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Abstract: In this work the co-synthesis method, that optimizes dynamically reconfigurable multiprocessor SOPC system 

architectures, is presented. The algorithm maximizes speed of a SOPC system, taking into consideration the space con-

straints of the FPGA. The algorithm starts with the initial solution, where all tasks are assigned to only one general pur-

pose processor module. Next, it produces new solutions using iterative improvement methods. To the best of authors’ 

knowledge, it is the first algorithm that takes into consideration mutually exclusive tasks in optimization of dynamically 

reconfigurable systems. Such tasks are specified using conditional task graphs. Partially reconfigurable FPGAs enable re-

use of the same hardware resources for mutually exclusive tasks. In this way, the area occupied by an embedded system 

can be decreased and free space may be used for other purposes. It was shown that the presented approach can also in-

crease the performance of a SOPC system. 
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INTRODUCTION 

 Today’s FPGAs enable the integration of a complex sys-

tem on one device, also called System On Programmable 

Chip (SOPC). Moreover, many reconfigurable architectures 

support a partial and dynamic reconfigurability [1]. Dynamic 

reconfiguration [2], also called a run-time reconfiguration, is 

the ability to change a hardware configuration during the 

execution of a processing task. This feature enables a larger 

part of the application to be accelerated in hardware. In par-

tially reconfigurable FPGAs [1] only a part of the configura-

tion can be modified. In this way, computations may overlap 

with reconfigurations, reducing the reconfiguration time 

overhead. 

 The aim of this work is to present an algorithm for the 

resource constrained co-synthesis of dynamically recon-

figurable SOPCs. The algorithm maximizes speed of a sys-

tem taking into consideration space constraints associated 

with the maximal admissible area of an FPGA. The target 

architecture of the system consists of general purpose proc-

essor cores and dedicated hardware modules, all are imple-

mented in one FPGA device. The algorithm starts with the 

initial solution, where all tasks are assigned to one general 

purpose processor module. Next, it produces new solutions 

using iterative improvement methods. The reconfiguration 

time is taken into consideration in the task scheduling algo-

rithm, in such a way, that impact of this time on the perform-

ance of the system is minimized. 

 In the most embedded systems a lot of their functionali-

ties are mutually exclusive (Mutually Exclusive Tasks – 

MET). Specifications of data-dominated embedded systems,  
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containing mutually exclusive tasks, are usually represented 

as conditional task graphs. Information about such tasks, 

combined with dynamic reconfiguration, enable better reuse 

the hardware resources of an FPGA. Mutually exclusive 

tasks may be assigned to the same hardware resource, then 

the area of the implementation can be significantly de-

creased, thus more tasks can be implemented in hardware. 

This often leads to faster systems. To the best of authors’ 

knowledge, the method presented in this paper is the first 

algorithm for the co-synthesis of dynamically reconfigurable 

multiprocessor embedded systems that are specified using 

conditional task graphs. 

 The rest of the paper is organized as follows. The next 

sections review related work and introduce the concept of 

dynamically reconfigurable systems. Then our algorithm, 

called CESEDYRES, will be presented. Next, experimental 

results are given. Two examples containing METs will dem-

onstrate the effectiveness of our method. The paper ends 

with conclusions. 

RELATED WORK 

 Two types of algorithms have been applied to the co-

synthesis problem: optimal methods based on exhaustive 

exploration or integer linear programming (ILP) [3, 4] and 

heuristic ones. Optimal methods give optimal solutions, but 

they are limited only to small instances of the co-synthesis 

problem. Hence more essential are heuristic methods. The 

following types of heuristics have been applied to the co-

synthesis: probabilistic algorithms (i.e. simulated annealing, 

genetic algorithms), constructive algorithms and iterative 

improvement algorithms. Due to their performance and ef-

fectiveness the most promising are: genetic algorithms [5-7] 

and iterative refinement algorithms [8, 9]. 

 Chatha and Vemuri formulated a reconfiguration prob-

lem in the co-synthesis [10], but it was limited only to one 
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CPU (software) – one FPGA (hardware) topology. Similar 

target architecture was used in [11, 12]. In these approaches 

a coarse grained hardware/software partitioning algorithm 

was used. The Nimble compiler [13] also assumes architec-

ture consisting of one general purpose processor and a dy-

namically reconfigurable FPGA. More general model, con-

sisting of many FPGAs and heterogeneous processors was 

used in CORDS [5]. All of these methods assume full-chip 

reconfiguration; they do not consider partially reprogramma-

ble FPGAs. None of them considers SOPC systems, but all 

of these methods use multi-chip architectures. 

 In the evolutionary algorithm called SLOPES [14], par-

tially reconfigurable Xilinx FPGAs are used, but the method 

does not consider the problem of placement of reconfigur-

able modules in the FPGA device. In [15] a multiprocessor 

SOPC architecture that can be implemented in partially re-

configurable FPGAs is considered, but the system is repre-

sented as a simple linear task graph. The method for the co-

synthesis of dynamically reconfigurable systems is presented 

in [16]. The target architecture includes an embedded proc-

essor that dynamically changes functionality of the system, 

but this method is not applicable for multiprocessor systems. 

Another approach [3] considers advantages of partially re-

configurable FPGAs, but it is based on ILP method, thus it 

can be applied only for co-synthesis of small systems. 

 Other approaches concentrate on design environments for 

the implementation of dynamically reconfigurable systems. 

In [17] an IP-based design platform is presented. PaDReH 

[18] is a framework for design, implementation and valida-

tion of dynamically reconfigurable systems. A self-

reconfigurable platform, where an FPGA dynamically recon-

figure itself under the control of an embedded processor, is 

presented in [19]. Approaches concerning the realization of 

systolic arrays in FPGAs [20, 21] also consider similar prob-

lems. 

