisons ofa
single attribute (utility) between multiple actions to identify
the best one, the error-avoidance formulation involves compar-
isons between multiple attributes (effectiveness and efficiency)
for each action to decide whether or not to reject.

To motivate this alternative concept of decision making,
consider three separate notions: superlative, comparative, and
positive. Much of human decision making employs one of
these notions. Individual rationality is an example of the su-
perlative, where decision makers make global comparisons of
their options and choose the best one. In contrast, heuristic
decision making is an example of the positive, where decision
makers rely upon the belief that a rule that has worked in the
past will also work well in the future (e.g., rule-based expert
systems). Although economic, psychological, philosophical,
engineering, and computer science literatures are repletewith
discussions of these two notions, they are relatively silent re-
garding decision making that is comparative, even though peo-
ple often seem to work toward a decision by first eliminating
bad choices before settling on acceptable ones. They compare
the pros versus the cons, upsides versus downsides, benefits
versus costs, etc. This way of making decisions is more prim-
itive than a total rank-ordering of options (superlative),but is

more sophisticated than simply following heuristic rules (pos-
itive). The idea of viewing an action from two perspectives—
one focused on the positive consequences of adopting it and
the second focused on the negative consequences—is a pow-
erful concept, and one for which a mathematically rigorous
formalization is long overdue.

Just as the colloquial notion of achieving “the best and only
the best” is useful once it has been mathematically formalized
as maximizing utility, the colloquial notion of “getting one’s
money’s worth” is useful once it is formalized. The difference
between these two concepts is significant: the former is in-
trinsically an individual enterprise, while, as shall be shown,
the latter can be extended naturally to groups and individuals
simultaneously.

The termsatisficingwas originally introduced by Simon
[33] as a type of bounded rationality. He proposed to halt
searching for the optimal solution when the expected improve-
ment is insufficient to justify the costs of continuing to search.
The halting criterion is a heuristically defined aspirationlevel.
Thus satisficing, in Simon’s sense, is firmly rooted in individ-
ual rationality and is a heuristic approximation to utilitymaxi-
mization.

The failure-avoidance formulation motivates a new and
mathematically precise definition of satisficing. Reducingthe
set of non-rejected alternatives to the minimum eliminatesas
many options as possible; each of the remaining alternatives
is “good enough” in the sense that its effectiveness outweighs
its inefficiency. Satisficing decisions are optimal in that they
eliminate the maximum number of failure-prone actions.Thus,
satisficing agents are optimal failure-avoiders. Furthermore, if
they succeed in eliminating all but one action, they will be-
come optimizers in the classical sense (as Stirling [34] has
shown, an optimal solution is also a satisficing solution). Thus,
rather than a heuristic approximation to classical optimization,
satisficing is a generalization of classical optimization.

To illustrate the satisficing way of making decisions, sup-
pose thatX is in the market for a new automobile and must
choose from among five alternatives, denotedA throughE.
Three criteria are considered: performance, reliability,and af-
fordability. Table 1 displays the utility of each of the vehicles
for each of these attributes.

Table 1: Utility of vehicle attributes.

Vehicle Performance Reliability Affordability
u p(u) r(u) a(u)
A 3 1 5
B 5 3 1
C 2 4 4
D 1 5 3
E 4 2 2

The optimizer’s formulation of this multi-attribute decision
problem is to demand the best deal by defining a utility func-
tion to be maximized. Assuming thatX weights the three at-
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tributes equally in importance, a global utility may be formed
as the sum of the three attribute-level utilities, yielding

φ(u) = p(u) + r(u) + a(u) (13)

for eachu ∈ {A, B, C, D, E}, as displayed in the second col-
umn of Table 2. Clearly, the unique optimal option isC. But
demanding the best deal is not the only way to frame the prob-
lem. Another way is forX to demand to get its money’s worth.
This formulation does not involve making inter-vehicle com-
parisons; rather, it involves intra-vehicle comparisons of at-
tributes for each alternative. To make these comparisons,X
requires operational definitions of selectability and rejectabil-
ity. Accordingly,X identifies performance and reliability as
selecting attributes, and cost as a rejecting attribute. The val-
ues associated with these attributes are combined, normalized,
and tabulated in the last two columns of Table 2 (the order-
ing on the affordability attribute has been reversed to convert
it to cost). Settingq = 1, selectability exceeds rejectability for
optionsA andC, selectability equals rejectability forD, and
rejectability exceeds selectability forB andE.

Table 2: Global performance and selectability/rejectability
functions.

Vehicle Global Utility Selectability Rejectability
u φ(u) pS(u) pR(u)
A 9 0.133 0.067
B 9 0.267 0.333
C 10 0.200 0.133
D 9 0.200 0.200
E 8 0.200 0.267

Figure 1 provides a cross plot of selectability versus re-
jectability asu is varied over its domain, withpR the ab-
scissa andpS the ordinate. The diagonal line corresponding
to q = 1 constitutes a threshold dividing the satisficing and
non-satisficing alternatives. Although bothC andD are satis-
ficing,D costs more thanC without offering increased benefit.
As will be discussed,C dominatesD. Thus, optionsA andC
are the non-dominated satisficing solutions.

-

6

pR

pS

q = 1

A

B

C D E

Figure 1: Cross-plot of selectability versus rejectability.

This example illustrates the fact that, when the same criteria
are used to define both the optimal and satisficing solutions,the

optimal solution is also satisficing. A key difference between
these two methods is that the satisficing approach provides in-
sight into the attributes of all alternatives, while the optimal
approach focuses exclusively on identifying the best solution
without distinguishing between non-optimal alternatives. For
example, althoughA andB have the same global utility, they
are not equal in terms of satisficing: one givesX its money’s
worth, while the other does not. Of course, at the moment
of truth, X must decide betweenA andC. Since satisficing
decision theory is not designed to provide a unique solution,
ancillary criteria must be evoked to make a final choice. Ways
to do this will be discussed subsequently.

MULTI-AGENT SATISFICING

In the single-agent case, satisficing theory sheds new light
on the decision problem, but is otherwise of limited interest. Its
real power becomes evident when extended to multi-agent sys-
tems. Classical theory interprets optimality in terms of unique
solutions, but in the case of multi-agent decisions this insis-
tence overreaches: the number of different perspectives makes
it logically impossible to choose a single best solution from
considerations internal to the group. In contrast, the satisfic-
ing approach preserves opportunities for negotiation and com-
promise by preserving a set ofadequatechoices rather than
selecting a single “best” solution. As shall be established, it
is possible for a group and all its members to obtain optimal
error-avoiding solutions.

To ensure well-formedness, the concepts of effectiveness
and efficiency must not be re-statements of the same at-
tribute. Consequently, for a single-agent decision prob-
lem, it is reasonable to assume that the selectability of an
attribute should not depend on its rejectability, and vice
versa. Thus,S and R are praxeologically independent.
In a multi-agent setting, however, the interaction between
one agent’s efficiency/effectiveness and another agent’s effi-
ciency/effectiveness can generate praxeological dependencies
between the various selves of a society. Thus, in group set-
tings, the selectability and rejectability measures associated
with effectiveness and efficiency cannot be specified indepen-
dently of each other. A critical aspect of modeling the behav-
ior of a multi-agent society, therefore, is the representation of
the interdependence of both effectiveness and efficiency ofall
possible joint actions that could be undertaken.

