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Abstract: The notion of an intuitionistic fuzzy metric space is a natural generalization of the fuzzy metric space concept 
which provides mechanisms to measure the degree of nearness and remoteness between two elements of a fuzzy set ac-
cording to a parameter t. In this work we show how, interpreting t as a value representing the evolution time of an infor-
mation system, we can use effective prediction tools in systems that show a strong locality component and where opera-
tions require the coordination of actions over the set of elements. 

Furthermore we show how we can tune the fuzzy metric results in order to predict access histories working on variations 
of the fuzzy constructions. To this end we study the suitability of a set of continuous t-norms and t-conorms to build fuzzy 
constructions. We have evaluated the metrics suitability according to their computation time and to the sensitiveness for 
different representative cases. 

INTRODUCTION 

 Since the theory of fuzzy sets introduced by L.A. Zadeh 
[1] appeared in 1965 it has been used in a range of areas of 
mathematics. One of these areas, fuzzy logic, has allowed to 
apply fuzzy behaviour to implement industrial control de-
vices and to use multivalued logic concepts to real scenarios. 

 A fuzzy set is a set whose elements may be divided into 
the ones that belong to the set, the ones that do not belong to 
the set and the ones for which it is not possible to decide 
without a certain degree of uncertainty whether they belong 
to the set or not. Following Zadeh’s idea, K. Atanassov [2] 
introduced the concept of intuitionistic fuzzy set to allow 
grouping elements according to degrees of nearness and re-
moteness. 

 Fuzzy topology is another example of use of Zadeh’s 
theory. Authors of this field have pursued the definition of a 
fuzzy metric space from different points of view (see [3-6], 
etc.). 

 This work deals with the use of fuzzy metric concepts to 
achieve accesses optimization in information systems in 
general. Among the variety of information systems, we 
choose those based on access locality in the sense of near-
ness among the elements of the set. This characteristic ap-
pears quite often in basic information systems (compilation, 
physical memory accesses, transaction isolation, etc.) and 
also suits finely the way human organizations are structured 
(headquarters and geographically scattered delegations for 
instance). 
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 After a brief review to the results presented in the starting 
point section using a quasi-metric lattice, we will show that 
the Kramosil-Michalek definition of fuzzy metric [3] is the 
one that is better suited for our purposes. The metric formed 
by the chosen set and a distance (t-norm) on the elements of 
the set allows to use fuzzy metric and intuitionistic fuzzy 
metric techniques to improve our previous results. 

 As a core introduction for our work we will display a 
series of measurements with experiments using several con-
tinuous t-norms and t-conorms that allow us to construct the 
fuzzy metric (and the intuitionistic fuzzy metric) in a way 
that its results approximate to different real systems behav-
iours. 

STARTING POINT 

 In [7] we tackled the problem of detecting data access 
patterns with several degrees of locality using a quasi-metric 
lattice. The quasi-metric lattice is based upon a quasi-metric 
space (X,d)where X is the non-empty set of objects of the 
system and d is a quasi-metric on X. 

 Using the quasi-metric space and the induced order 
x �d y� d(x, y) = 0 on the set X, we obtained an ordered set 

(X,�d )  that allowed us to build a quasi-metric lattice. 

Definition 1 (Quasi-Metric Lattice) 

 A quasi-metric lattice is a triple (X,d,�)  such that 

(X,d) is a quasi-metric space and (X,�)  is a lattice such that 
for x, y, z �X : 

d(x � z, y � z) � d(x, y)  and d(x � z, y � z) � d(x, y)  

 For each x �X , denote by k(x) the number of uses of x 
in [0,T], where T is the instant of time when we want to pre-
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dict x’s value reliability and x is an object in an information 
system such as a replicated database object for example (see 
[7]). 