 None of the known co-synthesis methods targets at dy-

namically reconfigurable multiprocessor SOPCs. Most of 

them are dedicated to outdated FPGAs. Only [12, 22] impose 

strict linear placement constraints. Architectures generated 

without considering the physical location of tasks may be 

unrealizable in many modern FPGAs (e.g. Xilinx Virtex de-

vices). Both methods are dedicated to HW/SW architectures 

containing only one CPU. The approach [12] is based on the 

Kernighan-Lin/Fiduccia-Matheyes (KLFM) heuristic that 

iteratively improves solutions by simple movements of tasks. 

In [22] the co-synthesis is based on the genetic approach and 

an improved list scheduling algorithm. The approach pre-

sented in this paper also specifies the co-synthesis of dy-

namically reconfigurable systems as a constrained placement 

problem. 

 The co-synthesis methods operate on internal model of a 

system that is based on specification in the form of commu-

nicating tasks. Task graph (TG) is the most popular represen-

tation of an embedded system [5, 6, 10, 12, 23]. In a few 
works conditional task graphs are also considered [24-27]. 
However, these methods are not intended for co-synthesis of 

dynamically reconfigurable systems. In some other works 

conditional scheduling algorithms are described [28, 29], but 

they are not dedicated to scheduling of tasks in DRSOPC 

systems. The method presented in this paper considers con-

ditional task graphs (CTG) as a representation of an embed-

ded system that can be dynamically reconfigured. 

 The main contributions of the approach presented in this 

work are the following: 

– it considers multiprocessor SOPC architectures. To 

the best of authors’ knowledge there is no known co-

synthesis method dedicated to dynamically recon-

figurable multiprocessor SOPC systems; 

– it incorporates a physical layout of hardware modules, 

like in [12] and [22], but it takes into account the 

placement of processor cores, too; 

– it operates on the conditional task graph. Although 

there are some co-synthesis methods using CTG, 

none of them can be applied to dynamically recon-

figurable SOPC systems;  

– the target system is self-reconfigurable. Most of the 

co-synthesis methods assume that run-time reconfigu-

ration is performed using an external hardware. In the 

presented approach the target system architecture that 

includes reconfiguration controller is generated;  

– heuristics used in the co-synthesis algorithm are ca-

pable of escaping from local minima. Experimental 

results showed that the presented algorithms usually 

find significantly better solutions than the first local 

maximum of performance.  

BASIC CONCEPTS AND DEFINITIONS 

 Let the conditional graph CTG=(V,E) represents mutual 

relationships between tasks of a system. The node vi V rep-

resents i-th task. The edge eij E corresponds to the commu-

nication between tasks vi and vj. The simple edge eij Es is an 

edge without assigned condition. The conditional edge 

eijk Ec is an edge with assigned condition ck. The following 

equations have to be fulfilled:  

Es Ec =  and Es Ec = E       (1) 

 Granularity of tasks is such that data transmission is the 

last activity of each task. Task vj may start, only when all its 

predecessors have finished their execution and when all data 

to this task have been transferred. The volume dij of a data 

transfer is associated with the edge eij, if any data depend-

ency occurs. Data transmission runs independently from the 

data processing. Fig. (1) shows a sample conditional task 

graph. Any number of conditional edges can come from one 

branch fork task vfork, but all paths corresponding to the same 

condition have to join in the same join task (vjoin). Conditions 

may be hierarchical. Two tasks vi and vj are mutually exclu-

sive when exist Pk1 , Pk2 , eklm Ec , and ekpn Ec  such that: 

cm cn = false  and eklm Pk1  and ekpn Pk2  and vi Pk1  

and vj Pk2 , where Pk1  and Pk2  represent conditional paths 

starting from the node vk. 
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Fig. (1). Sample conditional task graph. 

 It is assumed that a library of software and hardware 

components that can be used for implementation of the sys-

tem is given. In the library there are three types of resources: 

general purpose processors (GPPs), hardware virtual com-

ponents (VCs) and communication links (CLs). 

 Each task is characterized by the following parameters: 

Si(vj) - the area (the number of FPGA logic cells) occupied 

by VCi executing task vj, Ci(vj) - the amount of memory re-

quired to execute the task vj (only for software implementa-

tion), ti(vj) – the time of execution of the task vj on the given 

processing element. Values of Si(vj) and ti(vj) are known for 

IP modules. For another tasks they can be computed using 

estimation methods [30]. 

 Communication link is characterized by its area Sci and 

its bandwidth bi. The time of the transmission through CLk, 

between tasks vi and vj is defined as follows: 

    

               - when tasks are allocated 

tk(vi,vj) =                               to different resources,   (2) 

                    0            - when tasks are allocated 

                 to the same resource. 

 

 Tables 1 and 2 show a sample resource library corre-

sponding to the system specified by the graph from Fig. (1). 

Table 1. Library of Software and Hardware Components 
 

FPGA Area: 2000 CLBs, tr=0.86 μs / CLB 

GPP  

 

(Su=203 CLBs) 
VC 

Si(vj) 

Task ti(vj) [μs] Ci(vj) ti(vj) [μs] 
[CLB] 

v0 434 30 89 158 

v1 817 27 94 227 

v2 811 23 59 92 

v3 747 7 57 80 

v4 444 40 54 175 

v5 1020 43 33 411 

v6 755 34 1 319 

v7 335 86 22 283 

v8 250 57 5 482 

v9 655 66 61 152 

v10 382 32 94 224 

v11 408 24 30 184 

v12 945 29 21 109 

v13 190 32 26 167 

v14 881 8 40 181 

 

Table 2. Parameters of the Communication Link 
 

CL CC [CLB] b Availability 

B1 10 9kB/μs GPP, all VC (HW) 

 

 It is assumed that the target architecture includes proces-

sor cores GPPs and dynamically reconfigurable sectors RSs 

that communicate with each other by communication links 

CLs. Hardware components (VCs) are placed in sectors RSs. 