The Interdependence Function

Let G = {X1, . . . , Xn} be a society ofn agents with
joint action spaceU = U1 × · · · × Un. Let GS =
{S1, . . . , Sn} denote the collection of selecting selves, and
let GR = {R1, . . . , Rn} denote the collection of reject-
ing selves. Then an equivalent representation of the soci-
ety in terms of the selecting and rejecting selves isGSR =
{S1 · · ·SnR1 · · ·Rn}. Let G′ = {Xi1 , . . . , Xik

} be a sub-
society ofG. Expressed in terms of the corresponding selves,
G′

SR
= {Si1 · · ·Sik

Ri1 · · ·Rik
}. The interdependence func-

tion of G is a mass function of2n variables of the form
pGSR

(u;v) whereu,v ∈ U. It is sometimes useful to em-
ploy the equivalent notationpS1···SnR1···Rn

(u;v). Also, the
interdependence function of the sub-societyG′ is of the form
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pG′
SR

(u′;v′), whereu′,v′ ∈ U
′ = Ui1 × · · · × Uik

.

The interdependence function is a social utility, as defined
earlier, that accounts for all possible effectiveness and effi-
ciency relationships that exist between the selves involved in
a multi-agent decision problem. It does this in the same way
that a multivariate probability mass function accounts forall
statistical dependencies between multiple random phenomena.
Thus, to formulate a multi-agent satisficing problem, the key
task is to define the interdependence function.

Efficient Representations

The interdependence function is a mass function and may
be most simply represented by factoring it into the product of
conditional and marginal mass functions. Graph theory is a
powerful way to express this factorization. In particular,the
flow of influence between selves may be expressed by aprax-
eic network, that is, a directed acyclic graph (DAG) analogous
to a Bayesian network (e.g., see [35, 36]). A praxeic network
for n agents comprises2n vertices (one for each self), with
edges representing influence relationships (either effectiveness
or efficiency) as modeled by conditional social utilities.

Consider the praxeic network of the three-agent system dis-
played in Figure 2. Theparentsof a vertexV , denotedpa (V ),
is the set of vertices that influence it. By inspection it is seen
thatS1 = pa (S2) = pa (S3) = pa (R2) andS2 = pa (R1) =
pa (R3). If a vertex V has no parents, thepa (V ) = ∅.
The children of a vertexV , denotedch (V ), is the set of
vertices that are directly influenced byV . Thus,ch (S1) =
{S2, S3, R2} and ch (S2) = {R1, R3}. The descendants
de (V ) of V is the set of all vertices that are influenced, di-
rectly or indirectly (via children, children’s children, etc.) by
the given vertex. Thus,de (S1) = {S2, S3, R1, R2, R3}, and
de (S2) = ch (S2).

S1

pS2|S1
pS3|S1

pR2|S1

S2

pR1|S2

pR3|S2

S3 R2

R1 R3

Figure 2: A praxeic network for a three-agent society.

The key property of DAGs is theMarkov property: non-
descendant non-parents of a vertex are conditionally indepen-
dent of the vertex, given the state of its parent vertices. This
property may be used to prove the equivalence of a DAG
whose edges are conditional mass functions with a joint mass
function for all of the vertices in the graph (for a proof, see
[35, 37]). Thus, if local influence relationships can be ex-
pressed with a directed acyclic graph, then the influence re-
lationships can be represented by conditional mass functions
where the dependencies flow in only one way: from parents to

children. The interdependence function thus has the form

pS1...SnR1...Rn
(u1, . . . , un; v1, . . . , vn) =

∏n

i=1 pSi| pa (Si)

(

ui| pa (ui)
)

pRi| pa (Ri)

(

vi| pa (vi)
)

,(14)

where, if pa (Si) = ∅, then pSi| pa (Si)(ui| pa (ui)) =
pSi

(ui), the unconditional marginal social utility. The inter-
dependence function corresponding to the DAG illustrated in
Figure 2 is

pS1S2S3R1R2R3
(u1, u2, u3; v1, v2, v3) =

pS1
(u1) · pS2|S1

(u2|u1) · pS3|S1
(u3|u1) ·

pR1|S2
(v1|u2) · pR2|S1

(v2|u1) · pR3|S2
(v3|u2).

For societies that can be characterized by marginal and con-
ditional social utilities defined over small clusters of individ-
uals, a graphical representation provides a convenient wayto
construct a global society model from local relationships.An
important advantage of viewing a multi-agent satisficing deci-
sion problem in terms of graph theory is that it leads to com-
putationally efficient algorithms such as Pearl’s Belief Propa-
gation Algorithm [35] for computing the selectability and re-
jectability functions for the society, any sub-society, orany in-
dividual. Although Cooper [38] proved that the computational
complexity of a general Bayesian network is NP-hard, many
interesting networks will involve only sparsely linked vertices,
in which case the published algorithms offer tractable perfor-
mance.

Satisficing Games

A satisficing game, as defined by Stirling [34], is a triple
(G,U, pGSR

). Given the game scenario, the first step is to
identify operational definitions of selectability or rejectability
for each of the2n selves in ann player game. The next step is
to define the relationships that exist between the various selves
and to construct the praxeic network that consequently defines
the interdependence function. Once the interdependence func-
tion is defined, the selectability and rejectability functions of
the society and all sub-societies may be obtained by marginal-
ization.

The joint selectability and rejectability mass functionsof a
societyG are given as

pGS
(u) =

∑

{v}

pGSR
(u;v) (15)

pGR
(v) =

∑

{u}

pGSR
(u;v) (16)

and, for any sub-societyG′ of G, the corresponding marginal
selectability and rejectability social utilities are, foru

′ ∈ U
′

(in the not-sum notation introduced in Theorem 1),

pG′
S
(u′) =

∑

¬{u′}

pGS
(u) (17)

pG′
R
(u′) =

∑

¬{u′}

pGR
(u). (18)
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In particular, theindividual marginal selectability and re-
jectability mass functionsare, fori = 1, . . . , n,

pSi
(ui) =

∑

¬{ui}

pGS
(u) (19)

pRi
(ui) =

∑

¬{ui}

pGR
(u). (20)

Once the marginal selectability and rejectability functions
have been computed, the individually satisficing sets are easily
obtained for each agent as

Σi
qi

= {ui ∈ Ui: pSi(ui)
≥ qipRi(ui)

} (21)

for i = 1, . . . , n. Notice that each agent may have its ownq
value, which controls its openness to negotiation. The Carte-
sian product of the individually satisficing sets is called the
satisficing rectangle:

RG = Σ1
q1

× · · · × Σn
qn

. (22)

The satisficing rectangle is the set of all option vectors that
are simultaneously satisficing for all of the individuals. It does
not, however, represent a group preference. The set of op-
tion vectors that are jointly satisficing for the groupG is com-
puted from the joint selectability and rejectability functions
(15) and (16), and for any sub-societyG1, the corresponding
sub-society selectability and rejectability functions are given
by (17) and (18). For a societyG the jointly satisficing setis

Σ
G

qG
= {u ∈ U: pGS

(u) ≥ qGpGR
(u)}, (23)

whereqG is theq-value for the group. Furthermore, for any
sub-societyG1 = G1

S
G1

R
, the sub-society satisficing set with

corresponding action subspaceU1 is

Σ
G1

q
G1

= {u1 ∈ U1: pG1
S
(u1) ≥ qG1

pG1
R
(u1)}. (24)

Endogeny and Social Coherence

The satisficing solution concept induces an emergent pref-
erence ordering for the society. Define the group preference

relationship{
s
≻G,

s
∼G}, where

u
s
≻G u

′ if u ∈ ΣG andu
′ 6∈ ΣG

u
s
∼G u

′ if u,u′ ∈ ΣG or u,u′ 6∈ ΣG

. (25)

It is important to appreciate that this group-level preference
ordering is determined by the endogenous relationships that
exist among the individuals, and need not correspond to an
externally conceived notion of group functionality. It is an
emergent manifestation of the social welfare of the group as
a function of the way the unconditional and conditional pref-
erences of its members combine. Social welfare, in this sense,
thus accounts for all tendencies for cooperation and competi-
tion that exist among the individuals, but is not an aggregation
of individual welfares. Since it is emergent, its exact nature
will generally not be predictable in advance, even for a coop-
eratively disposed group.

