
142 The Open Cybernetics and Systemics Journal, 2008, 2, 142-152

 1874-110X/08 2008 Bentham Open

Open Access

The Environment for Mapping SystemC Multi-module Specifications onto
NoC Architectures

Stanis aw Deniziak
*
 and Robert Tomaszewski

Department of Computer Engineering, Cracow University of Technology, Cracow, Poland

Department of Computer Science, Kielce University of Technology, Kielce, Poland

Abstract: This work presents a methodology for mapping of a SystemC specification onto a given Network-on-Chip

(NoC) architecture, for the purpose of FPGA prototyping. A communication protocol and routing tables are generated

automatically using inter-module communication analysis. For each processor in the target architecture, assigned SystemC

processes are converted into C++ programs, where all communication method calls are replaced with sending/receiving

messages to/from the network interface (NI) process. For each module implemented in hardware a VHDL code of the NI

is generated. NIs convert transmitted data into/from network packets according to the communication protocol. The main

advantage of our approach is the possibility to prototype and to evaluate many NoC architectures for a given system,

without the necessity of modification of the source system specification. Presented embedded HTTP server example sub-

stantiates the benefits of the methodology.

Keywords: Network on Chip, SystemC, rapid prototyping, embedded systems.

1. INTRODUCTION

 Network-on-Chip (NoC) has been proposed as a new

class of architectures for multiprocessor SOC systems [1]. In

the NoC, communication is implemented using on-chip

packet-switched networks, instead of shared buses, to avoid

a communication bottleneck. To become viable, NoC re-

quires support by design tools, especially tools for modeling,

design space exploration, evaluation, and synthesis.

 One of the best methods of evaluation for digital systems

is FPGA prototyping [2]. Physical prototypes enable the es-

timation of system properties with high accuracy. Modern

FPGAs have a complexity about 10 millions gates allowing

implementation of multiprocessor systems. Thus, this tech-

nology is also used for prototyping of NoC systems [3].

 Design process begins by creating a system-level execu-

table specification, so called virtual prototype. Then, virtual

prototype is mapped into physical prototype. One of the most

widely accepted system-level specification language is Sys-

temC [4]. It supports a powerful generic model of computa-

tion, which enables definition of a wide range of different

customizable methods of communication and synchroniza-

tion between processes. SystemC has proven to be suitable

for designing of embedded systems, and it is also used for

modeling of NoC systems.

 In this work a framework for rapid prototyping of NoC

systems is presented. It takes an implementation-independent

system-level specification given in SystemC and a target

NoC topology description as inputs. As the result, C++

*Address correspondence to this author at the Department of Computer

Engineering, Cracow University of Technology, Cracow, Poland;

E-mail: s.deniziak@computer.org

programs, routing tables and a RTL VHDL implementation

of the NoC are generated. The whole process is fully auto-

mated and the output can be implemented as a FPGA proto-

type, by using standard environment for SOPC (System On a

Programmable Chip) implementation. The framework con-

sists of a library of software and hardware components

(routers, communication protocols, etc.) and a set of tools for

system analysis, software generation and route selection. The

main goal of this work is to minimize an effort required for

exploration and evaluation of different NoC architectures for

a given system, and to provide open methodology, easily

extensible. Thus, the unique feature of our approach is that

we give the environment to a designer, where one SystemC

model can be converted into functioning FPGA prototype,

according to different NoC architecture rules. Such prototype

may be then a subject of further research leading to the best

solution for particular application.

 The rest of this paper is organized as follows. The next

section reviews related work. Section 3 outlines the main

system-level features of SystemC. Overall methodology is

explained in section 4. In section 5 an example is presented.

Finally, the conclusions are given in section 6.

2. RELATED WORK

 A lot of approaches use SystemC for system-level speci-

fication of NoCs. In [5] a universal communication API for

NoC specification and modeling is presented. Similar Sys-

temC library for asynchronous NoC modeling is presented in

[6]. SystemC transaction-level simulation is used in [7] for

NoC verification. XpipesCompiler [8] generates SystemC

cycle-accurate models for manually specified NoCs. An im-

plementation in SystemC of a scalable and parametrical NoC

with a mesh topology is described in [9]. SystemC has been

Mapping SystemC Multi-module Specifications onto NoC Architectures The Open Cybernetics and Systemics Journal, 2008, Volume 2 143

accepted as a standard-based approach to model SoC/NoC

systems [10].

 Modern FPGAs offer the possibility of implementation of

large systems. Each system can consist of many processor

cores and hardware modules, therefore efficient implementa-

tion of NoCs in FPGAs is an active area of research. Several

NoC based systems implemented in FPGAs are presented in

[11-13]. FPGA technology is also used for NoC emulation

[14] and to accelerate simulation speed [15], but it is most

useful for NoC prototyping [16, 17], enabling architecture

exploration, power estimation and accurate functional valida-

tion.

 Rapid prototyping requires a methodology of mapping

system specification onto target architecture in a single flow.

Most of the presented design methods are limited to network

topology generation. In [18] graph models are used for

communication synthesis. A method of mapping system

level task graph onto optimal NoC with a mesh topology is

presented in [3]. An automatic mapping of DSP algorithms

represented as dataflow graphs into a given NoC topology is

described in [19]. In [20] a complete design flow, which

generates a synthesizable RTL code of a NoC topology, is

presented. The integrated environment for synthesis of com-

plete NoC-based SOCs is described in [21]. User configures

processing cores, network interfaces, network topology and

communication protocols. Then, the target system is gener-

ated using configuration files written in XML and compo-

nent specifications given in Handel-C. The Aethereal [7],

NetChip (xpipes [8]) and Pirate [28] design approaches use

their own input model formats, and SystemC description is

generated as intermediate stage before synthesis. Nostrum

[29] focuses only on mesh-based NoC topologies.