One or more VCs can be assigned to one sector in the same 

time frame, thus RS can execute exactly one selected subset 

of tasks. Tasks assigned to one RS may run in parallel. After 

all tasks assigned to the same sector have finished their exe-

cution the sector is reconfigured to allocate new VC mod-

ules. 

 Areas of all available RSs are calculated as the sum of 

areas of some VCs from the library, next they are justified 

according to the requirements of a module based reconfigu-

ration. The algorithm of RSs generation is explained in the 

next section. Reconfiguration time for each RS is calculated 

on the basis of the reconfiguration time of one logical cell 

(tr), which is taken from the datasheet of a target FPGA. 

 It is assumed that the target architecture includes an addi-

tional embedded processor GPPr, which controls reconfigu-

ration process. 

dij
bk



Co-Synthesis of Dynamically Reconfigurable SOPCs The Open Cybernetics and Systemics Journal, 2008, Volume 2    209 

 There are two other parameters associated with GPPs: 

the maximum memory load (CMi) is a maximum memory 

that can be used for an application, and the area occupied by 

the processor core (Sui). There is also one parameter defined 

for RSi : the area of an FPGA occupied by the sector (SRSi). 

 Let the architecture of a system be composed of p proc-

essor cores GPPi (i=1,…, p), one processor that controls re-

configuration GPPr occupying the area Sur, r sectors RSi 

(i=p+1,…, p+r) and c communication links CLj (j=1,…, c). 

The total area of the system is defined as follows: 

S = Sui
i=1

p

+ SRSi
i= p+1

p+r

+ Scj
j=1

c

+ Sur      (3) 

 Execution time of all tasks in the system is defined as 

follows: 

T=max(max(tk(GPP1),…,tk(GPPp)),max(tk(VCp+1),…, 

tk(VCr)),max(tk(CL1),…, tk(CLc)))       (4) 

where: tk(PEj) is the finish time of a task scheduled as the 

last one on PEj ((VCj or GPPj) and tk(CLj) is the finish time 

of a communication scheduled as the last one on CLj. There-

fore, performance of the SOPC system is the following: 

=1/T          (5) 

 The goal of the co-synthesis is to find the fastest architec-

ture of a self-reconfigurable SOPC system that meets the 

functional requirements given by CTG graph. The architec-

ture has to guarantee feasible implementation (assuming 

module reconfiguration) and hasn’t to exceed size of a target 

FPGA. 

INITIALIZATION 

 In the presented approach the hardware-software co-

synthesis starts with an initialization. In this step all available 

sizes of RS are being calculated. Next, an initial solution is 

created. 

 The best sector size is the size that can contain as many 

as possible different groups of tasks. To achieve greater 

flexibility a few different sizes of RS should be available. Let 

r be the number of VCs in the library, l - the maximum num-

ber of sizes to be generated and Cj
i
 - the j-th subset of any i 

different VCs. The algorithm of computing l available sizes 

of sectors looks as follows: 

RSInit(){ 

i=1; 

Sv={}; 

Ss={}; 

repeat { 

 for each subset Cj
i
do { 

 s = S(VCk
VCk Cj

i

) ; 

 if s max(S(VC1 ), ...,S(VCr )) then Sv=Sv {s}; 

 } 

  i++; 

} until i>r; 

for k=1 to l do { 

 Find sk which occurs most times (at least 2 times) in  

  Sv; 

if there is not such sk then 

Find sk Sv such that values from the range <sk- ; 

sk+ > occurs most times in Sv; 

Remove all occurrences of sk from the set Sv; 

 } 

for k=1 to l do { 

Round sk to the nearest available size of RS; 

  Ss=Ss {sk}; 

 } 

} 

 In the first loop the algorithm computes sums of areas of 

all possible VC groups. Next (the second loop), it chooses 

sums which are most frequent or sums which values are the 

most similar (values are in a given range). In the last loop it 

rounds these sums to the nearest value of a reconfigurable 

block size required by the module reconfiguration and 

chooses them as available sector sizes. 

 The initial solution is the architecture where all tasks are 

assigned to one general purpose processor. Such solution 

leaves most space in FPGA available for RSs. 

 If an embedded system is represented by the conditional 

task graph, then all mutually exclusive tasks should be de-

termined in the initialization step. For this purpose, the algo-

rithm of a CTG labeling is used. 

CTG LABELING 

 Determining mutually exclusive tasks in the CTG is not 

straightforward, especially when conditions are hierarchical. 

The algorithm of the CTG labeling simplifies this problem. 

For each task, a few labels will be assigned. The label ck(vj) 

equals cond, where cond is the identifier of a condition (all 

conditions are numbered). The label level(vj) corresponds to 

the level of vi in the hierarchy of conditional paths. The level 

is incremented after each conditional edge belonging to the 

same path in the CTG. The table of labels vj->fork[level(vj)] 

contains task numbers that checks the condition correspond-

ing to the level level(vj) in the hierarchy of conditional paths. 