The individually satisficing sets also induce agent-level

preference relationships{
s
≻i,

s
∼i}, where

ui

s
≻i u′

i if ui ∈ Σi
qi

andu′
i 6∈ Σi

qi

ui
s
∼i u′

i if ui, u
′
i ∈ Σi

qi
or ui, u

′
i 6∈ Σi

qi

. (26)

These individual and group preference orderings provide a
means for reconciling group and individual preferences. The
compromise setCG consists of all joint actions that are simulta-
neously satisficing for the group and for each of its constituent
members, and is defined by the intersection of the jointly sat-
isficing set and the satisficing rectangle:

CG = RG ∩ Σ
G

qG
. (27)

This set may be empty, but that is not a weakness of the the-
ory. Rather, it is the recognition that societies can be populated
by individuals who are so diametrically opposed to each other
that they reach an impasse and cannot agree to do anything
jointly satisficing. However, the following weak relationship
always exists betweenRG andΣ

G

qG
.

Theorem 2 (The negotiation theorem)Let G be a society
and letG1 andG2 be arbitrary disjoint sub-societies with ac-
tion subspacesU1 and U2, respectively. Ifu1 ∈ ΣG1 and
qG ≤ qG1 , then there existsu∗

2 ∈ U2 such that(u1,u
∗
2) ∈

ΣG1∪G2 .

Proof This result is established by the contra-positive,
namely, that if(u1,u2) 6∈ ΣG1∪G2 for all u2 ∈ U2, then
u1 6∈ ΣG1 . SupposepGS

(u1,u2) < qGpGR
(u1,u2) for

all u2 ∈ U2. Then pG1
S
(u1) =

∑

{u2}
pGS

(u1,u2) <

qG

∑

{u2}
pGR

(u1,u2) = qGpG1
R
(u1) ≤ qG1

pG1
R
(u1), hence

u1 6∈ ΣG1 . 2

Although this theorem is simple, it is important: it estab-
lishes thatG1 need not be subjugated in order to accommodate
the interests of the society. In particular, forG1 = {Xi}, every
individual has a seat at the table in the sense that, if an action
is individually satisficing for it, then that action is an element
of at least one jointly satisficing solution. This conditionis
perhaps the weakest possible for meaningful negotiations to
occur.

The ability of an agent to adjust its index of negotiationqi

provides a mechanism for autonomously exploring the effects
of constraints on the decision problem. This is an important
new capability. If a given set of constraints leads to a solution
judged to be inadequate, conventional methodologies require
the constraints to be revised by trial-and-error—their effects
cannot be judged without generating a new solution. By repre-
senting explicitly the effects of social constraints on group de-
cisions, satisficing game theory makes those constraints avail-
able for dynamic modification by the agents themselves, thus
increasing the environmental variability with which the group
can cope. For example, agents may resolve an impasse by re-
laxing their standards of performance. This may be done by
each player incrementally reducing itsqi and re-computing
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the compromise set until it becomes non-empty. An impor-
tant feature of this procedure is that each agent can controlits
own standards of performance. Once an agent has reached the
limit of its willingness to reduce its standards, it may holdits
qi value constant. If the compromise set remains empty after
some agent has reduced itsqi to its minimum acceptable level,
then an impasse cannot be avoided. Such a society is dysfunc-
tional. However, it may still be possible for some sub-society
to break away from the larger group and continue to negotiate.

The compromise set represents the set of all decision vectors
that are simultaneously acceptable to the group and to each
member. Assuming that, perhaps as a result of negotiation, it
is non-empty, there is no guarantee that it is a singleton; there
may be multiple compromise decisions. The compromise set
can be reduced by first eliminating any satisficing solutions
that are dominated by superior solutions. For everyu ∈ U let

BS(u) = {v ∈ U : pR(v) < pR(u) andpS(v) ≥ pS(u)}

BR(u) = {v ∈ U : pR(v) ≤ pR(u) andpS(v) > pS(u)},

(28)

and define the set of alternatives that arestrictly better than
u: B(u) = BS(u) ∪ BR(u); that is, B(u) consists of all
possible alternatives that are either less rejectable and not less
selectable thanu, or more selectable and not more rejectable
thanu. If B(u) = ∅, then no alternative can be preferred tou

in both selectability and rejectability. Thenon-dominatedset
is NG = {u ∈ U : B(u) = ∅}.

Theoptimal compromise setis

ΩG = NG ∩ CG. (29)

All elements of the optimal compromise set lay claim
to some notion of optimality. For example,uM =
arg maxu∈ΩG

{pS(u) − qGpR(u)} maximizes the difference
between group selectability and group rejectability;uR =
arg minu∈ΩG

pR(u) minimizes group rejectability, anduS =
arg maxu∈ΩG

pS(u) maximizes group selectability. The re-
maining elements ofΩG represent other optimal tradeoffs be-
tween effectiveness and efficiency. If the indices of negotiation
for the agents are sufficiently reduced, an optimal compromise
will eventually exist.

Altruism

Social utilities and the satisficing solution concept provide
a rigorous approach to the longstanding problem of altruism.
While usually understood to mean that one is willing to sac-
rifice to benefit another, altruism could also take a malevolent
form, in which an agent sacrifices to injure another. In either
case, an altruistic agent by definition takes into consideration
the preferences of others when defining its own preferences.
By design, classical utilities accommodate only self-interest,
and in this framework altruism can be accommodated only by
redefining self-interest. This has proven highly problematic,
not only philosophically but also in practice. It is possible to
simulate benevolence or malevolence in particular situations,
but the redefinition tends to be too specific and context depen-
dent. In particular, it can not distinguish betweencategorical

altruism, the willingness to always relinquish one’s own self-
interest, andconditional altruism, a willingness to relinquish
one’s own self-interest if, and only if, (a) the other wishesto
take advantage of the offered largesse (for benevolent altru-
ism), or (b) the other wishes to act in a way that elicits punish-
ment (for malevolent altruism). This more sophisticated ex-
pression of altruism is simply not possible with classical util-
ities, since they are functions of possible player actions,not
preferences for action.

In contrast, a socially rational agent may dynamically adjust
its preferences as a function of the preferences of others. For
example, supposeX1 were willing to defer toX2 by preferring
u′

1 if X2 were to preferu′
2, otherwise,X1 would preferu′′

1 .
This accommodation can be implemented by setting

pS1|S2
(u1|u2) =



























{

1 u1 = u′
1, u2 = u′

2

0 u1 6= u′
1, u2 = u′

2
{

0 u1 = u′
1, u2 6= u′

2

1 u1 = u′′
1 , u2 6= u′

2

. (30)

Conditional social utilities permit the agent to examine each
possible hypothetical situation and adjust its preferences as if
the other agent actually most preferred to select or reject each
of its possible alternatives. These specifications can be deter-
mined before the actual preferences ofX2 become available to
X1. OncepS2

is given,X1’s marginal selectability becomes
pS1

(u1) =
∑

u2
pS1|S2

(u1|u2)pS2
(u2), which takes into ac-

count both its own andX2’s preferences. From this construc-
tion it is clear that, ifX2 does not strongly preferu′

2, thenX1’s
preferences are essentially unaltered. In this way,X1 consid-
ersX2’s preferences but does not need to “throw the game”
categorically in order to demonstrate a willingness to givedef-
erence toX2.