 According to our best knowledge, there is no method for

automatic mapping SystemC specification onto a target

NoC-based architecture. In all above approaches SystemC is

used for modeling or is a product of design flow. Synthesiz-

able models are given in other languages like VHDL, Han-

del-C, XML files or by using abstract representations like

task graphs. Moreover, in the only complete design flow

[21], a functional model of whole system is not used at all.

Thus, the functional validation is not available until a physi-

cal prototype is implemented. From the other side, using

different models for functional validation and for synthesis

may cause inconsistency in the system design.

 Taking into consideration disadvantages of the existing

design environments for NoC-based systems, in this paper,

we propose another design flow. In our approach the same

specification is used for system-level functional validation

and for implementation, and is given by designer. All files

required for the system implementation (C++ programs,

VHDL files) are generated automatically. We believe that

our approach is more appropriate for rapid prototyping, sig-

nificantly reducing an effort required for the system valida-

tion. Because every NoC topology can be useful in FPGAs

[27], the methodology presented in this work is capable of

mapping the same input specification into different net-

works. In this way, different target architectures may be

evaluated, without the necessity of modification of the

source SystemC specification – having one model we can

generate many NoC prototypes, e.g. by using different to-

pologies.

3. SYSTEMC FEATURES

 SystemC [4] is a C++ library for system and hardware

design. System-level specification consists of modules

communicating using channels. Channels are connected to

module ports. Each module contains at least one process.

Processes are activated according to a sensitivity list, defined

statically or dynamically. SystemC provides the following

system-level features: events, processes, channels and inter-

faces.

3.1. Events

 An event is a low-level primitive which is used to con-

struct different forms of synchronization. Wait/notify model

is used. Processes waiting for events are suspended. Process

resumes its execution when any event (or set of events) from

a specified sensitivity list, defined statically or dynamically,

occurs. Static sensitivity list for each process is defined in

the module constructor and can not be changed during exe-

cution. Dynamic sensitivity list is specified using wait()

method and temporarily overwrite the static list defined for

the same process.

3.2. Processes

 Three types of processes can be used: threads, methods

and clocked threads. Each thread process has its own thread

of execution and can be suspended and resumed. The method

process is executed entirely (wait() is not allowed) each time

after activation. The clocked thread process is a thread proc-

ess which is only triggered on one edge of one clock.

 Processes are created statically or dynamically. Static

processes are created during elaboration. Dynamic ones are

created during simulation.

3.3. Interfaces

 An interface specifies a set of methods to be imple-

mented within channel. Only ports matching given interface

type may be used with channels implementing this interface.

The main role of interfaces is to separate transmissions from

computations, i.e. interfaces provide modules with an access

to communication methods implemented in channels.

3.4. Channels

 A channel implements one or more interfaces. Primitive

and hierarchical channels are distinguished. Primitive chan-

nels do not contain processes and can not access other chan-

nels. Hierarchical channels are modules which may contain

processes and other modules, they may also access other

channels. In SystemC the following communication channels

are predefined: sc_signal, sc_buffer and sc_fifo. Other stan-

dard SystemC channels are used for modeling special behav-

iors like clocks, buses or controlling access to shared re-

sources, and they will not be considered here.

 The sc_signal is the simplest communication channel.

Transmission is without blocking and buffering, any change

144 The Open Cybernetics and Systemics Journal, 2008, Volume 2 Deniziak and Tomaszewski

of signal state generates an event. The following methods are

supported:

- read(), write() – for data transmission,

- event(), value_changed_event() – for detection of

signal changes.

 The sc_signal channel connects at most one driver (i.e.

sc_out output port or sc_inout bidirectional port) and arbi-

trary number of sc_in input ports.

 The sc_buffer is a special kind of signal. The only differ-

ence is that in case of sc_buffer an event is generated after

every write, even if it does not change a state.

 The sc_fifo enables transmissions with buffering and with

blocking or without blocking of communicating processes.

The following methods are provided:

– read(), write() – for transmission with blocking,

– nb_read(), nb_write() – for transmission without

blocking,

– num_available(), num_free() – for checking a state of

the FIFO buffer,

– data_written_event(), data_read_event() – for detec-

tion of FIFO changes.

 The sc_fifo channel connects at most one output port

(sc_fifo_out) with at most one input port (sc_fifo_in). Bidi-

rectional ports are not allowed. Read data are removed from

the FIFO. Operations without blocking do not change the

FIFO state when a read (write) is not possible, i.e. when the

buffer is empty (full).

4. RAPID PROTOTYPING METHODOLOGY

 Fig. (1) shows the rapid prototyping flow diagram. It is

assumed that a description of a target NoC topology is speci-

fied in XML file. It may be created manually or it is a result

of system synthesis. The mapping of the SystemC specifica-

tion into FPGA prototype with the given NoC topology is

performed as follows:

– SystemC specification is analyzed in respect of com-

munication flow, the result is a system communica-

tion model described in XML format,

– specifications of modules assigned to processors (IPS)

are translated into C++ programs,

– for each module assigned to hardware component

(IPH) a network interface (NI) is generated,

– communication channels connecting modules as-

signed to different processors/modules are mapped

into the NoC configuration.

 As a result, a RTL VHDL specification of the whole sys-

tem architecture is generated. Physical prototypes are im-

plemented using commercially available tools for target

FPGA devices. In our prototyping environment we use Al-

tera’s FPGAs with Nios II processor cores, Quartus II system

and Nios II Integrated Development Environment [22].

Fig. (1). Rapid prototyping flow.

SystemC

specification Communication
analysis

Software
mapping

NoC
generation

Hardware
mapping

System
communication

model (XML)

IPS

IPS

R R

R R

.