 Now, for each x �X with k(x) > 0, we construct a func-
tion also denoted by x from [0,T] into N U {0} as follows: 

x(t) = 0, if t = 0; 

x(t) = 1, if 0 < t � t1(x); 

x(t) = 2, if t1(x) < t � t2(x); 

....................................... 

x(t) = k(x) � 1, if t(k(x)�2)(x) < t � t(k(x)�1)(x); 

x(t) = k(x), if t(k(x)�1)(x) < t � T. 

If k(x) = 0, we define x : [0, T] �  [0, 1] by 

x(t) = 0, if 0 � t � T. 

x(t) represents object x history of accesses during time. 

 Next we are interested in obtaining a function v from X 
into [0,1] such that v(x) provides a sufficiently satisfactory 
value of the probability of “use” of x and satisfying the fol-
lowing reasonable and obviously desirable fact to model 
locality: 

Proximity and Frequency Condition 

 If x, y �X satisfy that 0 < k(y) �  k(x) and for each 

j �{1, ..., k(y)} there is i �{1, ..., k(x)}with t j (y) � ti(x )  then 

v(y) �  v(x); in addition, if for some j �{1, ..., k(y)} there is 

i � {1, ..., k(x)}  with t j (y) < ti(x )  then v(y) < v(x). 

 i.e., v allows us to compare two elements histories in a 
way that if the second element history adds closer to T ac-
cesses in between the first element history then v value for 
the second element is greater than for the first object. 

 A relatively easy function which is a suitable candidate to 
provide an efficient model in our study, and whose construc-
tion is suggested by the function x(t) given above, is the 
function v : X �  [0,1] defined as follows: 

 If k(x) = 0, then 

v(x) = 0, 

and if k(x) > 0, then 

v(x) = 2� j
t(k (x )�( j�1))(x )

T
.

j=1

k (x )

�  

 In [7] it is shown how v satisfies the nearness and fre-
quency condition and how the quasi-metric lattice offers an 
adequate framework to explain the pattern accesses proper-
ties by grouping objects in classes [x] = {y �X :v(x) = v(y)}  

in a way that if we compare two classes [x]  [y] 

� v(x) � v(y) , then 
 
�X := {[x] : x �X} admits a lattice struc-

ture and 
 
( �X,d,      ) is a quasi-metric lattice. 

MODEL EXTENSION IN TIME: FUZZY METRICS 

 As a natural continuation of the initial study we pretend 
to take advantage of the intermediate accesses values. 

 We will start the extension approach by recalling some 
basic definitions. 

Definition 2 (Metric) 

 A metric on a set X is a real valued function 
d : X � X�R such that for all x, y, z �X : 

(i) d(x, y) � 0 ; 

(ii) d(x, y) = 0� x = y ; 

(iii) d(x, y) = d(y, x) ; 

(iv) d(x, y) � d(x, z) + d(y, z) . 

Definition 3 (T-Norm [8]) 

 A continuous t-norm is a binary operation 
� :[0,1]� [0,1]� [0,1] such that: 

 � is commutative and associative, � is continuous, a�1 

= a for all a �[0,1]  and a�b � c�d when a � c and 

b � d (a, b, c, d �[0,1] ) 

Definition 4 (T-Conorm [8]) 

 A continuous t-conorm is a binary operation 

 � :[0,1]� [0,1]� [0,1] such that: 

 � is commutative and associative, � is continuous, a � 0 
= a for all a �[0,1]  and a � b � c � d when a � c and 
b � d (a, b, c, d �[0,1] ). 

Definition 5 (Fuzzy Metric Space: Kramosil-Michalek 
[3]) 

 A triple (X,M,�) is a fuzzy metric space if X is an arbi-

trary set, � is a continuous t-norm and M is a fuzzy set on 

X 2
� [0,�)  such that (with x, y, z � X and t, s > 0): 

1) M(x, y, 0) = 0. 

2) M(x, y, t) = 1 for all t > 0 �  x = y. 

3) M(x, y, t) = M(y, x, t). 