THE ULTIMATUM GAME

The Ultimatum game is a much-studied example of a sim-
ple social relationship where it is difficult to reconcile observed
behavior with the classical game-theoretic solution [5, 39–42].
In this two-player game, a proposerX1 offers a responderX2

a fraction of a sum of money, andX2 chooses whether to ac-
cept (in which case the two divide the money as proposed) or
to refuse (in which case neither player receives anything).In
either case, the game is over. Within the framework of classical
game theory, the unique subgame perfect equilibrium solution
is for X1 to offer the smallest possible non-zero amount, and
for X2 to accept what is offered. Interestingly, such a strategy
is rarely adopted by human decision makers. Proposers are in-
clined to offer fair deals and responders are inclined to reject
unfair deals.

Ultimatum is relevant to the multi-agent systems commu-
nity as, for example, a model of bargaining and negotiation for
various applications including electronic commerce [43].Be-
cause of its simplicity, the game has become a prototype for
decision problems where social behavior is not adequately ex-
plained by the hypothesis of individual rationality.

In an attempt to bring the classical game-theoretic results
into line with experimental results, researchers in behavioral
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economics have proposed to alter the payoff for the Ultima-
tum game by modifying the utility functions. For example,
Fehr and Schmidt [22] augment utility by non-pecuniary terms
that account for both disadvantageous and advantageous in-
equity, and show that, with this modified utility, it is possible
to achieve equilibria that are “fair” from the perspectivesof
both players. Their approach fundamentally changes the game,
however, because the players adopt new utility functions that
categorically re-define their preferences. As Sen observed: “It
is possible to define a person’s interests in such a way that no
matter what he does he can be seen to be furthering his own
interests in every act of choice. . . no matter whether you are
a single-minded egoist or a raving altruist or a class-conscious
militant, you will appear to be maximizing your own utility in
this enchanted world of definitions” [44, p. 29].

The following analysis demonstrates that a socially rational
formulation of the game provides a natural way to incorporate
social attributes directly into the game description. It does not
rely on anad hocredefinition of utility functions that, by their
structure, are designed only for individually rational agents.
Although the model makes specific predictions about behavior,
we do not claim that this represents actual human behavior.

Classical Formulation of the Ultimatum Game

The action set for the proposer of the original Ultima-
tum game is a continuum (the unit interval). Fortunately,
the minigame of Gale et al. [45], in which the proposer can
make only one of two offers, preserves Ultimatum’s essence
while simplifying the analysis. LetXi have the action set
Ui = {ui, u

′
i}, and letSi andRi denote the respective select-

ing and rejecting selves fori = 1, 2. Let X1’s two offers beh
andℓ (high and low), with0 < ℓ ≪ h ≤ 1

2 , corresponding to
the fraction of the fortune offered toX2. The responder’s op-
tions area (accept) andr (refuse). The standard payoff matrix
for this minigame is displayed in Table 3. The unique Nash
equilibrium is forX1 to playℓ andX2 to playa.

Table 3: Payoff matrix for the Ultimatum minigame.

X2

X1 a r
h (1 − h, h) (0, 0)
ℓ (1 − ℓ, ℓ) (0, 0)

In the classical formulation, social coherence can be vio-
lated by the exogenous imposition of a social preference. For
example, there is strong empirical evidence that groups reveal
a preference for fair treatment [46, 47]. In the minigame, in-
dividual rationality dictates thatℓ ≻1 h. If fair treatment is
imposed on the minigame then(h, a) ≻G (ℓ, a) and(h, r) �G

(ℓ, r). SinceX1’s preference is never preferred by the group,
social coherence is violated. In this case at least, empirical
behavior appears to be more consistent with social coherence
than with individual rationality.

Satisficing Formulation of the Ultimatum Game

To frame Ultimatum as a satisficing game, the payoff matrix
must be replaced with a social utility function that accounts for
the preferences of the four selves involved:S1, S2, R1, and
R2. In this formulation theintemperanceof X1 and theindig-
nationof X2 are the dominant social attributes of the players.
These attributes are denoted by an intemperance indexτ and
an indignation indexδ, respectively, where0 ≤ τ ≤ 1 and
0 ≤ δ ≤ 1. The conditionτ ≈ 1 means thatX1 is extremely
avaricious, whileτ ≈ 1

2 means thatX1 is willing to restrain
its desire for wealth. The conditionδ ≈ 1 means thatX2 is
easily offended, whileδ ≈ 0 means thatX2 is easily pleased.
For the present purpose, assume that these parameters are fixed
properties of the players.X1 may temper its avarice because
of benevolence towardX2, because of an aversion to inequity,
or because of suspicion thatX2 may refuse an unfair offer—
the precise motive is not important here. The key point is that
the parameters are treated as endogenous attributes, not the re-
sult of exogenous forces that cause the players to change their
utilities.

There is not a unique way to define the selecting and reject-
ing selvesS1, S2, R1, andR2 of the players, but it is reason-
able to associate the selecting self with the goal of the game,
which is to receive as much of the fortune as possible. The
rejecting self is associated with the efficiency with which the
goal is pursued. This attribute, however, must be independent
of effectiveness, and hence cannot be a function of the ratio
of the fortune one receives. It must therefore be a function of
whether or notanyreward is received. Thus, both players are
inefficient if, and only if, the responder refuses the offer.

SinceX1 plays first,X1’s utility structure need not be condi-
tioned onX2’s response (although this remains a possibility).
Thus,X1’s social utilities are unconditional.S1’s selectability
(as a function of intemperance) is expressed as

pS1
(h) = 1 − τ and pS1

(ℓ) = τ. (31)

S1’s rejectability is a function ofX2’s indignation as well as
its own intemperance, and is expressed as

pR1
(h) = τ(1 − δ) and pR1

(ℓ) = 1 − τ(1 − δ); (32)

that is, ifX2 were highly indignant (δ ≈ 1), offering the high
fraction to the responder would have low rejectability.

SinceX2 makes the second move, the preferences ofX2’s
selves will be conditioned onX1’s choice. DefinepS2|S1

as

pS2|S1
(a|h) = 1 and pS2|S1

(r|h) = 0. (33)

If, however,S1 were to selectℓ, thenS2 would be indignant
and would prefer to selectr with weightδ anda with weight
1 − δ. Thus,

pS2|S1
(a|ℓ) = 1 − δ and pS2|S1

(r|ℓ) = δ. (34)

Next considerX2’s rejecting self,R2. If S1 were to select
h, thenR2 would prefer to rejectr. Thus,

pR2|S1
(a|h) = 0 and pR2|S1

(r|h) = 1.
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If S1 were to selectℓ, thenR2 would be indignant and would
prefer to rejecta with weightδ andr with weight1− δ. Thus,

pR2|S1
(a|ℓ) = δ and pR2|S1

(r|ℓ) = 1 − δ.