IPH NI

NI IPH

. . .

FPGA

NoC
Specification

(XML)

Mapping SystemC Multi-module Specifications onto NoC Architectures The Open Cybernetics and Systemics Journal, 2008, Volume 2 145

4.1. Target Architecture Description

 The system communication model and target NoC archi-

tecture are described in XML format, because of its human

readability, robustness and extensibility.

 The first XML file we use is system_sc.xml, which con-

tains description of SystemC modules with emphasis on

communication aspects. The most essential part is what

processes are located in SystemC modules, which ports of

each module are used by these processes and what channels

are used for connecting modules via ports. This information

is needed for checking the target NoC architecture feasibil-

ity, calculation routing paths and packet construction. For

example – target system may be not feasible if routers were

improperly linked (which results in lack of routing path) or if

not all modules were assigned to IPs (Intellectual Property

cores).

 On Fig. (2) we depicted sample architecture described in

SystemC and corresponding system_sc.xml file. That file is

created automatically (Fig. 1). Every port has its type, list of

connected processes, and size of transmission specified in

bits. Similarly the channels, but with one exception – sc_fifo

channels have buffer size defined.

 The second file we use is system_noc.xml, which consists

of description of routers linking (i.e. topology of the net-

work) and mapping of SystemC modules into IP cores. We

decided to use LiPaR router [23] which involves using one

specialized port (Local Port) for IP linking. The rest of router

ports (called, due to their location, North, East, South, East)

are used for inter-router connections.

 Fig. (3) shows scheme of the target NoC architecture and

its description in system_noc.xml file. For each IP imple-

mented as hardware component (with attribute impl=”HW”)

widths of all ports, specified in bits, are given. Ports of mod-

ule which has to be SW implemented don't need width at-

tribute at all.

 At the current stage of our research we focused only on

standard types of ports and channels offered by SystemC, but

using XML for description lets us easily extend presented

methodology and include other types of ports and channels

(e.g. OCCN channels [5]). The only thing we should know is

how they work, to implement it in our mapping tool.

4.2. Mapping SystemC Modules into Software

 Embedded software is generated by replacing SystemC

simulation kernel with real time operating system (RTOS)

calls [24]. Communication channels connecting modules

assigned to different IPs are replaced with the corresponding

channels (signal2ni, buffer2ni, fifo2ni) redirecting transmis-

sions to/from the NI. In the programming environment for a

target processor the SystemC library is replaced with the

corresponding implementation library. In this way, the Sys-

temC source code may be compiled in a RTOS environment

without any modification.

 Channels xxx2ni implement the same interfaces that re-

lated SystemC channels, but instead of communicating with

destination processes they send/receive data to/from a

(a)

(b)

Fig. (2). Sample SystemC architecture scheme (a) and part of cor-
responding system_sc.xml (b).

process implementing NI. Local module and port addresses

are also stored in these channels. NI communicates directly

with the local port of the router using low-level I/O opera-

tions supported by RTOS. Other details about NI functional-

ity are given in the next subsections.

 The mapping of a SystemC specification into embedded

software is presented on Fig. (4). Assume that modules M1

and M2 are assigned to one Nios II processor. Thus, the

specification of these modules is copied to the Nios II pro-

gramming environment, without any modification. Next, the

main() routine (Proc1.cpp) instantiating processes and com-

munication channels is generated. We apply MicroC/OSII

<arch id=”sample_SC_chip”>
 <module id=”T1”>
 <process id=”PR1”>1</process>
 <process id=”PR2”>2</process>
 <process id=”PR3”>3</process>
 <port id=”P1” type=”sc_inout”

process_conn=”1 2” size=”16”>1</port>
 <port id=”P2” type=”sc_out”

process_conn=”3” size=”64”>2</port>
 <port id=”P3” type=”sc_in”

process_conn=”3” size=”32”>3</port>
 </module>
 <module id=”T4”>
 <process id=”PR1”>1</process>
 <process id=”PR2”>2</process>
 <port id=”P1” type=”sc_inout”

process_conn=”1” size=”16”>1</port>
 <port id=”P2” type=”sc_inout”

process_conn=”1” size=”8”>2</port>
 <port id=”P3” type=”sc_fifo_out”

process_conn=”2” size=”32”>3</port>
 <port id=”P4” type=”sc_fifo_in”

process_conn=”2” size=”64”>4</port>
 </module>
...
 <channel id=”CH1” type=”sc_signal”

conn=”T1_P1 T4_P1”>1</channel>
 <channel id=”CH6” type=”sc_fifo”

conn=”T4_P4 T5_P2”
buffer=”5”>6</channel>

 <channel id=”CH7” type=”sc_fifo”
conn=”T4_P3 T5_P1”
buffer=”5”>7</channel>

</arch>

T1 T4

T2 T3

T5

Pr1
Pr2
Pr3

Pr1
Pr2

Pr1
Pr2Pr1

Pr1

P1

P3

P2

P1 P3

P3

P4

P4

P2

P2

P2

P1

P2

P3

P1

P1

CH1

CH2

CH3CH4

CH5

CH6

CH8

CH7

146 The Open Cybernetics and Systemics Journal, 2008, Volume 2 Deniziak and Tomaszewski

(a)

(b)

Fig. (3). Sample target NoC architecture scheme (a) and corre-
sponding system_noc.xml (b).

RTOS, which fully supports concurrent execution of tasks,

so the process semantics of SystemC is respected.

4.3. Mapping SystemC Modules Onto Hardware IPs

 We assume that hardware modules are available as IP

components or they are synthesized using commercially

available tools. Thus, in our environment only a VHDL

code, instantiating these components, is generated.

 Each IPH communicates with NoC through dedicated NI

(see Fig. 5). The module ID (index) and IDs of ports are

stored in the NI. Since the functionality of the NI depends on

type of module ports, different VHDL code is generated for

each NI.