4) M(x, z, t) � M(z, y, s) �  M(x, y, t + s). 

5) M(x, y, _) : [0,�)� [0,1]  is left continuous. 

BASIS OF THE FUZZY METRIC EXTENSION 

 While in our initial approach we choose k(x) as the num-
ber of uses of an object x between 0 and T and the instant of 
time when the metric is calculated. 

 Now we choose t, where 0 � t < T , and define k(x,t)= 

i(x) if t�(ti(x)-1,ti(x)] with i(x)�k(x), and k(x,t)=k(x) if 
t�[tk(x),T]. (We take t0=0). 

 Thus, k(x,t) is a function of the computed accesses until 
the instant t. 

 Then, we define v : X � [0,�)� [0,1]  by: 

v(x,0) = 0, 
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v(x, t) = 2� j
t(k (x,t )�( j�1))(x )

T
.

j=1

k (x,t )

�  

if 0 < t � T , and v(x,t) = 1 if t > T. 

 Let’s suppose that v(x,T) offers a “reasonable” value of 
probability of x being accessed at instant T. Then we can 
compare v(x,t) and v(y,t) and if they show similar values then 
we can try to advance the prediction of y’s class, which will 
most possibly be [y] = [x]. 

 This comparison is represented by the fuzzy metric space 
defined by the triple (X,M, �) where X is a non-empty set, � 

a continuous t-norm and M a fuzzy set in X � X � (0,�) de-
fined by: 

M(x, y, t) = v(x, t) � v(y, t) 

 In [9] we show the following result, which establishes 
that (M, �) is a fuzzy metric as defined by Kramosil-
Michalek for an adequate v. 

 Proposition 1: Let v : X � [0,�)� [0,1] be any function 
such that for each x �X  v(x,_) is a left continuous non-
decreasing function (i.e., v(x, t) � v(x, s) if t � s ). Then 

(X,M,�) is a fuzzy metric space where: 

(a) M(x, y, 0) = 0. 

(b) M(x, x, t) = 1 for each t > 0 and for each x�X. 

(c) M(x, y, t) = v(x, t)� v(y, t) if x � y for each 

t > 0. 

 Notice that our function v defined at the beginning of the 
subsection satisfies Proposition 1, i.e., for each x, v is left 
continuous and non-decreasing. 

EVALUATED T-NORMS 

 We have considered different continuous t-norms (check 
Dubois-Prade [10]) and compared them according to their 
results with the fuzzy metric in v(x,t): 

• Minimum: min(x, y) :=
x if x � y

y if y < x

�
�
�

 

• Product: (x, y) := xy�  

• Lukasiewicz: W(x, y) := max{x + y � 1, 0}. 

• T-norm families: different parameter values will be 
compared. 

– Frank family: 

logs (1+
(sx �1)(sy �1)

s �1
)  

where s>0, s �  1. 

– Hamacher family: 

 
xy

� + (1�� )(x + y � xy)
 

where � � 0. 

– Sugeno-Weber family: 

max{
x + y �1+ �xy

1+ �
, 0}  

where� �  �1. 

– Schweizer-Sklar family: 

(max{x� p + y� p �1, 0})1/p . 

– Yager family: 

max{1� ((1� x)p + (1� y)p )1/p , 0}  

where p �(0,�) . 

– Dombi family: 

 
1

1+ ((
1� x

x
)� + (

1� y

y
)� )1/�

 

where � �(0,�) . 

– Dubois-Prade family: 

xy

max(x, y,� )
 where � �[0,1] . 

 Comparisons using continuous t-norm families allow us 
to tune the predictions precision (check related figures to see 
how the parameter affects the evaluation). 

COMPARISON OF RESULTS 

 We evaluate v in [0,T] and we arbitrarily set T = 1000 to 
allow the prediction to range from no uses to plenty of them. 
t instants have been chosen uniformly scattered through the 
interval. 