The resulting two-agent interdependence function can be
factored according to the chain rule of probability. In general,
there are many ways to apply this rule, but for this application,
an obvious factorization is

pS1S2R1R2
(u1, u2; v1, v2) = pS2|S1R1R2

(u2|u1; v1, v2)

·pR1|S1R2
(v1|u1; v2) · pR2|S1

(v2|u1) · pS1
(u1). (35)

Consider each of the factors on the right hand side of (35) in
turn. In the Ultimatum game,S2’s conditional preferences de-
pend only on the choiceS1 makes and are not influenced by
R1 or R2, sopS2|S1R1R2

reduces topS2|S1
. BecauseR1 is not

influenced by any other self, the termpR1|S1R2
may be replaced

by pR1
. The final terms are already in a form defined by the

game model. Substituting the simplified terms into (35) yields

pS1S2R1R2
(u1, u2; v1, v2) =

pS1
(u1) · pS2|S1

(u2|u1) · pR1
(v1) · pR2|S1

(v2|u1).(36)

The Ultimatum game provides an opportunity for categori-
cal altruism by the proposer, and conditional altruism by the
responder [see (31)]. If the proposer is purely selfish or com-
pletely intemperate (τ = 1), no deference would be shown for
the responder’s welfare (or no concern for retaliation). How-
ever, if τ < 1, the proposer accommodates the preferences of
the responder (or acts to reduce the potential for retaliation)
at its own expense. The responder exhibits malevolent condi-
tional altruism (to the degree defined byδ) by sacrificing its
own welfare to punish the proposer for an unfair offer [see
(34)]. But if the proposer makes a fair offer, then the respon-
der’s utility function reflects acceptance [see (33)].

The Satisficing Rectangle

The Ultimatum minigame is such that its marginals are eas-
ily computed without resorting to a formal algorithm. Ap-
plying (15) and (16), then (19) and (20) in sequence, the se-
lectability and rejectability marginals for the responderare

pS2
(u2) =

∑

{u1}

∑

{v1}

∑

{v2}

pS2|S1
(u2|u1) · pR1

(v1) ·

pR2|S1
(v2|u1) · pS1

(u1)

=
∑

{u1}

pS2|S1
(u2|u1) · pS1

(u1)

=

{

1 − τδ for u2 = a
τδ for u2 = r

(37)

and

pR2
(v2) =

∑

{u1}

∑

{u2}

∑

{v1}

pS2|S1
(u2|u1) · pR1

(v1) ·

pR2|S1
(v2|u1) · pS1

(u1)

=
∑

{u1}

pR2|S1
(v2|u1) · pS1

(u1)

=

{

τδ for v2 = a
1 − τδ for v2 = r

. (38)

Now recall that the satisficing set for a decision maker is
the set of actions for which the selectability is at least as great
as the product ofq, the index of caution, and the rejectability.
Thus, settingq = 1 and comparing (31) with (32) and (37)
with (38), the satisficing sets for the proposer and responder
are

Σ1(τ, δ) = {u1 ∈ U1: pS1
(u) ≥ pR1

(u1)}

=











{h} if τ < 1
2−δ

{ℓ} if τ > 1
2−δ

{h, ℓ} if τ = 1
2−δ

Σ2(τ, δ) = {u2 ∈ U2: pS2
(u) ≥ pR2

(u1)}

=











{a} if τ < 1
2δ

{r} if τ > 1
2δ

{a, r} if τ = 1
2δ

.
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Figure 3 displays the satisficing rectangle for the Ultimatum
game as a function ofτ andδ. Values ofτ andδ that lie above
the curve labeledτ = 1

2−δ
(regionsI andIV ) result in the

proposer offering a low fraction, and values that lie below this
curve result in a high fraction. For(τ, δ) pairs that lie on the
line, bothh andℓ are satisficing for the proposer. Next, con-
sider the responder. Values ofτ andδ that lie above the curve
labeledτ = 1

2δ
(regionsIII andIV ) result in the responder

refusing the offer, and values that lie below this curve result in
accepting the offer. For(τ, δ) pairs that lie on the line, both
a andr are satisficing for the responder. The two curves di-
vide the(τ, δ) square into four regions, corresponding to four
different satisficing rectangles (ignoring boundaries):

RG(τ, δ) = Σ1(τ, δ) × Σ2(τ, δ)

=















{(ℓ, a)} for (τ, δ) ∈ I
{(h, a)} for (τ, δ) ∈ II
{(h, r)} for (τ, δ) ∈ III
{(ℓ, r)} for (τ, δ) ∈ IV

.

In regionI, a low fraction is offered and accepted, which is
the Nash solution. It obtains when the proposer is intemper-
ate and the responder is not readily indignant. In regionII,
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a high fraction is offered and accepted. This solution obtains
when the proposer is temperate and the responder reasonable.
In regionIII, a high fraction is offered and refused, revealing
an unreasonable indignation on the part of the responder. In
regionIV , a low offer is refused, since the responder is indig-
nant in the face of an intemperate proposer.

Group Satisficing Solutions

The satisficing set for a society constitutes all joint actions
that are good enough for the society collectively. For the Ulti-
matum game withq = 1,

ΣG(τ, δ) =

{(u1, u2) ∈ U1 × U2: pS1S2
(u1, u2) ≥ pR1R2

(u1, u2)},

where the joint selectability and joint rejectability massfunc-
tions are computed as

pS1S2
(u1, u2) =

∑

{v1}

∑

{v2}

pS2|S1
(u2|u1) · pR1

(v1)

·pR2|S1
(v2|u1) · pS1

(u1)

pR1R2
(v1, v2) =

∑

{u1}

∑

{u2}

pS2|S1
(u2|u1) · pR1

(v1)

·pR2|S1
(v2|u1) · pS1

(u1).

The resulting joint selectability and joint rejectabilityfunctions
are

pS1S2
(h, a) = 1 − τ

pS1S2
(h, r) = 0

pS1S2
(ℓ, a) = τ − τδ

pS1S2
(ℓ, r) = τδ

and

pR1R2
(h, a) = τ2δ − τ2δ2

pR1R2
(h, r) = τ − τδ − τ2δ + τ2δ2

pR1R2
(ℓ, a) = τδ − τ2δ + τ2δ2

pR1R2
(ℓ, r) = 1 − τ + τ2δ − τ2δ2.

Settingq = 1, the jointly satisficing set for the group is ob-
tained by comparing the above functions for each joint action.
Figure 4 displays this set as a function ofτ andδ as defined by

ΣG(τ, δ) =







































{(ℓ, a)} for (τ, δ) ∈ A
{(ℓ, a), (ℓ, r)} for (τ, δ) ∈ B
{(ℓ, r)} for (τ, δ) ∈ C
{(ℓ, a), (ℓ, r), (h, a)} for (τ, δ) ∈ D
{(ℓ, r), (h, a)} for (τ, δ) ∈ E
{(h, a), (ℓ, a)} for (τ, δ) ∈ F
{(h, a)} for (τ, δ) ∈ G

.

Notice that regionsB, D, E, andF do not have unique
solutions. In regionB, for example, both joint actions(ℓ, a)
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Figure 4:(τ, δ) regions for the jointly satisficing sets.

and (ℓ, r) are jointly satisficing for the(τ, δ) values in that
region (high intemperance, low to moderate indignation). The
society, if it were to act as a single entity, would not reject
either of these joint actions—either would be good enough.

It is important to understand that a jointly satisficing set is a
purely context-free mathematical result that need not havean
obvious operational interpretation, but it is certainly possible
to impose one. For regionsA, F , andG, a group preference
to obtain the fortune can be deduced. For regionE, there is
a group preference to be fair. For regionD a possible group
preference is to at least do something that is logical (such as
not punishing without cause). For regionC, the only possible
group preference is to be dysfunctional. RegionB amounts to
indifference.