 Communication is done by use of two handshake signals

(Req/Ack) between the co-operating ports (output and input)

- similarly to LiPaR [23] synchronization of transmission. If

designer uses custom IPH module, supporting different hand-

shaking/transmitting protocol, he's responsible for providing

a converting adapter, adjusting IP interface to our NI. If size

and width attributes, specified for the same port in sys-

tem_sc.xml and system.noc.xml files, are not equal, then sin-

gle transmission between IP and NI is width-length and all

data are transmitted in blocks (the number of blocks is (size

+ (width - 1)) div width). Otherwise one size-length trans-

mission is needed.

4.4. Mapping Channels into Communication Network

 As we mentioned before the router of our choice is

LiPaR, because of it's advantages in FPGA implementations

[3, 23]. By default this router use XY routing algorithm,

which is best suited for mesh based topologies. In our meth-

odology we cannot predict the type of the target topology.

Generally – it can be regular or irregular topology, so XY

routing (based on Cartesian co-ordinates) should be replaced

by more universal routing algorithm. We chose deterministic

SystemC environment

M1.h

M1.cpp

M2.h

M2.cpp

M3.h

M3.cpp

M4.h

M4.cpp

Systemc.h
Systemc

Library

Main.c pp

Chan1

Chan2

Chan4

Chan3

Chan5

Nios II IDE

Systemc.h ’ NiosSC

Library

M1.h

M1.cpp

M2.h

M2.cpp

Proc1 .cpp

Chan1

Chan2Net

Chan3

Micr oC/OSII

Chan2Net

Network

Interface

Fig. (4). Embedded software generation.

<noc id=”sample_NoC_chip”>
 <router id=”R1” l_port=”IP1” E_port=”R2”
 S_port=”R3” type=”lipar”>1</router>
 <router id=”R2” l_port=”IP2” W_port=”R1”
 S_port=”R3” type=”lipar”>2</router>
 <router id=”R3” l_port=”IP3” E_port=”R2”
 W_port=”R1” type=”lipar”>3</router>
 <IP id=”IP1” impl=”HW” sc_mod=”T1 T2”>1
 <port id=”P1” width=”8” />
 <port id=”P2” width=”1” />
 <port id=”P3” width=”8” />
 <port id=”P4” width=”16” />
 <port id=”P5” width=”8” />
 </IP>
 <IP id=”IP2” impl=”SW” sc_mod=”T4”>2</IP>
 <IP id=”IP3” impl=”SW” sc_mod=”T3
 T5”>3</IP>
</noc>

IP 1 IP 2

IP 3

T3
T5

R1 R2

R3

T1
T2 T4

NI

LP LP

LP

LP - localport
NI - network interface

NI

NI

Mapping SystemC Multi-module Specifications onto NoC Architectures The Open Cybernetics and Systemics Journal, 2008, Volume 2 147

Fig. (5). Mapping of a hardware component.

shortest-path routing, which involves slight modification of

decoding logic of the router. The Crosspoint Matrix is driven

not by FSM Controller, but by content of memory block,

holding static routing table. The address of destination IP

(taken form header of the packet) sets the row in memory

and the addressed row contains control information for

Crosspoint Matrix (i.e. which output channel to use – North,

East, South, West or local).

 Because all ports of the routers are bidirectional with

inner FIFOs, every type of SystemC channel (sc_signal,

sc_buffer, sc_fifo) is treated by routers in the same way – as

path from source IP to destination IP. Write operation is

treated as sending the packet, read – as receiving. The exact

type of channel matters for NIs and is described further.

 For building the routing information we use BSF based

algorithm [25]. It is the graph algorithm for searching the

shortest paths between one source vertex and the rest of ver-

tices. In the first step (Fig. 6) network topology of NoC is

mapped onto graph – IPs and routers are vertices, links be-

tweens vertices are edges of the graph. Edges are without the

weight and direction. Nodes have information about type (IP

or router) and connection, i.e. which port is connected to

particular edge to next router/IP (essential for routers). That

mapping is done with use of system_noc.xml file. Next, for

every channel described in system_sc.xml file we determine

IP modules used in channel connection. For that IPs we ap-

ply BSF algorithm. The result is stored in the list of prede-

cessors and successors (i.e. routers) on the path between

communicating IP cores (precisely – their NIs). If the list

would be empty – that means, that target architecture is not

feasible and needs redesign. Every position on the list con-

tains the number/identifier of next-hop router and

name/identifier of the port used as link (edge in the graph).

Due to the form of returned information by BSF (reverse

order of vertices on the path) for IN and OUT ports we treat

IN as a source vertex and OUT as a destination. For INOUT

port it's meaningless.

 The packet format (Fig. 8) is simple and standard LiPaR

format compatible [23] with one exception – instead of XY

coordinates, header contains destination IP identifier (ad-

dress). That identifier is used by every router to address rout-

ing memory (address decoding logic) and decides, which

port will be involved in further transmission.

 The last important element is NI. It is responsible for

forming packets and sending/receiving (write/read) opera-

tions. Forming packet includes address translation from local

format to global. Local format (i.e. between IP core proc-

esses and NI) defines port ID (as described in system_sc.xml

file), global designates target IP.

Fig. (6). Algorithm for shortest-path generation.

 If the algorithm shown on the Fig. (6) won't raise any

error we can program routing memories in routers (Fig. 7).

Fig. (7). Building local routing tables.

Fig. (8). Structure of the frame sent between routers and NIs.

Dest IP | Local Addr | Dest Addr | Multi

Fig. (9). NI's translating table scheme.

 Every NI has a table filled with portID to IP's ID map-

pings (see Fig. 9). These tables are created according to in-

formation placed in system_sc.xml and system_noc.xml files.