 Our tests are based on comparisons of v values during 
[0,T] for two different objects x, y (fuzzy set elements) using 
continuous t-norms. These differences are achieved applying 
localized variations in the first object x to obtain y. That is 
how we model element accesses with degrees of nearness as 
it happens in systems with strong locality components. 

 Computing the variation of y is a simple implementation 
of the Proximity and Frequency condition. We have tried 3 
kinds of variations as we display in the following subsec-
tions. 

Random Variations – Random 

 Figs. (1-3) show n additional accesses to element y are 
performed randomly through the interval [0,T]. 

 Fig. (2) shows v(x,t) and v(y,t) values: The final value for 
both experiments is high because accesses are performed 
throughout the end of the study for both elements. Fig. (3) 
shows the fuzzy metric results for the minimum, product and 
Lukasiewicz t-norms. Figs. (4-6) are examples of the results 
obtained for the t-norm families. 

 For the case of the Hamacher family, there is no abrupt 
change in the family behaviour when we introduce changes 
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in the parameter �  value. For close to 1 values, Hamacher 
family gets close to the product results because as the pa-
rameter is placed in at the denominator, �  increments mean 
that M values will decrease. As there is no upper bound for 
�  this family allows us to get lower values than the ones 
obtained using the Lukasiewicz t-norm for the metric con-
struction. 
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Fig. (1). Random histories. 
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Fig. (2). Random: v(x;t) and v(y;t). 
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Fig. (3). Random: M using minimum, product, Lukasiewicz. 

 0

 200

 400

 600

 800

 1000  0  100  200  300  400  500  600  700  800  900  1000

 0

 0.2

 0.4

 0.6

 0.8

 1

v ’Hamacher t-norm’

parameter

t

v

 

Fig. (4). Random: M using Hamacher. 
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Fig. (5). Random: M using Sugeno-Weber. 

 0

 0.2

 0.4

 0.6

 0.8

 1  0  100  200  300  400  500  600  700  800  900  1000

 0

 0.2

 0.4

 0.6

 0.8

 1

v ’Dubois-Prade t-norm’

parameter

t

v

 

Fig. (6). Random: M using Dubois-Prade. 

 For the Sugeno-Weber t-norm with �  values in between 
�1 and 0 the t-norm results converge to the Lukasiewicz 
ones and for �  values greater than 0 results converge to the 
product ones. 

 For the Dubois-Prade results, increments imply a pro-
gressive decrement of M. 

Left-Random Variations – Left-Random 

 In this set of experiments, the n additional accesses ap-
pear randomly close to the beginning of the history. It can be 
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seen how the behaviour of the metric is similar to the one 
found in the previous case with completely random varia-
tions. This is due to the fact that early accesses have less 
impact on the final result and, in the end, the accesses distri-
bution is quite similar to the random case. 

 See Figs. (7-9) for the data accesses distribution and v 
and M evaluations. Figs. (10-12) are examples of the results 
obtained for M built using three different t-norm families. 
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Fig. (7). Left-Random accesses. 
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Fig. (8). Left-Random: v(x;t) and v(y;t). 
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Fig. (9). Left-Random: M using minimum, product and Lu-
kasiewicz. 
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Fig. (10). Left-Random: M using Hamacher. 
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Fig. (11). Left-Random: M using Sugeno-Weber. 
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Fig. (12). Left-Random: M using Dubois-Prade. 

Right-Random Variations – Right-Random 

 Now the n additional accesses appear randomly close to 
the end of the history. As soon as the histories start diverging 
the metrics behaviour is similar to the previous experiments. 
In these experiments we can see how equal histories are per-
fectly identified as it happens simply with v evaluations but, 
as in all the experiments, M evaluation allows a richer identi-
fication of differences. 