Compromise

By inspection, the compromise set for the Ultimatum game
is

CG(τ, δ) = RG(τ, δ) ∩ΣG(τ, δ)

=















(ℓ, a) for (τ, δ) ∈ I ∩ (A ∪ B ∪ D ∪ F ) = I \ E
(h, a) for (τ, δ) ∈ II ∩ (E ∪ F ∪ G) = II
∅ for (τ, δ) ∈ (III ∪ I) ∩ E
(ℓ, r) for (τ, δ) ∈ IV ∩ (B ∪ C ∪ E) = IV

.

Figure 5 displays the(τ, δ) regions that correspond to joint
actions in the compromise set. For all(τ, δ) 6∈ (III ∪ I) ∩ E,
there is a unique pair of individual choices consistent withthe
society’s choice—an optimal compromise. It is possible to
operationalize society/individual satisficing for each ofthese
joint actions. For joint actions(h, a) and (ℓ, a), the optimal
compromise is to share the fortune. For the joint action(ℓ, r),
it is to be dysfunctional—players are so mismatched in temper-
ament that failure cannot be avoided. The joint action(h, r) is
never a compromise solution.

COORDINATED GRAPH SEARCH

A team of mobile autonomous agents is tasked to visit all of
the nodes of an undirected graph whose edges represent paths
between the nodes. Each agent possesses a copy of the graph
and is able to communicate with other agents within a speci-



136 The Open Cybernetics and Systemics Journal, 2008, Volume 2 Archibald et al.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

δ

τ

(ℓ, r)

∅ ∅

(ℓ, a)

(h, a)

Figure 5:(τ, δ) regions for the compromise set.

fied radius. As long as the group maintains full communica-
tion connectivity (relaying messages if necessary), everyagent
will be continuously updated regarding which nodes have been
visited. The performance criteria for this society is that (a) all
nodes are visited by at least one agent such that duplicationis
kept small, and (b) full communication connectivity is main-
tained. It is assumed that the agents are homogeneous, the
nodes are of equal value to the search effort, and the commu-
nication range is identical for all agents. When at a node, an
agent’s option set consists of the node it is at and all adjacent
nodes. While on an edge, its option set will consist of the
nodes that define the edge.

This scenario can be viewed as a generalizedn-agent ver-
sion of the classic traveling salesman problem, the complexity
of which grows combinatorically with the number of nodes.
The computational complexity of an optimal solution to this
n-agent problem grows even faster, since it depends on the
number of nodes in the graph, the number of agents, and the
need to satisfy the communication constraint. Although it is
impractical to compute the optimal solution, there are many
ways to formulate a satisficing solution.

The Social Model

Since the search scenario is dynamic, the associated social
utilities must evolve in time as agents make decisions and tra-
verse the graph. It is assumed that time flows in discrete steps
at each timet = 0, 1, 2, . . . , and that each agent has knowl-
edge of the positions of all agents as well as the status of all
nodes (visited or not visited) up to timet− 1. Thus, the social
utilities for this problem will be functions of time as well as of
the options.

Many social models could be defined to characterize this
application. In contrast with the Ultimatum game, in which
behavior is conditioned on the preferences of others, we em-
ploy two social models—one for the group and one for the
individuals—and identify solutions that are consistent with
both. This approach demonstrates the versatility of the sat-
isficing approach to group and individual decision making.

Although two separate models are employed, both use the
same operational definitions of selectability and rejectability.

Recall that the aim of the decision maker (individual or group)
is to conserve resources (associated with rejectability) while
avoiding failure (associated with selectability). In the context
of this game, failure occurs if one or more nodes are not vis-
ited, and resources are consumed if connectivity is lost.

The Individual Model

The individual model requires each agent to calculate its se-
lectability and rejectability marginals at each timet using only
knowledge of the state of the system (i.e., agent positions and
node status) but without explicitly accounting for the future
preferences of other agents. Because the calculations are sim-
ple, each agent can determine the satisficing sets for all agents
and hence the entire satisficing rectangle at each timet.

Individual selectabilitypSi
for each agent is determined as

follows. If the option set contains unvisited nodes, then

pSi
(u; t) ∝

{

1 if u has been visited prior to timet
5 if u has not been visited prior to timet

,

where the symbol∝ implies that the values are normalized to
become mass functions. If there are no unvisited nodes in the
agent’s option set, the agent performs a breadth-first search of
the nodes connected to each of the nodes in its action set. Each
such actionu is then weighted based on the depth,D(u), of
the first unvisited node encountered ifu is adopted. A smaller
depth will receive a larger weight. These weights are then nor-
malized across the action space, yielding

pSi
(u; t) ∝

1

D(u)
. (39)

Since it is associated with the loss of connectivity, the re-
jectability of an action for agentXi should be a function of
the current distancedic betweenXi and its nearest neighbor.
If taking actionu causesdic to approachdmax, the maximum
communication range, the rejectability must increase sharply
in order to avoid communication failure. Letdi(u) denote the
distance betweenXi and its nearest neighbor that will result if
actionu is taken. A simple mechanism to increase rejectability
in proportion to the propensity of an option to result in com-
munication failure is

pRi
(u; t) ∝ 2

max{1,
di(u)

dic
,
2di(u)

dmax
}
. (40)

Thus, if no action increases the distance to the nearest neigh-
bor, or moves the agent to more than half of the maximum
communication distance from its nearest neighbor, the re-
jectability of all options is uniform. But if an action causes
the agent’s position to exceed either of those limits, then the
rejectability of that action increases exponentially withthe
amount the limitation is exceeded.

Each agent then forms its individually satisficing set as

Σi(qi, t) = {ui ∈ Ui: pSi
(ui; t) ≥ qipRi

(ui; t)}. (41)

The satisficing rectangle is then

ℜ(t) = Σ1(q1, t) × Σ2(q2, t) × · · · × Σn(qn, t). (42)
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The Group Model

Each agent can also compute its version of a jointly satis-
ficing set. To do this, it needs operational definitions of what
is selectable and rejectable for the group. Since this society
is cooperatively disposed, a simple group social model is im-
mediate: group selectability is proportional to the numberof
unvisited and unique nodes directly accessible by the group,
and group rejectability is determined by the loss of connectiv-
ity.

The selectability at timet of a group action vectoru =
(u1, . . . , un) ∈ U = U1 × U2 × · · · × Un is proportional
to: (a) the number of unique unvisited nodesu reaches and (b)
the total number of unique nodes accessible byu (whether or
not visited). The first criterion encourages the group to visit
new nodes, and the second encourages the group to spread out
and seek new territory. For example, in a five-agent system, if
u causes the group to move to four unique unvisited nodes and
one visited node, it will receive a larger selectability than u

′,
which causes the group to move to three unvisited nodes and
two visited nodes. If, however, there are no currently available
options that will take the group to unvisited nodes, then the
group will at least be encouraged to move to as many different
nodes as possible, thereby spreading out in an attempt to seek
the remaining unvisited nodes. To formalize this structure, let
Nnv(u, t) denote the number of unique unvisited nodes acces-
sible by joint actionu at timet, and letNtot(u, t) denote the
total number of unique nodes (whether or not visited) acces-
sible byu at timet. Then the group selectability at timet is
given by

pSG
(u, t) ∝ Nnv(u, t) + Ntot(u, t). (43)

Since the group as a whole shares the requirement to main-
tain connectivity, group rejectability is concerned with,and
only with, maintaining group connectivity. This criterionre-
sults in an extremely simple group rejectability function:

pRG
(u, t) =

{

0 if u maintains comm. at timet
1 otherwise

. (44)

All joint options that do not disrupt connectivity are jointly
satisficing, and the joint satisficing set has the form

ΣG(t) = {u: pRG
(u, t) = 0}. (45)

The Negotiation Process

Since each agent is able to compute the satisficing rectangle
and the jointly satisficing set, it may also form the compromise
set

CG(t) = RG(t) ∩ ΣG(t). (46)

If Cq is empty, then the negotiation mechanism of satisficing
game theory is used: agents incrementally lower theirqi val-
ues until the compromise set is no longer empty. This models
a form of autonomous negotiation in which each agent com-
promises and gives up a little performance to find a solution
that is satisfactory to the entire group.