To make sure, that IDs of the local ports are unique, they are

preceded by their SC module ID (see system_sc.xml file).

There are two tables – one for resolving remote addresses

(sending/writing) and one for local (receiving/reading).

GenerateRoutes()
 BuildGraph(in: system_noc.xml,out: Graph);
 BuildListOfChannels(in: system_sc.xml,
 while ListOfChannels <> nil do
 Channel := ListOfChannels.Current;
 foreach Channel.Connection do
 if Channel.Connection.Type = IN or
 BSF(in: Graph,
 out: ListOfPaths);
 if any ListOfPaths = nil then return
 Add(inout: CompleteListOfPaths,
 in: ListOfPaths)
 ListOfChannels := ListOfChannels.Next;
 end;
 BuildLocalRoutingTables();
end;

BuildLocalRoutingTables()

 BuildListOfRouters(in: system_noc.xml,
 out: ListOfRouters)
 while ListOfRouters <> nil do
 Router := ListOfRouters.Current;
 while CompleteListOfPaths <> nil do
 Path := CompleteListOfPaths.Current;
 destIP := Path.Head;
 while Path <> nil do
 node := Path.Current;
 if node == Router then
 Router.table[destIP] :=
 portID_to_next_on path
 Path.Current := Path.Next;
 end;
 CompleteListOfPaths.Current :=
 CompleteListOfPaths.Next;
 ListOfRouters.Current :=
 ListOfRouters.Next;
end;

NI

IPH
to

 L
oc

al
 P

or
t

ID of dest. IP payload
header

of the packet
encapsulated

data

148 The Open Cybernetics and Systemics Journal, 2008, Volume 2 Deniziak and Tomaszewski

 The fields: Local Sender Addr, Local Dest Addr, Length

of Data, Number and optionally technical part (e.g. to inform

about blocking/non-blocking operation) form a header of NI

(transport layer), which is entirely encapsulated with data as

a payload in packets for routers (network layer). Local

Sender Addr and Number fields are needed by acknowledg-

ment mechanism for FIFO channels described later. In case

of the transmission is multicast type (e.g. one OUT port is

connected through channel to many IN ports in SystemC

model), the table has address of position (field Multi), where

next receiver is described. Ordinary transmissions and last

receiver in multicast case have 0 in this field. Multicast

transmissions demand multiple frames sending.

 Every local port of NI has its own input/output address

and buffer capable to store maximum process write/read data

package (see size attribute for port tag in system_sc.xml).

Writing to port means sending data to a particular interface

(buffer) of NI, reading – getting content of the buffer.

 When inner process requests write through port – it sends

request and data to appropriate interface on NI. Request has

a form of a packet with header described earlier. Having

local address of destination, NI seeks for destination IP ad-

dress and forms the frame. All packet data are treated as a

payload for a frame. Header of a frame we described previ-

ously (see Fig. 8). It's determined by router construction.

 If a size of a packet exceeds the MTU (Maximum Trans-

port Unit – allowed size of a frame) of routers (determined

by their FIFOs) the packet is sent in multiple pieces. In case

of deterministic routing every frame is traveling the same

route and in constant order (unlike the classic computer IP-

based networks) so assembling by receiver doesn't need any

additional information about frame/packet number (i.e. every

properly addressed part of a packet is written into receiver's

FIFO without the header). In contrast, adaptive routing pro-

tocols (not considered here) demand other construction of

the router, and allow for different paths from source to desti-

nation. Such approach causes, that frames can arrive with

different delays and need some kind of information for ar-

rangement. It is achieved by offset number for a frame, put

after ID of destination IP field in frame (compare with Fig.

8).

 Receiver NI (after removing header of a frame) decodes

packet header, seeks for proper interface (i.e. port for IP

core) and stores it. To limit the traffic in the NoC we decided

to implement buffers on both, sender and receiver, sides. To

ensure, for sc_fifo channels, buffers integrity we introduced

the mechanism of acknowledgment – each FIFO transmis-

sion causes sending back of small, technical frame with

number of packet being acknowledged. Then, next write

operation can be performed.

 If the header contains information about blocking mode

of transmission, the NI uses MicroC/OSII low-level mecha-

nisms to stop/resume involved process. Also SystemC chan-

nel operations for event/buffer state checking are imple-

mented through MicroC/OSII inter process communication

mechanisms. For example if the NI has a blocking read

(write) request and the addressed FIFO buffer is empty (full)

it sends the local signal to the local process forcing it to wait.

 Channel mapping details:

– sc_signal - local buffers for NIs are one-element,

write operation transmits data only when current data

is different from previously written in buffer, no ac-

knowledgment is needed;

– sc_buffer – like for sc_signal, but write operations

always force the transmission, no acknowledgment is

needed;

– sc_fifo – local buffers of transmitter and receiver have

as many elements as in specification (see buffer at-

tribute for port tag in system_sc.xml). Two copies of

the same buffer exist in receiver and transmitter NI.

Only write operation generates transmission. Ac-

knowledgments are needed.

5. EXAMPLE

 For the purpose of demonstration of our methodology we

implemented in SystemC embedded WWW server and

mapped it onto NoC architecture. Sample server supports

selected commands of the HTTP protocol [26] (i.e. GET and

POST). HTTP protocol is well-known mechanism used in

Internet for serving WWW resources (HTML pages with

embedded elements, e.g. graphics). The client (WWW

browser like Internet Explorer, Firefox, Opera, etc.) sends a

request to server in form of GET/POST message. The re-

quest is initiated after confirming the WWW address put into

address bar of the browser and consists of several lines of

text. These, so called, HTTP headers describe capabilities of

a client and give precise information about requested re-

source (file name, preferred language of document, transmis-

sion mode, time stamp, etc.). Then server searches its local

file system, retrieves demanded resource and sends it back to

client including response code (success, temporary error,

permanent failure). HTTP is an application protocol, which

uses TCP/IP as transport/network protocols. The fabric of

the server is depicted on Fig. (10) and consists of modules:

– GetReq – includes one process waiting for requests on

port 80. Supports max. 6 simultaneous connections.