 See Figs. (13-15) for the distribution of accesses and 
Figs. (16-18) as representative examples of the results ob-
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tained for different fuzzy metrics built using different t-norm 
families. 
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Fig. (13). Right random accesses. 
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Fig. (14). Right random: v(x;t) and v(y;t). 

Two Independent Histories – Opposite Histories 

 One of them has accesses performed mainly at the begin-
ning and the other has them at the end. Experiments can be 
observed in Figs. (19-21). Figs. (22-24) are examples of the 
results obtained for the t-norm families. 

 In all previous experiment groups, final values for M 
were big enough to consider that the element was likely to be 
accessed again soon. The reason for this constant behaviour 
is the fact that there were always close to T accesses. The 
experiment with two independent histories shows a different 
case and M evaluation does not seem to imply a prompt ac-
cess happening. Even though the prediction is different, it 
can be noticed that the t-norms comparison is still valid. 

Additional t-Norms 

 Next, we show in a separate group of figures families 
Schweizer-Sklar (Figs. 37-40), Dombi (Figs. 25-28), Frank 
(Figs. 29-32) or Yager (Figs. 33-36). 

 They require costly calculations which do not easily ap-
ply to our fast prediction intentions and neither of them in-
troduces any characteristic which could not be found in the 
faster families or the traditional t-norms. 

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000

M
(x

,y
,t

)

Time t

’min t-norm’ using 1:2
’product t-norm’ using 1:2

’Lukasiewicz t-norm’ using 1:2

 

Fig. (15). Right random: M using minimum, product, Lukasiewicz. 
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Fig. (16). Right random: M using Hamacher. 
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Fig. (17). Right random: M using Sugeno-Weber. 

 While they may prove to be very useful for other applica-
tion scenarios (for instance non real-time systems) we have 
dropped them off our study due to their calculation complex-
ity. 

APPLICATIONS OF THE FUZZY METRIC 

 Obviously, to take advantage of the history of accesses 
evaluation, we need at least a history that is representative of 
the regular uses of the element. 
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Fig. (18). Right random: M using Dubois-Prade. 
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Fig. (19). Opposite histories. 
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Fig. (20). Opposite histories: v(x;t) and v(y;t). 

 With the use of M we can model situations where the 
value of v is not high enough but the comparison of histories 
computed until a given moment t tells that accesses are prop-
erly managed (or the other way around) when the metric 
considers that histories are close. 

 Naturally, the closer from T the prediction is performed 
the more information we will have but also, in systems 
where erroneous assumptions require to undo previous op-
erations (rollback in transactional database systems, for in-

stance), we are likely to have less possibilities for turning 
back. 
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Fig. (21). Opposite histories: M using minimum, product, Lu-
kasiewicz. 
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Fig. (22). Opposite histories: M using Hamacher. 
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Fig. (23). Opposite histories: M using Sugeno-Weber. 

INTUITIONISTIC FUZZY METRIC EXTENSION 

 For our next step, we will use the fact that the notion of 
an intuitionistic fuzzy metric space is a natural generalization 
of a fuzzy metric space. This fact allows us to adapt the idea 
of an intuitionistic fuzzy set presented by Atanassov in [2] so 
that we can measure the degree of nearness and the degree of  
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Fig. (24). Opposite histories: M using Dubois-Prade. 
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Fig. (25). Random: Dombi. 
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Fig. (26). Left-Random: Dombi. 
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Fig. (27). Right-Random: Dombi. 
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Fig. (28). Opposite histories: Dombi. 
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Fig. (29). Random: Frank. 
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Fig. (30). Left-Random: Frank. 
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Fig. (31). Right-Random: Frank. 
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Fig. (32). Opposite histories: Frank. 
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Fig. (33). Random: Yager. 
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Fig. (34). Left-Random: Yager. 
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Fig. (35). Right-Random: Yager. 
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Fig. (36). Opposite histories: Yager. 
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Fig. (37). Random: Schweizer-Sklar. 
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Fig. (38). Left-Random: Schweizer-Sklar. 
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Fig. (39). Right-Random: Schweizer-Sklar. 
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Fig. (40). Opposite histories: Schweizer-Sklar. 

remoteness between two access histories. In our case, it is 
necessary to use the generalization defined by Alaca et al. in 
[11], a study that was later enriched by work of Romaguera 
and Tirado in [12]. 