If the compromise set contains more than one vector, ties
are broken by a simple lexicographical ordering. At the first
level, only those jointly satisficing options most selectable to
the group (visiting the greatest number of new nodes) are re-
tained. If this set contains multiple elements, the second level
of ordering is to rank the agents dynamically based on the
number of unvisited nodes in their option sets. The agents
then select the vector which is mostindividually selectable to
the highest-ranking agent. Further ties are broken by deferring
to the individual preferences of lower-ranking agents until a
unique solution results.

A Simple Example: 5x5 Grid

As a simple example, consider a square grid of 25 nodes
with nearest neighbor connections. Five agents start in the
lower left corner and are assigned to traverse the graph with
a communication radius of 1.6 times the distance between
nodes. The agents, denoteda1 througha5, travel along paths
depicted in Figure 6.

Figure 6: 5x5 Traversal Paths

The group selectabilitypSG
encourages the agents to fan

out as they traverse the graph. After simultaneously visiting
the middle nodes, they converge as they approach the top right
corner of the graph. A minimum number of nodes are visited
by more than one agent, and the graph is searched quickly and
efficiently. Connectivity is maintained throughout, allowing
information to be relayed to all agents.

Random Graph Simulations

More complicated graphs were created by randomly gener-
ating 100 nodes within a 25×25 region using a uniform distri-
bution. Edges were added to connect each node with its four
nearest neighbors. An example graph is shown in Figure 7.
Three search scenarios were conducted for each graph: (a) a
five-agent search with a communications range of two units;
(b) a three-agent search with a communication range of three
units; and (c) a single-agent search. For consistency, agents be-
gin their search from a randomly selected node near the center
of the graph.
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Figure 7: Sample Random Graph with 100 Nodes

Ideally, simulation results should be compared with those
of an optimal search, but this is computationally infeasible for
graphs of this complexity. To create a baseline for compari-
son, we implemented a boundedly-rational single agent algo-
rithm that searches until the search cost exceeds the anticipated
improvement of further search. The algorithm systematically
conducts a depth-first search of possible tours starting from
each node in the graph. After 30 minutes of CPU time, the
algorithm switches to the next node in the graph as the starting
point. Each level in the search tree corresponds to the choice
of next unvisited node to visit; a greedy algorithm is employed,
and nodes are considered in the order of their proximity to the
previous node.

The boundedly-rational search algorithm differs from the
satisficing search algorithm in three significant ways. First, it
is free to start from any node in the graph. Second, its decisions
are based on an extensive global search rather than conditions
local to the agents and limited look-ahead, so it is poorly suited
to real-time operation. Finally, since it involves a singleagent,
it has no movement constraints to ensure communication is
maintained. Thus, although the boundedly-rational results pro-
vide bounds on the efficiency of satisficing multi-agent search
algorithms, the bounds are not particularly tight.

Table 4 displays results averaged over 10 graphs for the
three satisficing scenarios (top three rows) along with the
boundedly-rational baseline (bottom row). From left to right,
the columns list the number of agents, the communication ra-
dius, the average number of nodes visited per agent during
the search, a measure of search efficiency referred to asnode
efficiency, the average distance traveled per agent during the
search, and a second measure of efficiency calleddistance ef-
ficiency. Node efficiency is a measure of the extent to which
duplication of visited nodes is avoided; the repetition exhibited
by the boundedly-rational search is considered a lower-bound
(total nodes visited prorated per agent). The measure is given
by the ratio of this lower bound to the actual average num-
ber visited by each agent. Distance efficiency is determined

in a similar manner, as the ratio of the lower bound of dis-
tance traveled in the baseline (total distance traveled prorated
per agent) to the actual average distance traveled per agent.

Table 4: Results averaged over 10 randomly generated graphs.
The bottom row is the boundedly-rational baseline.

Agts Com Rad Nds/Agt Nd Eff Dst/Agt Dst Eff
5 2 40 56% 17.3 50%
3 3 52 71% 21.5 67%
1 n/a 121 92% 46.3 94%
1∗ n/a 111 100% 43.5 100%

As the number of agents increases, each agent visits fewer
nodes and travels a shorter distance, but both measures of ef-
ficiency also decrease. There are three principal causes of this
behavior. First, all agents start at the same point, and it takes
time to spread out and search the graph. Second, agents must
remain near each other to remain in communication. Third,
certain nodes in the sparse graph become natural hubs for
agents to remain and serve as communication relays.

The simulations provide numerous examples of emergent
behavior that is not anticipated by the modeling assumptions.
For example, as the group spreads out, the more central agents
tend to sacrifice individual preferences (searching new terri-
tory) to maintain the connectivity of the group by remaining
stationary while outlying agents continue to search, and this
continues until the outlying agents return to the group. The
willingness to act as a relay is not explicitly programmed into
the agents, and it is a significant example of emergent coordi-
nation as agents balance the interests of the group with their
individual interests.

Figure 8 illustrates typical emergent behavior. The small cir-
cle representing each node is filled if visited, and the largecir-
cle centered on each agent represents its communication range.
In the first frame, all three agents are heading towards unique,
unvisited nodes. In the second frame,a1 anda2 are moving
to the left whilea3 moves to the right. In the third frame,
the agents are approaching the limits of their communication
range. To avoid communication loss,a2 is returning to an area
with no unvisited nodes so that it can relay messages between
a1 anda3, as they cannot directly communicate. In the fourth
frame,a1 anda3 continue their search, facilitated bya2’s sac-
rifice.

DISCUSSION

The Ultimatum game and the random graph search illus-
trate the wide range of applications for which satisficing game
theory is applicable. In the Ultimatum game, the behavior
of the players is governed by their social attributes, and the
emergent group-level preferences can range from fair and well-
coordinated to dysfunctional and ill-coordinated. The Ultima-
tum game is a static (one-move per player) game, whereas the
graph search is a dynamic decision problem. In the graph-
search problem, the goal of the agents is to find functional
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Figure 8: A sequence of frames showing emergent coordinated
behavior.

compromises as the agents function in a multi-move dynamic
environment. Emergent behavior is manifest by the agents as
they self-select the different roles of searcher and communica-
tion relay.

The two applications demonstrate the robustness of the
failure-avoidance formulation of a decision problem. With
the Ultimatum game, the classical formulation as utility max-
imization is a poor model of actual human behavior. Formu-
lated in terms of failure avoidance, the social attributes of the
agents can be explicitly included in the model as parameters,
and their effect on the decisions can be observed. A traditional

utility-maximization formulation of the graph search problem
would require the identification of an optimal strategy (most
likely in the sense of bounded rationality), which would re-
quire extensive computation. Even if an optimal solution for
the group were known, there would be no way to determine
whether it would be acceptable to each of the individual agents.
With the failure-avoidance formulation, however, it is possible
to identify in real-time potential solutions that are simultane-
ously acceptable to all agents and to the group. The key to
this success is that the agents, and the group as a whole, each
identify multiple choices that are good enough according to
a mathematically precise criterion, thus providing them with
negotiating room to settle on a compromise.