The algorithm of the CTG labeling is the following: 

labeling (vj) { 

if level(vj)==0 then { ck(vj)=0; cond=0;} 

for each successor vi of vj do { 

 if eij is an edge without condition and ck(vj)=0, then { 

  level(vi)= level(vj); ck(vi)=0; 

 } 

 else { 

  if eij is a conditional edge then { 

level(vi)= level(vj)+1; 

cond++; 

ck(vi)=cond; 

  } 

else if vi  vjoin then{ 

    ck(vi)= ck(vj); 

level(vi)= level(vj); 

  } 

  else if vi==vjoin then{ 

level(vi)= level(vj)-1; 
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ck(vi)=ck(vi->fork[level(vi)]); 

  } 

  for (m= level(vi); m  1; m--) do 

  vi->fork[m]=vj->fork[m];   

  } 

 labeling(vi); 

} 

 If execution of vi is not dependent on any condition then 

level(vj)=0, and ck(vj), vi->fork are undefined. The edge 

without condition may be outside the conditional path (the 

first if statement in for loop) or may belong to the condi-

tional path (the third if statement in for loop). If there are 

some tasks in the conditional path starting from vfork and end-

ing in vjoin, then each of them has the same labels ck and level 

as the immediate successor of the vfork. If there is any condi-

tional edge belonging to the conditional path then the level 

and the condition number are increased (the second if state-

ment). If the task belonging to the conditional path is the vjoin 

task then ck and level are decreased. In the last for loop, the 

table of all numbers of fork tasks corresponding to vi task, 

belonging to the conditional path, is created. 

ARCHITECTURE REFINEMENT 

 The presented method of the hardware-software co-

synthesis (COSEDYRES) is an iterative improvement pro-

cedure that creates new solutions (architectures of a system) 

through modifications of previous ones. Refinement process 

is controlled by the gain that describes quality of the im-

provement. The gain is the difference between two compared 

solutions. Quality of the solution is usually characterized by 

a few parameters (e.g. cost, performance). Two methods of 

the modification are used: adding one GPP or RS, and re-

moving one GPP or RS. Both modifications can be made in 

one step of the algorithm. In this way, moving group of 

tasks, from one resource (processor or sector) to another, is 

possible in one step. Algorithm stops when there are no pos-

sibilities to obtain better solutions. 

 In the COSEDYRES, the physical constraints on place-

ment of reconfigurable modules are taken into account [16]. 

Reconfigurable sectors are always strict linearly placed, i.e. 

each RS occupies a contiguous set of CLB columns. Such 

restrictions eliminate some possible optimal solutions, but 

physically unrealizable because of placement infeasibility. 

 The list scheduling method, where priorities are assigned 

to each task, is applied in the algorithm. For each task vi, 

times of execution of tasks, on all paths starting from vi are 

computed. The longest time is taken as the priority of the 

task. Tasks with higher priorities are scheduled first. Task 

scheduling, allocation of CLs and communication scheduling 

are done simultaneously. 

 In each iteration step all possible modifications of the 

current solution are evaluated. The best solution, i.e. a solu-

tion giving the best gain, is chosen to the next step. To in-

crease the probability of getting out of local maxima of per-

formance, the possibility of optimization in the next steps is 

also taken into consideration, in the calculation of the gain. 

 Let the parameter  be defined as the available space in 

the FPGA: 

 =Smax - Scur        (6) 

where: Smax is the area of the target FPGA device and Scur is 

the area of the current solution. The best solution is a solu-

tion with the highest . But from the other side, for solutions 

with the highest , there is a greater probability of optimiza-

tion in the next steps of the refinement. Thus, the gain E, 

that describes the quality of the improvement, is defined as 

follows: 

    *   when  > 0 

E=         when  = 0 and  > 0     (7) 

  -  /   when  < 0 

  0   when   0 

where:  = (A
cur

) - (A
prev

) is the increase in the available 

area caused by the modification,  = (A
cur

) - (A
prev

) is the 

increase in the speed, (A
cur

) and (A
cur

) are parameters of 

the current solution, (A
prev

) and (A
prev

) are parameters of 

the best solution, found in the previous step. 

 Let PEi be any processing element taken from the library 

of available resources (GPPi or RSi). The draft of the co-

synthesis algorithm for dynamically reconfigurable SOPC 

systems is the following: 

COSYDYRES(){ 

Generate available sizes of RS; 

Label CTG graph; 

Create an initial architecture A; 

Compute the area Scur of A; 

Compute the performance cur of A; 

repeat 

Gain=0; 

for each PEi do { 

if (number of resources in A) 2 then { 

for each PEj  A do { 

A’=A - PEj; 

for each vk  PEj do { 

Find PEl A’ that gives greatest value of E 

after moving task vk to it; 

Assign vi to PEl 

   } 

if E>Gain then { 

Gain= E; 

A
best

=A’; 

     } 

} 

 } 

A’’=A’  PEi; 

repeat 

Find task vk which gives greatest E after moving it 

to PEi; 

if E>0 then assign vk to PEi 

until there is no task that gives E>0 after moving; 

A’’=A’’- PEs without tasks assigned; 
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if E>Gain then { 

Gain= E; 

A
best

=A’’; 

} 

Place sectors in the FPGA; 

} 

if Gain>0 then A=A
best

; 

until Gain == 0; 

} 

 In the first part, the COSEDYRES algorithm tries to re-

move one resource (PE) from the architecture. All tasks from 

the removed PE are moved to other PEs (the inner for loop) 

according to the greatest value of a local gain E (which will 

be described later). To remove PE the number of resources in 

the architecture has to be greater then two. This step is re-

peated for each PE in the architecture then the solution giv-

ing the highest gain is stored as the best architecture. In the 

second part, the algorithm tries to allocate a new resource 

(this step is repeated for each resource from the library) and 

moves tasks from other PEs to the new one according to the 

highest gain (in the inner repeat loop). If the solution is bet-

ter then the previous one then it is taken as the best architec-

ture A
best

. 