Every connection has it's own, separate port for

transmitting data. All requests are sent to the ProcReq

module. The Transmit module is informed after every

flushing of the buffer of the transmitter and send next

fragments of the requested files. The GetReq supports

requests in the TCP/IP style – by calling functions

socket, bind, listen and accept.

– ProcReq – includes one process activated by trans-

mission from GetReq. Next, the data is read by

TCP/IP receive command into the buffer. If there is

entire HTTP request, it is analyzed and module

ProcGet is activated (in case of GET command) or

ProcPost (in case of POST command).

– ProcGet – processes the GET command and sends

error message (if file doesn't exist) or header of the

found file. ProcGet activates FileSys – file manager

module.

– ProcPost – processes the POST command. The called

procedure depends on passed parameters.

Mapping SystemC Multi-module Specifications onto NoC Architectures The Open Cybernetics and Systemics Journal, 2008, Volume 2 149

– Transmit – includes one process for transmitting data

(i.e. file). The file requested by GET command is re-

ceived from FileSys module in 8kB parts. One execu-

tion of the process means sending one part of the file.

– ManConn – this process determines the status of the

connection. In case of exceeding time limit or raising

error during command processing, the connection is

closed. Connection can be also closed after normal

transmission.

 The TCP/IP and FileSys modules are elements of Altera's

NiosII IDE system [22]. The first one implements functions

equivalent to standard BSD socket functions. The second

one is ZIP file system manager for flash memories. All

transmissions use sc_fifo channels with one-element buffers,

except some buffers of the channels: gr_to_pr, gr_to_tr and

gr_to_mc, which have 6 elements buffers.

 According to SystemC description depicted as scheme on

Fig. (10) we obtain HTTP_sc.xml file, partially shown on

Fig. (11) (it contains description for ProcGet and FileSys

modules and their ports connected through fopen_in and

fopen_out channels).

 Target NoC configuration and its description

HTTP_noc.xml file are shown on Fig. (12). Note dotted lines

defining shortest paths between several IP cores and imple-

mented into them SystemC modules. These sample paths are

result of algorithm from Fig. (6).

 On Fig. (13) we present denotation of router ports and a

part of routing table (for dotted paths on Fig. 12a). Having

binary coded router ports we are able to program local rout-

ing tables inside the routers. That operation needs data

shown on Table 1, which are the result of algorithm from

Fig. (6).

 Table 2 shows structure of translational table for sending

purpose implemented inside the NI. SystemC module ID and

SystemC port ID form local destination address (determined

by channel description in HTTP_sc.xml file) translated on

corresponding destination IP ID (index). Local source ad-

dress designates the proper row in table.

6. CONCLUSIONS

 This paper presents the methodology for rapid mapping

of SystemC model into working FPGA prototype. The archi-

tecture of the prototype is NoC based. The exact target NoC

architecture is described by designer and thus he can quickly

estimate the most suitable architecture for particular specifi-

cation of the system. Although entire process is complex, we

proved it is possible to do it automatically. We defined set of

rules and algorithms to successfully perform mapping proce-

dure. The main stress was laid on proper implementation of

the communication aspects, i.e. translation channels seman-

tics on NoCs communication. Example of HTTP server illus-

trates our methodology.

 Most of the works about NoC architectures is focused on

particular aspects of NoC modeling and optimization. In our

work we enclosed hitherto existing achievements in one

methodology, which lets designer not only model, but also to

obtain real, feasible FPGA prototype. Thus, it gives huge

degree of flexibility in making decision about the most

TCP/IP sock_out

sock_in

bind_out

bind_in

list_out

list_in

sel_out

sel_in

acc_out

acc_in

GetReq

gr_to_tr

send_out

send_in

Transmit

ProcReq

gr_to_pr

ProcGet send_out

send_in

fopen_in

fopen_out

flen_in

flen _out

fclose

FileSys

fread_out

fread_in

ManCon

tr_to_mc

gr_to_mc

ProcPost

gr_to_pg

pg_to_mc

pr_to_mc

mc_to_gr

pp_to_mc pp_to_mc

send_out

rec_out

rec_in

close_c

fc
lo

se

Fig. (10). SystemC architecture scheme of the WWW server.

150 The Open Cybernetics and Systemics Journal, 2008, Volume 2 Deniziak and Tomaszewski

Fig. (11). Part of HTTP_sc.xml.suitable target NoC configura-

tion for specific SystemC description.

 Although of many advantages we have to remember, that

automatic mapping methodology has also some unfavorable

impact on cost factor of target architecture. Is is due to Sys-

temC channel semantics compatibility. To maintain func-

tionality of SystemC channel in conformity with NoC as-

sumptions we had to agree on some excess in communica-

tion layer. It includes acknowledgment mechanism, translat-

ing addresses format (with use of translational tables in NIs),

additional sending/ receiving buffers, messages fragmenta-

tion/ defragmentation procedures, etc.. Such inconveniences

are also present in other common NoC modeling/prototyping

approaches and are acceptable.