Conflict can be resolved either by competition or by cooper-
ation. Because it is based on the premise of individual rational-
ity, classical game theory virtually forces competition, even if
cooperation would be more natural and beneficial to the play-
ers individually and to the group as a whole. On the other hand,
satisficing game theory permits conflict to be treated eitheras
competition or cooperation with equal facility. It therefore pro-
vides a neutral foundation upon which to frame decision prob-
lems.

Satisficing game theory provides a framework within which
procedures for negotiation and compromise can be imple-
mented. By contrast, solution concepts associated with indi-
vidual rationality provide existence proofs only; they arenot
constructive. For example, although a Nash equilibrium al-
ways exists, the theory does not provide a procedure for the
agents to follow to arrive at the prescribed solution. Also,
rather than simulating social relationships with an intrinsically
asocial model, conditional altruism—a willingness eitherto
defer to or to punish others according to the situation—can
be modeled without completely redefining the game.

Social utilities and satisficing game theory together provide
a systematic methodology for the design of socially rational
multi-agent systems. Domain knowledge and the rules of the
game are encoded into the social utility functions that compose
the interdependence function. Because they possess the math-
ematical properties of multivariate probability mass functions,
social utilities account for all possible social interactions, take
advantage of whatever independence and conditioning prop-
erties are relevant, and make it impossible to assign high se-
lectability (or rejectability) to an action set and its comple-
ment. Satisficing game theory makes explicit the conditions
under which group and individual preferences can be recon-
ciled, and provides a mechanism for altruism, negotiation and
compromise.

Social rationality and satisficing game theory generalize the
notions of individual rationality and competitive optimality,
but at a price. The computational burden of the satisficing ap-
proach grows combinatorically if all possible interconnections
between agents are considered. Fortunately, as with Bayesian
networks, it is reasonable to expect that in practical situations
and especially for large groups, the connectivity of praxeic net-
works will be somewhat sparse. The use of hierarchical and
Markov structures can simplify the construction of the inter-
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dependence function and further reduce computation. Multi-
agent decision making is, by its very nature, a complex en-
terprise. Moreover, the enterprise of analyzing complex nat-
ural systems or synthesizing complex artificial systems is in-
trinsically difficult and challenging. But, as Palmer observed,
“Complexity is no argument against a theoretical approach if
the complexity arises not out of the theory itself but out of
the material which any theory ought to handle” [48]. While
it is desirable in the interest of tractability to simplify asocial
model as much as possible, eliminating important social rela-
tionships in order to comply with individual rationality may
provide an inadequate model of the society under investiga-
tion.

A key contribution of this paper is the demonstration that
the syntax of probability theory, which is of immense value
as a means of modeling epistemological phenomena, can also
be of value as a model of praxeological phenomena. In a per-
sonal communication to Judea Pearl, Glenn Shafer observed
that “probability is not really about numbers; it is about the
structure of reasoning” [35, p 15]. The thesis of this paper
is that the mathematical structure of probability theoryis also
about the structure of coherent social interaction.The combi-
nation of social utilities and satisficing game theory formsthe
basis of a unified treatment of group and individual decision
making.

APPENDIX: PROOF OF THE SOCIALITY THEOREM

Sufficiency is established by setting

F [pGj (uj), pGi|Gj (ui|uj)] = pGi|Gj (ui|uj)pGj (uj). (47)

The non-negativity condition ensures thatF is non-decreasing
in both arguments.

To prove necessity, letGi, Gj and Gk be arbitrary pair-
wise disjoint sub-societies ofG, and letpGi∪Gj∪Gk , pGi|Gj∪Gk ,
pGi∪Gj |Gk , pGi∪Gj , pGi|Gj , andpGi be endogenously aggre-
gated non-negative functions; that is, there exists a func-
tion F such thatpGi∪Gj (ui,uj) = F [pGj (uj), pGi|Gj (ui|uj)]
∀(ui,uj) ∈ Ui × Uj .

By framing invariance,

F
[

pGj∪Gk(uj ,uk), pGi|Gj∪Gk(ui|uj ,uk)
]

= F
[

pGk(uk), pGi∪Gj |Gk(ui,uj |uk)
]

. (48)

But

pGj∪Gk(uj ,uk) = F
[

pGk(uk), pGj |Gk(uj |uk)
]

(49)

and

pGi∪Gj |Gk(ui,uj |uk)

= F
[

pGj |Gk(uj |uk), pGi|Gj∪Gk(ui|uj ,uk)
]

. (50)

Thus,

F

[

F
[

pGk(uk), pGj |Gk(uj |uk)
]

, pGi|Gj∪Gk(ui|uj ,uk)

]

= F

[

pGk(uk), F
[

pGj |Gk(uj |uk), pGi|Gj∪Gk(ui|uj ,uk)
]

]

.

(51)

In terms of general arguments, this equation becomes

F [F (x, y), z] = F [x, F (y, z)] , (52)

called theassociativity equation, which has been studied ex-
tensively [49, 50]. It has been shown by [51] (see also [52])
that if F is differentiable in both arguments, then the general
solution of (52) is

f [F (x, y)] = f(x)f(y) (53)

for some positive continuous monotonic increasing functionf ,
which is otherwise arbitrary. Takingf as the identity function,
we obtain

pGi∪Gj(ui,uj) = F
[

pGi(ui), pGj |Gi(uj |ui)
]

= pGi(ui)pGj |Gi(uj |ui),

known as theproduct rule. It can also be shown, following
Cox [51], that

∑

ui∈Ui

pGi(ui) +
∑

u¬i∈U¬i

pG¬i(u¬i) = 1 (54)

for all sub-societiesGi, which is known as thesum rule. Fi-
nally, the non-decreasing property requires that all preference
functions be non-negative, thus the preference functions must
be mass functions.

We note that, regardless of the functionf , so long as it is
positive, continuous, monotonic, and increasing, the product
and sum rules apply, and the preference functions are mass
functions. Thus, we may takef to be identity without loss of
generality.
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[41] W. Güth and R. Tietz, “Ultimatum bargaining behavior:A
survey and comparison of experimental results”,J. of Econ.
Psych., vol. 11, pp. 417-449, 1990.

[42] R. H. Thaler, “The Ultimatum game”,J. of Econ. Persp., vol.
2, pp. 195-206, 1988.

[43] F. Zhong, D. J. Wu, and S. O. Kimbrough, “Cooperative Agent
Systems: Artificial Agents Play the Ultimatum Game”,Group
Decis. and Negot., vol. 11, pp. 433-447, 2002.

[44] A. K. Sen, “Rational fools: A critique of the behavioralfounda-
tions of economic theory”, in Beyond Self-Interest, J. J. Mans-
bridge, Ed. Chicago: Univ. of Chicago Press, 1990.

[45] J. Gale, K. Binmore, and L Samuelson, “Learning to be imper-
fect: the ultimatum game”,Games and Econ. Behav., vol. 8,
pp. 56-90, 1995.

[46] M. A. Nowak, K. M. Page, and K. Sigmund, “Fairness versus
reason in the ultimatum game”,Science, vol. 289, pp. 1773-
1775, 2000.

[47] K. Sigmund, E. Fehr, and M. A. Nowak, “The economics of
fair play”, Sci. Amer., vol. 286, pp. 83-87, 2002.

[48] F. R. Palmer, Grammar. Harmondsworth, UK: Penguin Books,
1971.

[49] N. H. Abel, “Untersuchung der Functionen zweier un-
abhängigen veränderlichen Grössenx und y, wie f(x, y),
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