The refinement is repeated until there is no better solu-

tion (the gain is not greater than 0). In the inner loops, where 

tasks are moved from one PE to another, the area of the 

SOPC system does not change. Hence, the new parameter: 

local gain E, is used to rate such modifications. The per-

formance of a system is not always increased after moving a 

task vk, but may lead to higher speed of the system in further 

steps. When the execution time of vk in software is longer 

than the sum of the reconfiguration time and execution time 

of vk in hardware, then moving vk from software to hardware 

increases the probability of getting architecture with higher 

performance (more tasks are executed in hardware). If there 

are no possibilities to improve the solution then we assume 

that E=-1. Finally, the local gain is defined as follows: 

 

       when  > 0; 

E =     (ti(vk)- tres(RSj))/tj(vk) when =0 and    (8) 

        tres(PEj)< ti(vk) 

   -1   in other cases 

 

where: ti(vk) and tj(vk) are times of execution of task vk by 

PEs from which and to which the task is moved, respec-

tively; tres(RSj) is the reconfiguration time of the sector RSj. 

 The last step in each pass of the refinement is a sector 

placement. Details are given in the next section. A
best

 is the 

best architecture found in the current pass and it is taken as 

the initial architecture in the next pass. 

 If a few MET tasks vi,…,vi+n are assigned to the same RS, 

then the area of such RS has to be computed as: 

max(Svc(vi),…, Svc(vi+n)), where Svc(vi) is the area of VC im-

plementing vi. The algorithm prefers to assign MET tasks to 

the same RS. In this way the area of a system is decreased 

and then more tasks may be assigned to hardware, thus the 

system performance may be higher. When MET tasks are 

assigned to the same GPP, they can be scheduled in the same 

time frame; therefore the scheduling algorithm takes them 

into account, too. 

SECTOR PLACEMENT 

 It is assumed that the basic reconfigurable module is a 

frame, spanning the height of an FPGA (as in Xilinx 

FPGAs). Each RS consists of multiple adjacent frames. 

Hence, RS placement should be strict linear. Another con-

straint concerns the communication scheduling: the sector 

reconfiguration and any transmission through this sector are 

not allowed in the same time. Therefore, transmissions can 

not overlap in time with reconfiguration. 

 To find the best sector placement, all possible layouts of 

RSs in an FPGA are evaluated. For each RSs placement, task 

scheduling and communication scheduling, satisfying recon-

figuration requirements, are performed. The fastest imple-

mentation is selected as the A
best

. The draft of the placement 

algorithm is the following: 

SectorPlacement(){ 

Find all permutations of sectors in A
best

; 

 for each permutation A
p
 do { 

  Schedule tasks, communications and 

  reconfigurations; 

  for each RSk do{ 

   if there are transmissions through RSk  

    during the 

   reconfiguration of the RSk then{ 

Modify the schedule by changing reconfigura-

tions start times and/or start times of transmis-

sions; 

    } 

} 

  Compute (A
p
); 

  if (A
p
)> (A

best
) then A

best
=A

p
; 

 } 

} 

 For each permutation of sectors, the algorithm checks if 

the reconfiguration time frame of RSk does not overlap with 

the time frame of the data transmission, between two com-

municating resources located on both sides of the RSk. If 

there is such conflict, the reconfiguration or the transmission 

is delayed. Among all permutations, the one with the best 

performance is taken as the A
best

 in the current step of the 

algorithm. 

 Fig. (2) illustrates sector placement in the architecture 

obtained for the system specified by the task graph from Fig. 

(1), using the algorithm described above. Fig. (3) shows the 

tasks scheduling and reconfigurations scheduling for this 

implementation. There are two dynamically reconfigurable 

sectors: RS1 and RS2, two GPPs and a control processor 
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GPPr. All tasks assigned to RS1 and RS2 are implemented in 

hardware. Dynamic reconfiguration allows allocating more 

tasks than the sector size. Arrows show the order of recon-

figurations. Such placement of sectors allows avoiding con-

flicts between reconfigurations and data transmissions. The 

only conflict that would appear is associated with the recon-

figuration of the sector RS2 and the transmission from v7 to 

v10. To avoid it, the reconfiguration of this sector is delayed 

till the end of the data transmission from v7 to v10. 

 

SELF-RECONFIGURABLE SYSTEMS 

 Architecture generated using COSEDYRES is supple-

mented with the GPPr processor that controls the reconfigu-

ration of sectors. GPPr is a general purpose processor or a 

special IP module. Part of an FPGA is reserved for GPPr, 

before the algorithm starts. In this way the whole system is 

implemented in one FPGA and there are no other external 

modules to control reconfiguration process. 

 

 The method of implementation of self-reconfigurable 

systems is based on the Xilinx platform for dynamically self-

reconfigurable architectures (SRP) [19]. One processor con-

trols the reconfiguration of sectors. It can be an IP module 

like MicroBlaze soft core or a hardware core like the embed-

ded PowerPC. Only one sector can be reconfigured at the 

given moment. The fastest 32-bits SelectMAP programming 

mode is used. 

 Bitstreams are generated by standard Xilinx tools accord-

ing to Modular Design Flow [1]. One bitstream is generated 

for the initial system configuration, and partial reconfigura-

tion bitstreams are generated for all configurations of each 

RS separately. Each reconfiguration starts after finishing 

preceding task or transmission. The procedure controlling 

reconfigurations that is executed by the GPPr looks as fol-

lows: 

Reconfigure(){  

Load initial configuration Ai to FPGA; 

 do{ 

wait until rri=true; 

 

Fig. (2). Sector placement. 

 

Fig. (3). Gantt charts of scheduled tasks and reconfigurations 

 

 

 

FPGA 

GPPr
ICAP  CM

rr21 

rr14 

rr11 

rr12 

rr13 
Bitstream11 

Bitstream12 

Bitstream13 

 

RS1 

GPP1 

GPP2

V6 V13 

V5

V1 V7 V8

R11 

R14 

R13 

V3 V11 

V14 
V10

Configuration memory 

V4

R12 

V2

V12 

R21 

B
us

M
ac

ro
 

V12 

V1
4 

V10
V4

V3

V2

 V0 

V11

V9 

 

B
us

M
ac

ro
 

RS2



Co-Synthesis of Dynamically Reconfigurable SOPCs The Open Cybernetics and Systemics Journal, 2008, Volume 2    213 

  Get the next bitstream for RSi from a cache; 

Reconfigure RSi with the new bitsream; 

 } while there are no waiting bitstreams in the cache; 

} 

 GPPr waits for any reconfigure request signal (rri), which 

is activated by PE finishing preceding task or transmission. 