 Below we enumerate key features/capabilities of our ap-

proach in contrast to the other methodologies:

– one SystemC input description (only Nostrum uses

SystemC as input, other approaches use their own,

manually configurable, input description formats like

XML files)

– any NoC topology (others are often limited to mesh-

based topology, e.g. Nostrum)

– any router/routing strategy (competitors use mainly

deterministic routing or partially adaptive, where

adaptivity is incorporated into routers increasing NoC

complexity)

– modeling/prototyping aware (model is given as input

in SystemC, prototype is generated in VHDL; some

of other frameworks are used only for simulation pur-

poses, e.g. Nostrum, Noxim)

 In this paper we focused on selected SystemC channels,

but it is worth to notice, that methodology is open and easy

extensible – mapping is not limited only to sc_signal chan-

nel, sc_fifo channel, LiPaR routers, etc.

 We gained an acceptation for our idea [30] and we are

still working under improvement of our methodology. Si-

multaneously we applied it successfully for development of

new routing strategies [31].

 (a)

(b)

Fig. (12). Scheme of target NoC architecture with binary IDs (a)

and corresponding HTTP_noc.xml (b).

Fig. (13). Designation of router ports.

<arch id=”HTTP_SC”>
 <module id=”010”> <!-- ProcGet module -->
 <process id=”0”>0</process>
 <!-- ports connected to fopen_xx channels -->
 <port id=”0000” type=”sc_fifo_in”
 process_conn=”0” size=”32”>0</port>
 <port id=”0001” type=”sc_fifo_out”
 process_conn=”0” size=”2072”>1</port>
 ...
 </module>
 <module id=”001”> <!-- FileSys module -->
 <process id=”0”>0</process>
 <!-- ports connected to fopen_xx channels -->
 <port id=”0000” type=”sc_fifo_out”
 process_conn=”0” size=”32”>0</port>
 <port id=”0001” type=”sc_fifo_in”
 process_conn=”0” size=”2072”>1</port>
 ...
 </module>
 <!-- fopen_in channel -->
 <channel id=”000000” type=”sc_fifo” buffer=”1”
conn=”001_0000 010_0000”>0</channel>
 <!-- fopen_out channel -->
 <channel id=”000001” type=”sc_fifo” buffer=”1”
conn=”001_0001 010_0001”>1</channel>
</arch>

<noc id=”HTTP_NoC”>
 <router id=”000” l_port=”000” N_port=”011”
 E_port=”010” S_port=”001”
 type=”lipar”>0</router>
 <router id=”001” l_port=”001” N_port=”000”
 E_port=”010” S_port=”100”
 type=”lipar”>1</router>
 <router id=”010” l_port=”010” N_port=”000”
 E_port=”011” S_port=”100” W_port=”001”
 type=”lipar”>2</router>
 <router id=”011” l_port=”011” N_port=”000”
 S_port=”100” W_port=”010”
 type=”lipar”>3</router>
 <router id=”100” l_port=”100” N_port=”011”
 S_port=”001” E_port=”010”
 type=”lipar”>4</router>
 <IP id=”000” impl=”SW” sc_mod=”000 001”>0
 </IP>
 <IP id=”001” impl=”SW” sc_mod=”010 011”>1
 </IP>
 <IP id=”010” impl=”SW” sc_mod=”100 101”>2
 </IP>
 <IP id=”011” impl=”SW” sc_mod=”110”>3</IP>
 <IP id=”100” impl=”HW” sc_mod=”111”>4
 <port id=”cin0” width=”8” />
 <port id=”cin1” width=”8” />
 <port id=”cin2” width=”8” />
 <port id=”cin3” width=”8” />
 <port id=”cin4” width=”8” />
 <port id=”cout” width=”8” />
 <port id=”fclose” width=”32” />
 <port id=”cclose” width=”16” />
 </IP>
</noc>

001
N

LP

W E
S 010

011

100

000

Mapping SystemC Multi-module Specifications onto NoC Architectures The Open Cybernetics and Systemics Journal, 2008, Volume 2 151

Table 1. Part of Routing Table

Src IP R1 R2 R3 R4 R5 Dest IP

000 011 000 - - - 001

001 000 001 - - - 000

001 - 010 000 - - 010

010 - 000 100 - - 001

011 - - - 011 000 100

100 - - - 000 001 011

Table 2. Part of Translational Table of NI for Purpose of

Forming a Header of a Frame Before Sending (Multi

Field Omitted)

Dest

SC_module|SC_port
Dest IP Comment

010|0001 001
FileSys sends through

fopen_in channel

001|0001 000
ProcGet sends through

fopen_out channel

 Next step in our future work will be implementing other

types of routers, different routing strategies and support for

custom SystemC channels.

 Table 3 demonstrates sample local routing table for

router R2. The content of routing memory (essential part of

routing logic) is built according to information gained in the

table depicted in Table 1. Dest addres is used for addressing

memory and the content of addressed row specifies proper

output port for further transmission.

Table 3. Sample Part of Local Routing Table for Router R2

(Compare with Table 1)

Dest. Address Output Port

000 001

001 000

010 010

... ...

REFERENCES

[1] L. Benini and G. De Michelli, “Networks on Chips: A New SOC

Paradigm”, IEEE Comput., pp. 70-78, January 2002.
[2] D. Kissler, A. Kupriyanov, F. Hannig, D. Koch, and J. Teich, “A

Generic Framework for Rapid Prototyping of System-on-Chip De-
signs”, Proc. of the CDES, pp. 189-195, 2006.

[3] B. Sethuraman and R. Vemuri, “optiMap: A Tool for Automated
Generation of NoC Architectures using Multi-Port Routers for

FPGAs”, Proc. of the DATE, pp. 947-952, 2006.
[4] IEEE Standard SystemC Language Reference Manual, IEEE, New

York, 2006.

[5] M. Coppola, S. Curaba, M. D. Grammatikakis, G. Maruccia, and F.