Definition 6 (Intuitionistic Fuzzy Metric Space) 

 According to [11] and [12], an intuitionistic fuzzy metric 
space is a 5-tuple (X,M, �, � ) such that X is a non-empty 

set,, � a continuous t-norm, �  is a continuous t-conorm and 
M, N are sets in X � X � [0,�)  such that, for all x, y, z �  X: 

1) M(x, y, t) + N(x, y, t) �  1. 

2) M(x, y, 0) = 0. 

3) M(x, y, t) = M(y, x, t). 

3) M(x, y, t) = 1 for all t > 0 �  x = y. 

4) M(x, y, t) = M(y, x, t) for all t > 0. 

5) M(x, y, t+ s) �  M(x, z, t) � M(z, y, s) for all t, s �  0. 

6) M(x, y, _) : [0,�)� [0,1]  is left continuous. 

7) N(x, y, 0) = 1. 

8) N(x, y, t) = 0 for all t > 0 �  x = y. 

9) N(x, y, t) = N(y, x, t) for all t > 0. 

10) N(x, y, t+ s) �N(x, z, t) �  N(z, y, s) for all t, s �  0. 

11) N(x, y, _) : [0,�)� [0,1]  is left continuous. 

 In order to define a suitable function N satisfying condi-
tions 7) -11) of Definition 6, we need to find a new function 
v’ that allows us to compare two elements in a given moment 
t between 0 and T and a set of t-conorms so that: 

N(x, y, t) = v’(x, t) �  v’(y, t). 

 While fuzzy sets introduce the concept of membership 
degree, intuitionistic fuzzy sets introduce the concept of non-
membership and uncertainty degrees (notice the first one of 
the properties in the definition of fuzzy metric space which 
also extends membership degrees to nearness degrees). 

 The following function v’ is a suitable candidate to take 
advantage of the intuitionistic fuzzy spaces properties and to 

complement the representation of localized accesses histo-
ries: 

 We define v ' : X � [0,�)� [0,1]  by: 

v’(x,0) = 1, 

v '(x, t) =
T � t j (x )
Tj=1

k (x,t )

�  

if 0 < t � T , and v’(x,t) = 0 if t > T. 

 Then we can obtain the following result (compare [9]). 

 Proposition 2: Let v ' : X � [0,�)� [0,1]  be any function 
such that for each x �X  v’(x,_) is a left continuous non-
increasing function (i.e., v '(x, t) � v '(x, s) if t � s ). (X,1-

N, � ’) is a fuzzy metric space where: 

(a) N(x, y, 0) = 1. 

(b) N(x, x, t) = 0 for all t > 0 and for all x � X. 

(c) N(x, y, t) = v(x, t) �  v(y, t) if x � y for each t > 0. 

(d) � ’ is the t-norm induced by � , i.e., a � ’b= 

1 - [(1-a) � (1-b)], for all a,b �[0,1]. 

 Notice that our election of function v’ satisfies Proposi-
tion 2, i.e., for each x, v’ is left continuous and non-
increasing. Furthermore M+N � 1, so (X,M, �, � ) is an in-
tuitionistic fuzzy metric spaces, where M was constructed 
before Proposition 1. 

EVALUATED T-CONORMS 

 Our source of continuous t-conorms is again Dubois and 
Prade [10]. After discarding too complex t-conorms, we have 
taken into account: 

• Maximum: max(x, y) :=
y if x � y

x if y < x

�
�
�

. It is the mini-

mum dual. 