Then, system is dynamically reconfigured by loading next 

bitstreams for the sector corresponding to the rri signal. Sec-

tors are reconfigured through special ICAP port (Internal 

Configuration Access Port) [19] (Fig. 2). 

EXPERIMENTAL RESULTS 

 In this section some experimental results, showing the 

efficiency of COSEDYRES algorithm, will be presented. 

First, the benefits of the dynamic reconfigurability will be 

demonstrated. For this purpose, the same systems will be 

synthesized and implemented as DRSOPC and SOPC sys-

tems [31, 32]. Next, by comparing results of the co-synthesis 

of systems represented by TG and CTG graphs, the benefits 

of considering mutually exclusive tasks in the system opti-

mization will be presented. 

 First, TG from Fig. (1) (but without considering MET 

tasks) and a library of available resources (Tables 1 and 2) 

were considered. For the target FPGA consisting of 2000 

CLBs and reconfiguration time of one CLB equal to 0.86 s, 

the DRSOPC system with execution time equal to 1818 s 

and the area equal to 1974 CLBs was received. The same 

system implemented as SOPC executes all task in 2463 s 

and had the area equal to 1900 CLBs. 

 In order to estimate average benefits of the dynamic re-

configuration, some systems, specified by different random 

task graphs (from 10 to 150 nodes), where synthesized as 

SOPC and DRSOPC architectures. In the library of available 

resources were: one GPP, one VCs for each task and one 

communication link. The area of the target FPGA was ad-

justed to the number of tasks. Experimental results are given 

in Table 3. The following columns of Table 3 contain: the 

size of the graph (number of nodes), the area of the FPGA, 

characteristics of architectures (for DRSOPC systems and 

SOPC systems). Architectures are characterized by: the total 

execution time of all tasks, the area and the number of GPPs, 

RSs and VCs. The last column shows speed-up of the system 

with dynamic reconfiguration in comparison with the system 

without dynamic reconfiguration (in percentage). 

 The experimental results show advantages of using par-

tially reconfigurable FPGAs. Dynamically reconfigurable 

systems usually are significantly faster than these without 

dynamic reconfiguration. The same regions of the FPGA 

were used a few times for different functionalities, so more 

tasks were executed in hardware. The main bottleneck of 

dynamically reconfigurable systems is the time required for 

the reconfiguration, but proper scheduling of tasks lets 

minimize this problem. 

 Besides the quality of obtained results, the efficiency of 

the algorithm should be estimated by its computational com-

plexity. Table 4 shows the estimation of the computational 

complexity based on experimental results. The following 

columns of Table 4 contain: the size of a graph, the total  

 

Table 4. Computational Complexity of the COSEDYRES 

Algorithm 

 

Nodes [N] 
No. of  

Solutions l 
No. of Passes k (CPU/n

3
)*10

4
 l/n

2
 

10 16 4 2.04 0.16 

30 90 8 0.79 0.10 

50 115 8 0.51 0.05 

70 212 10 0.89 0.04 

90 463 15 2.43 0.01 

110 386 12 1.99 0.03 

130 531 10 1.95 0.03 

150 807 14 2.15 0.03 

 

number of evaluated solutions, the number of passes, the 

computational complexity (CPU seconds to the number of 

nodes ratio), the number of solutions to the number of nodes 

Table 3. Experimental Results for DRSOPC and SOPC Implementations 

 

DRSOPC SOPC 

Nodes [N] FPGA Area 

Time Area Architecture Time Area Architecture 

Performance inc. [%] 

10 1100 2509 933 2p,1s,5hw 4078 927 2p, 3hw 62% 

30 1500 4302 1498 3p,2s,18hw 6734 1425 4p, 2hw 57% 

50 2000 5926 1786 3p,3s,29hw 8352 1825 6p, 3hw 41% 

70 2500 6435 2480 5p,2s,30hw 9605 2407 7p, 5hw 49% 

90 3000 8508 2865 4p,4s,43hw 9707 2658 8p, 6hw 14% 

110 3500 8360 2708 5p,5s,50hw 8859 3353 11p, 7hw 6% 

130 4000 8815 2661 6p,3s,56hw 9564 3995 12p, 13hw 9% 

150 4500 10891 3332 7p,4s,60hw 13037 4295 9p, 13hw 20% 
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ratio. On the basis of experiments for random task graphs, 

the computational complexity of the COSEDYRES algo-

rithm can be estimated by: O(n
3
), where n is the number of 

nodes, and the complexity depending on the number of solu-

tions can be estimated by O(n
2
). The theoretical analysis 

indicated that the complexity of COSEDYRES can be esti-

mated by O(r
2
n
2
), where r is the number of resources avail-

able in the library. In these examples there were two types of 

resources (one GPP and one VC for each task), so experi-

mental results confirm the theoretical analysis. Moreover, in 

practice the computational complexity of the presented algo-

rithm is even a little lower. 

 Finally, benefits of the optimization based on mutually 

exclusive tasks were estimated. The results of the synthesis 

of systems specified by random CTG graphs (COSE-

DYRES-CTG) were compared with results obtained for the 

same systems specified by TG graphs (COSEDYRES). The 

number of MET tasks in CTG graphs was adjusted to the 

number of nodes (such tasks were placed randomly in each 

CTG). The following columns of Table 5 presents: the size 

of the graph, the FPGA area, characteristics of architectures. 