Papariello, “OCCN: A Network-On-Chip Modeling and Simulation
Framework”, Proc. of the DATE Designers’ Forum, pp. 174-179,

2004.
[6] C. Koch-Hofer, M. Renaudin, Y. Thonnart, and P. Vivet, “ASC, a

SystemC extension for Modeling Asynchronous Systems, and its
application to an Asynchronous NoC”, Proc. of the NOCS, pp. 295-

306, 2007.
[7] K. Goossens, J. Dielissen, O. P. Gangwal, S. G. Pestana, A.

Radulescu, and E. Rijpkema, “A Design Flow for Application-
Specific Networks on Chip with Guaranteed Performance to Accel-

erate SOC Design and Verification”, Proc. of the DATE, pp. 1182-
1187, 2005.

[8] A. Jalabert, S. Murali, L. Benini, and G. de Michelli, “XpipesCom-
piler: A Tool for Instantiating Application Specific Networks on

Chip”, Proc. of the DATE, pp. 884-889, 2004.
[9] A. Portero, R. Pla, and J. Carrabina, “SystemC implementation of a

NoC”, Proc. of the IEEE Int. Conf. Industrial Technology, pp.
1132-1135, 2005.

[10] T. Kogel, R. Leupers, and H. Meyr, “Integrated System-Level
Modeling of Network-on-Chip enabled Multi-Processor Plat-

forms”, Springer, 2006.
[11] T. A. Bartic et al., “Highly Scalable Network on Chip for Recon-

figurable Systems”, Proc. of the International Conference on Sys-
tem-On-Chip, pp. 79-82, 2003.

[12] S. Tota, M. Casu, P. Motto, M. R. Roch, and M. Zamboni,
“NoCRay, an FPGA Network-on-Chip Based MP-SoC for Graph-

ics Ray Tracing Applications”, Proc. of DATE, 2007.
[13] M. Schoeberl, “A Time Triggered Network on Chip”, Proc. of the

FPL, pp. 377-382, 2007.
[14] N. Genko, D. Atienza, G. De Micheli, J. M. Mendias, R. Hermida,

and F. Catthoor, “A Complete Network-On-Chip Emulation
Framework”, Proc. of the DATE, pp. 246-251, 2005.

[15] P. T. Wolkotte, P. K. F. Holzenspies, and G. J. M. Smit, “Fast,
Accurate and Detailed NoC Simulations”, Proc. of the NOCS, pp.

323-332, 2007.
[16] C. Puttmann, J. C. Niemann, M. Porrmann, and U. Ruckert, “Gi-

gaNoC - A Hierarchical Network-on-Chip for Scalable Chip-
Multiprocessors”, Proc. of the Euromicro DSD, pp. 495-502, 2007.

[17] E. Salminen, A. Kulmala, and T. D. Hamalainen, “HIBI-based
multiprocessor SoC on FPGA”, Proc. of the ISCAS, vol. 4, pp.

3351-3354, 2005.
[18] A. Pinto, L. P. Carloni, and A. L. Sangiovanni-Vincentelli, “Effi-

cient Synthesis of Networks on Chip”, Proc. of the ICCD, 2003.
[19] X. Wu, T. Ragheb, A. Aziz, and Y. Massoud, “Implementing DSP

Algorithms with On-Chip Networks”, Proc. of the NOCS, pp. 307-
316, 2007.

[20] L. Benini, “Application Specific NoC Design”, Proc. of the DATE,
pp. 491-495, 2006.

[21] A. Kumar, A. Hansson, J. Huisken, and H. Corporaa, “An FPGA
Design Flow for Reconfigurable Network-Based Multi-Processor

Systems on Chip”, Proc of the DATE, pp. 117-122, 2007.
[22] www.altera.com

[23] B. Sethuraman, P. Bhattacharya, J. Khan, and R. Vemuri, “LiPaR:
A Light-Weight Parallel Router for FPGA-based Networks-on-

Chip”, 15th Great Lakes Symposium on VLSI (GLSVLSI'05), pp.
452-457, 2005.

[24] F. Herrera, H. Posadas, P. Sanches, and E. Villar, “Systematic
Embedded Software Generation form SystemC”, Proc. of the

DATE, pp. 142-147, 2003.
[25] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Intro-

duction to algorithms, The MIT Press, 2001.
[26] R. Fielding, J. Gettys, J. Mogul, et al., “Hypertext Transfer Proto-

col - HTTP/1.1”, RFC 2616.
[27] M. Saldaña, L. Shannon, and P. Chow, "The Routability of Multi-

processor Network Topologies in FPGAs", Proc. of the 2006 inter-
national workshop on System-level interconnect prediction, pp. 49-

56, 2006.
[28] G. Palermo and C. Silvano, “Pirate: A framework for

power/performance exploration of network-on-chip architectures”,
Proc. of 14th Int. Workshop on Integrated Circuit and System De-

sign, Power and Timing Modeling, Optimization and Simulation
(PTMOS), 2004.

152 The Open Cybernetics and Systemics Journal, 2008, Volume 2 Deniziak and Tomaszewski

[29] Z. Lu, I. Sander, and A. Jantsch, “Refinement of a Perfectly Syn-

chronous Communication Model onto Nostrum NoC Best-effort
Communication”, Proc. of the Forum on Design Languages, 2005.

[30] S. Deniziak and R. Tomaszewski, "Rapid Prototyping of NoC
Architectures from a SystemC Specification", accepted for publica-

tion in Proceedings of the IEEE Workshop on Design and Diagnos-

tics of Electronic Systems, 2008.
[31] S. Deniziak and R. Tomaszewski, "Adaptive Routing Protocols

Validation in NoC Systems via Rapid Prototyping", accepted for
publication in Proceedings of the IEEE Human System Interaction,

2008.

Received: March 31, 2008 Revised: April 16, 2008 Accepted: April 19, 2008

© Deniziak and Tomaszewski; Licensee Bentham Open.

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/license/by/2.5/), which

permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