• Product dual – Probabilistic sum: 

'(x, y) := x + y � xy�  

• Lukasiewicz dual: W’(x, y) := min{x+ y, 1}. 

 We have also included figures showing the results for 

– Hamacher’: 

 
x + y + (� �1)xy

1+ �xy
 

where � � -1. It is the Hamacher family dual. 

– Sugeno-Weber’: 

min{x+y+ � xy, 1} where � �  �1. 

It is the Sugeno-Weber family dual. 

 in order to see how their behaviour is very similar to the 
traditional t-norm duals. 

 The following figures illustrate the results obtained using 
the intuitionistic fuzzy metric for the same experiments that 
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were performed for the t-norms. It will be worth revisiting 
Figs. (1,7,13,19) while studying the next ones. 

Random Variations – Random 

 For the random access cases (Figs. 41-44), it can be seen 
how the t-conorms ordering prevails and how fast M values 
decrease due to v’(x,t) construction. 
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Fig. (41). Random: v’(x;t) and v’(y;t). 
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Fig. (42). Random: N(x;y;t). 
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Fig. (43). Random: N using Hamacher’. 
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Fig. (44). Random: N using Sugeno-Weber’. 

Left-Random Variations – Left Random 

 The experiments for left-random accesses (Figs. 45-48), 
display how N identifies the differences between element 
histories concentrated near to the starting point. From a 
given moment on, both histories show an identical access 
pattern and N returns very close to 0 values. This characteris-
tic is reinforced by the fact that k(x) and k(y) are big enough 
for the product to tend to 0. As soon as we come across a 
situation like this, we must consider that histories distance is 
measured by v’ better than using N. 
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Fig. (45). Left-Random: v’(x;t) and v’(y;t). 
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Fig. (46). Left-Random: N(x;y;t). 



Accesses Locality via Intuitionistic Fuzzy Metrics The Open Cybernetics and Systemics Journal, 2008, Volume 2    169 

-1

-0.5

 0

 0.5

 1

 1.5  0  100  200  300  400  500  600  700  800  900  1000

 0

 0.2

 0.4

 0.6

 0.8

 1

v ’Hamacher t-conorm’

parameter

t

v

 

Fig. (47). Left-Random: N using Hamacher’. 
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Fig. (48). Left-Random: N using Sugeno-Weber’. 

Right-Random Variations – Right Random 

 For the right-random experiments histories (Figs. 49-52), 
divergence starts at the moment T/4. In that same moment N 
starts displaying differences until it turns 0 again due to the 
amount of accesses already performed (similar to the left-
random accesses case). 
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Fig. (49). Right random: v’(x;t) and v’(y;t). 
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Fig. (50). Right random: N(x;y;t). 
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Fig. (51). Right random: N using Hamacher’. 
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Fig. (52). Right random: N using Sugeno-Weber’. 

Two Independent Histories – Opposite Histories 

 When we compare the opposite histories experiments 
(Figs. 53-56), with the ones from the right-random accesses, 
N decrement for the opposite histories case is softer than for 
the right-random case, as one might have expected because 
differences already appear far from the end of the histories 
measuring time end. 
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 As in the rest of the cases, history differences towards the 
end of the history are not compared as explicitly as the com-
parisons performed towards the beginning of the history due 
to the amount of already performed accesses. 
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Fig. (53). Opposite histories: v’(x;t) and v’(y;t). 
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Fig. (54). Opposite histories: N(x;y;t). 

-1

-0.5

 0

 0.5

 1

 1.5  0  100  200  300  400  500  600  700  800  900  1000

 0

 0.2

 0.4

 0.6

 0.8

 1

v ’Hamacher t-conorm’

parameter

t

v

 

Fig. (55). Opposite histories: N using Hamacher’. 