Each system is characterized by: the execution time, the area 

and the number of hardware tasks in the architecture. The 

number of MET tasks in CTG is also given. The last column 

shows speed-up of the system that is represented by CTG in 

comparison with the system represented by TG (in percent-

age). 

 The experiments showed that considering mutual exclu-

sive tasks, specified by CTG, enables to increase perform-

ance of a DRSOPC system using the COSEDYRES method. 

If MET tasks are assigned to the same reconfigurable sector, 

more tasks can be executed in hardware. METs are allocated 

only when the proper condition is satisfied (after reconfigu-

ration of a sector). The performance increase depends on the 

number of MET tasks in CTG. If the number of METs in 

CTG is low then the performance increase may not be sig-

nificant. 

EXAMPLE 1: USB HUB 

 The first example, presenting advantages of our method, 

is the co-synthesis of the USB 2.0 Hub. The most complex 

function in the Hub is the Transaction Translator (TT). Other 

functions should be implemented in hardware or have no 

hard constraints. Therefore, the co-synthesis will be only 

used to optimize a module implementing the TT. Specifica-

tion of the TT may be composed of the following processes: 

HSH that implements communication between TT and a host 

(HSH may be decomposed into two processes: HSHR - re-

ceiving data from the host, and HSHT - transmitting data to 

the host), SSF that manages periodic transmissions from the 

Table 5. Comparison of results for COSEDYRES and COSEDYRES-CTG 

 

COSEDYRES COSEDYRES-CTG 

Nodes [N] FPGA Area 
Time Area HW Time Area HW 

Number of MET Performance Increase [%] 

10 1500 941 1498 4 804 1490 5 1 15 

30 2000 4642 1863 13 3448 1986 15 2 26 

50 2500 7054 2303 6 6531 2373 13 3 8 

70 3000 9174 2935 21 8396 2964 35 4 9 

 

Fig. (4). Conditional task graph for TT. 
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host to devices, CSF – responsible for periodic transmissions 

from devices to the host, BC – manages block transmissions 

from devices to the host (decomposed into BCU and BCD). 

The CTG graph specifying the TT is presented in Fig. (4). 

Two pairs of tasks are mutually exclusive: (SSF, BCD) and 

(BCU, CSF). Information about it may allow performing 

better optimization. 

 Assume, that only one GGP module (with an area equal 

to 100 CLBs), and only one communication channel (with 

bandwidth equal to 80 MB/s), are available. The library of 

software and hardware components is given in Table 6. The 

amount of data transmitted between tasks is showed in Fig.  

(4) as labels of edges. Time required for transmissions will 

be the following: 

- for transmission of 188 B: 188/ 80 MB/s = 2350 ns, 

- for transmission of 64 B: 64 B / 80 MB/s = 800 ns. 

Table 6. Resource Library for the TT 

 

SW HW 

Task 
t [ s] t [ s] S [CLB] 

HSHR 2400 20 400 

HSHT 2400 20 400 

SSF 1800 12 100 

CSF 2000 12 135 

BCD 1600 12 120 

BCU 1600 12 120 

FLSHR 1400 8 170 

FLSHT 1400 8 170 

 

 It was assumed that the area of the TT is limited to 800 

CLBs. First, the TT was synthesized without taking into 

consideration the MET tasks. As a result, the architecture 

with the total execution time equal to 4408 s and the area 

equal to 741 CLBs was found. In this architecture 3 tasks 

were executed by GPP and others in hardware. Moreover, 

there was no possibility to increase the system performance 

using dynamic reconfiguration. 

 Next, the COSEDYRES method was used for the synthe-

sis of the TT specified by the CTG graph from Fig. (4). The 

architecture consisting of two GPPs and two RSs were 

found. All MET tasks were assigned to the same RS sector. 

In this way, there is not necessary to allocate these tasks in 

the same time period, but they can be allocated, depending 

on actual value of the corresponding condition. Hence, the 

area occupied by these tasks was decreased twice. Task 

scheduling in this implementation is presented in Fig. (5). 

The total time of execution of all tasks in TT equals 2993 s 

and area equals 760 CLBs. This is the best solution for as-

sumed space constraint. This example shows that taking into 

consideration MET tasks enables to get significantly faster 

architectures (about 33% in this case). 

 Next, the refinement process of the TT architecture will 

be demonstrated. Fig. (6) illustrates successive solutions 

chosen by the COSEDYRES algorithm during the refine-

ment. Big points indicate solutions with the highest gain 

found in each step. It should be noticed that the algorithm is 

not greedy; it chooses not only solutions with the highest 

performance, sometimes chooses also slower ones but with 

larger available space in the FPGA. Such solutions give 

higher probability of achieving better solution in the next 

steps (like solution 8). 

EXAMPLE 2: EMBEDDED WEB SERVER 

 Today, many devices are controlled through Internet by 

HTTP protocol. Therefore, many embedded systems imple-

ment some network functionalities. The next example, dem-

onstrating the advantages of the COSEDYRES method, will 

be the co-synthesis of the module implementing a simple 

web server. Function of this server may be specified by the 

 

Fig. (6). Convergence chart for TT described by CTG. 
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conditional task graph presented in Fig. (7). It consists of the 

following tasks: 

 

– GetReq: process that waits on notifications on port 

80. All requests are send to ProcReq and after empty-

ing transceiver buffer the information is send to 

Trans. 

– ProcReq: process that is activated after receiving 

information from GetReq. It reads data packages into 

buffer. After receiving a full HTTP request the infor-

mation is send to ProcGet or ProcPost, depending on 

the request type. Since this process is the most com-

plex, it is decomposed into ProcReq1 and ProcReq2. 

– ProcGet: processing the GET requests. 

– ProcPost: processing the POST requests. 

– Trans: sends consecutive parts of HTML files. 