INTUITIONISTIC FUZZY METRIC APPLICATIONS 

 The results for the experiments obtained with v’ and the 
t-conorms are shown in the following figures on top of the 
ones obtained with v and the t-norms to show the intuitionis- 
 

tic fuzzy metric behaviour (applying the correction factor 
M/2 and N/2 in order to fulfill all the intuitionistic fuzzy met-
ric properties). 
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Fig. (56). Opposite histories: N using Sugeno-Weber’. 

 Fig. (57-60) show the results of M and N obtained for the 
previous 4 scenarios. We have only shown the results for 
traditional t-norms because they act as boundaries (begin the 
minimum the upper bound of all of them) for the considered 
families. 
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Fig. (57). Random: M and N. 
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Fig. (58). Left-Random: M and N. 



Accesses Locality via Intuitionistic Fuzzy Metrics The Open Cybernetics and Systemics Journal, 2008, Volume 2    171 

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  200  400  600  800  1000

M
(x

,y
,t)

,N
(x

,y
,t)

Time t

’min t-norm’ using 1:2
’product t-norm’ using 1:2

’Lukasiewicz t-norm’ using 1:2
’max t-norm’ using 1:2

’probabilisticsum t-norm’ using 1:2
’bounded sum t-norm’ using 1:2

 

Fig. (59). Right-Random: M and N. 
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Fig. (60). Opposite histories: M and N. 

 Families are then useful if we need a finer tuning or if 
our system behaves adaptively and the family parameter is 
able to introduce subtle improvements in the predictions. 
This also confirms that for a general scenario there is no 
such thing as an optimal parameter. 

 Due to the fact that M represents the nearness degree and 
N represents the remoteness degree, the intuitionistic fuzzy 
metric allows us to use two thresholds: one for “goodness” 
and another one for “badness”. 

 For each scenario the intersection between a function M 
defined by a t-norm and a function N defined by a t-conorm 
(not necessarily the dual one) expresses the moment when a 
history is not “distant” anymore and becomes “close”. 

 Notice that allowing a degree of uncertainty makes N 
useful. Otherwise it would not offer more information than 
the one we already had with M. 

 Initially, if the uncertainty degree is “reasonable”: 

• If M(x,y,t) > N(x,y,t) then we can say that both ele-
ments belong to the same class. 

• If N(x,y,t) > M(x,y,t) then we can say that they belong 
to different classes. 

• If N(x,y,t) = M(x,y,t) then we cannot confirm anything 
about class membership solely with the result of the 
intuitionistic fuzzy metric. 

 For the latter case, we can always choose to decide opti-
mistically (consider them from the same class) or pessimisti-
cally (consider them from different classes). 

CONCLUSIONS AND FUTURE WORK 

 We have shown that the optimization of accesses in sys-
tems based on locality can be achieved using a mathematical 
framework based on intuitionistic fuzzy metric spaces. In 
this work, we present experimental results representing best, 
average and worst cases for a variety of elections in the 
fuzzy constructions we can build. Combination of the differ-
ent t-norm and t-conorms allows us to model the general 
case of accesses locality. 

 Our next steps will consist on the application of these 
fuzzy metric techniques in order to find optimal thresholds 
for classification into classes and decisions regarding the 
“goodness” and “badness” of those. 

 One possibility is to make use of the multiple variations 
we can get by combining different t-norms and t-conorms. 
Another one would be to change the definition of v and v’ 

while maintaining their definition in the scope of the intui-
tionistic fuzzy metric. Special care has to be taken for the 
election of v’: Our current election is built using a product 
and its results decrease very abruptly. 

 In general, our results show that traditional continuous t-
norms are the constructs we have to base upon in order to 
build the metric. We find especially outstanding the results 
obtained for the minimum and Lukasiewicz t-norms which 
are fast to compute and discriminate history results better 
than the rest. 

 T-norm families rather than introducing complexity, in-
troduce a very interesting possibility for finer tuning. This 
makes our model extremely configurable and suitable for a 
range of possible future applications much greater than our 
initial study [7] which already proved useful for replicated 
database systems. 
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