– ManCon: manages of connection status. 

 Tasks Trans and ProcReq (ProcReq1, ProcReq2) will 

never be executed in the same time, but depending on the 

Dir condition. If Dir=1 then after finishing ProcReq, task 

ProcGet or ProcPost will be executed, depending on the Req 

condition. Thus, in this CTG hierarchical conditions exist. 

 Assume that there is only one GPP module available 

with an area equal to 200 CLBs, and that the available com-

munication channel transmits 30 B during 75 ns. Table 7 

presents the library of hardware and software components. In 

the following experiments, the embedded web server was 

synthesized assuming the space constraint of the FPGA 

equals to 1000 CLBs. 

 First, the system was implemented as a SOPC. The fast-

est SOPC architecture contains one GPP executing 3 tasks 

and four VCs. The Gantt chart for such SOPC system is 

given in Fig. (8). The characteristic of this system is the fol-

lowing: the total execution time T=5150 μs and the area 

S=968 CLBs. 

 Next, the COSEDYRES method was applied to obtain 

DRSOPC implementation, but the system was represented 

by the task graph (without conditional edges). In the initiali-

zation phase the following available sector sizes were gener-

ated: 56, 168, 280 and 336 CLBs. As the result of the co-

synthesis, the architecture where all tasks were assigned to 

hardware was generated. It was possible due to dynamic re-

configuration. Scheduling of tasks for DRSOPC implemen-

tation, where system is represented by TG is illustrated in 

Fig. (9). For such system, characteristic is the following: 

T=4026 μs, S=996 CLBs. Increase in performance, in com-

parison to the SOPC implementation, equals 22%. Recon-

figurations were partially performed in parallel with compu-

tations, thus the impact of the reconfiguration time on the 

decrease in the system performance was reduced. 

 Finally, the system specified by the conditional task 

graph was synthesized. A few pairs of tasks are mutually 

exclusive: {(Trans, ProcReq1), (Trans, ProcReq2), 

(ProcGet, ProcPost), (Trans, ProcGet), (Trans, ProcPost)}. 

COSEDYRES algorithm found an architecture with two re-

configurable sectors, with areas equal to 280 and 336 CLBs. 

Fig. (10) illustrates scheduling of tasks for DRSOPC system 

specified by the CTG graph. Tasks ProcReq2 and Trans 

were assigned to the same RS1 sector and scheduled parallel 

(they are executed depending on the Dir condition). Simi-

larly tasks ProcGet and ProcPost were assigned to the same 

RS2 and they are executed depending on the Req condition. 

Such tasks need not be allocated in the same time, but can be 

allocated by dynamic reconfiguration after the condition is 

evaluated. The characteristic of the architecture obtained 

using COSEDYRES method is: T=3694 μs and S=850 

CLBs. Performance was increased by 8% in comparison 

with the previous solution and the area occupied by web 

server was decreased by 15%. Much better utilization of the 

space in the FPGA (smaller areas of sectors) caused that re-

configuration times of RSs were shorter, thus reducing the 

total execution time of the system. 

GetReq

Trans

ProcReq1

ProcGet ProcPost

ManConn

30

30

30

Dir=0

Dir=1

Req=GET Req=POST

ProcReq2

 

Fig. (7). CTG specification of the embedded web server. 

 

Fig. (5). Gantt chart for TT obtained as a result of COSEDYRES-CTG. 
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 Presented examples showed that the dynamic reconfigu-

ration gives faster systems when reconfiguration tasks are 

properly scheduled and executed in parallel with computa-

tions. Moreover, considering mutually exclusive tasks in a 

system model brings additional possibilities of optimiza-

tions, in order to achieve faster dynamically reconfigurable 

systems (when MET tasks are allocated in the same sector). 

Table 7. Parameters of Tasks from the Embedded Web 

Server Specification 
 

SW HW 

Task 
t[μs] S[B] t[μs] S[CLB] 

GetReq 2000 600 400 250 

ProcReq1 1200 1500 650 300 

ProcReq2 2800 500 850 200 

ProcGet 2500 1300 1000 300 

ProcPost 1500 1200 300 50 

Trans 500 400 150 150 

ManConn 600 500 200 200 
 

CONCLUSIONS 

 In this paper the co-synthesis algorithm that targets at dy-

namically reconfigurable multiprocessor SOPC systems, with 

possibility of considering mutually exclusive tasks, was pre-

sented. The method is dedicated to the most popular partial 

reconfigurable Xilinx FPGAs. Reconfiguration of parts of the 

FPGA is controlled by the embedded processor. Hence, the 

whole system is placed in one FPGA. Dynamic reconfigura-

tion enables different functionalities to be allocated in the 

same part of an FPGA. Due to implementation of more tasks 

in hardware, the overall performance is significantly higher, 

even if the reconfiguration may take some additional time. To 

the best of our knowledge, it is the first co-synthesis algorithm 

for multiprocessor SOPCs dealing with dynamically self-

reconfigurable systems, and one of the first algorithms taking 

into consideration placement constraints for most popular 

modern FPGAs. This is also the first co-synthesis algorithm 

for dynamically reconfigurable SOPC systems that considers 

mutually exclusive tasks specified by the CTG graph. Such 

information let better utilize the space allocated to the de-

signed system by assigning more task to hardware, thus speed-

ing up the system. Moreover, the COSEDYRES algorithm has 

 

Fig. (8). Gantt chart of the web server implemented as SOPC. 

 

 

Fig. (9). Gantt chart of the web server represented by TG and implemented as DRSOPC. 

 

 

Fig. (10). Gantt chart of Web Server represented by CTG and implemented as DRSOPC. 
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a low computational complexity, and it has a capability of 

avoiding local maxima of the performance (that is the most 

common drawback of refinement methods). 
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