
206 The Open Cybernetics and Systemics Journal, 2008, 2, 206-218

 1874-1142/08 2008 Bentham Open

Open Access

Co-Synthesis of Dynamically Reconfigurable SOPCs Specified by Condi-
tional Task Graphs

Radoslaw Czarnecki and Stanislaw Deniziak
*

Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland

Abstract: In this work the co-synthesis method, that optimizes dynamically reconfigurable multiprocessor SOPC system

architectures, is presented. The algorithm maximizes speed of a SOPC system, taking into consideration the space con-

straints of the FPGA. The algorithm starts with the initial solution, where all tasks are assigned to only one general pur-

pose processor module. Next, it produces new solutions using iterative improvement methods. To the best of authors’

knowledge, it is the first algorithm that takes into consideration mutually exclusive tasks in optimization of dynamically

reconfigurable systems. Such tasks are specified using conditional task graphs. Partially reconfigurable FPGAs enable re-

use of the same hardware resources for mutually exclusive tasks. In this way, the area occupied by an embedded system

can be decreased and free space may be used for other purposes. It was shown that the presented approach can also in-

crease the performance of a SOPC system.

Keywords: Co-synthesis, dynamic reconfiguration, FPGA, conditional task graph.

INTRODUCTION

 Today’s FPGAs enable the integration of a complex sys-

tem on one device, also called System On Programmable

Chip (SOPC). Moreover, many reconfigurable architectures

support a partial and dynamic reconfigurability [1]. Dynamic

reconfiguration [2], also called a run-time reconfiguration, is

the ability to change a hardware configuration during the

execution of a processing task. This feature enables a larger

part of the application to be accelerated in hardware. In par-

tially reconfigurable FPGAs [1] only a part of the configura-

tion can be modified. In this way, computations may overlap

with reconfigurations, reducing the reconfiguration time

overhead.

 The aim of this work is to present an algorithm for the

resource constrained co-synthesis of dynamically recon-

figurable SOPCs. The algorithm maximizes speed of a sys-

tem taking into consideration space constraints associated

with the maximal admissible area of an FPGA. The target

architecture of the system consists of general purpose proc-

essor cores and dedicated hardware modules, all are imple-

mented in one FPGA device. The algorithm starts with the

initial solution, where all tasks are assigned to one general

purpose processor module. Next, it produces new solutions

using iterative improvement methods. The reconfiguration

time is taken into consideration in the task scheduling algo-

rithm, in such a way, that impact of this time on the perform-

ance of the system is minimized.

 In the most embedded systems a lot of their functionali-

ties are mutually exclusive (Mutually Exclusive Tasks –

MET). Specifications of data-dominated embedded systems,

*Address correspondence to this author at the Department of Computer

Engineering, Cracow University of Technology, Cracow, Poland;

E-mail: s.deniziak@computer.org

containing mutually exclusive tasks, are usually represented

as conditional task graphs. Information about such tasks,

combined with dynamic reconfiguration, enable better reuse

the hardware resources of an FPGA. Mutually exclusive

tasks may be assigned to the same hardware resource, then

the area of the implementation can be significantly de-

creased, thus more tasks can be implemented in hardware.

This often leads to faster systems. To the best of authors’

knowledge, the method presented in this paper is the first

algorithm for the co-synthesis of dynamically reconfigurable

multiprocessor embedded systems that are specified using

conditional task graphs.

 The rest of the paper is organized as follows. The next

sections review related work and introduce the concept of

dynamically reconfigurable systems. Then our algorithm,

called CESEDYRES, will be presented. Next, experimental

results are given. Two examples containing METs will dem-

onstrate the effectiveness of our method. The paper ends

with conclusions.

RELATED WORK

 Two types of algorithms have been applied to the co-

synthesis problem: optimal methods based on exhaustive

exploration or integer linear programming (ILP) [3, 4] and

heuristic ones. Optimal methods give optimal solutions, but

they are limited only to small instances of the co-synthesis

problem. Hence more essential are heuristic methods. The

following types of heuristics have been applied to the co-

synthesis: probabilistic algorithms (i.e. simulated annealing,

genetic algorithms), constructive algorithms and iterative

improvement algorithms. Due to their performance and ef-

fectiveness the most promising are: genetic algorithms [5-7]

and iterative refinement algorithms [8, 9].

 Chatha and Vemuri formulated a reconfiguration prob-

lem in the co-synthesis [10], but it was limited only to one

Co-Synthesis of Dynamically Reconfigurable SOPCs The Open Cybernetics and Systemics Journal, 2008, Volume 2 207

CPU (software) – one FPGA (hardware) topology. Similar

target architecture was used in [11, 12]. In these approaches

a coarse grained hardware/software partitioning algorithm

was used. The Nimble compiler [13] also assumes architec-

ture consisting of one general purpose processor and a dy-

namically reconfigurable FPGA. More general model, con-

sisting of many FPGAs and heterogeneous processors was

used in CORDS [5]. All of these methods assume full-chip

reconfiguration; they do not consider partially reprogramma-

ble FPGAs. None of them considers SOPC systems, but all

of these methods use multi-chip architectures.

 In the evolutionary algorithm called SLOPES [14], par-

tially reconfigurable Xilinx FPGAs are used, but the method

does not consider the problem of placement of reconfigur-

able modules in the FPGA device. In [15] a multiprocessor

SOPC architecture that can be implemented in partially re-

configurable FPGAs is considered, but the system is repre-

sented as a simple linear task graph. The method for the co-

synthesis of dynamically reconfigurable systems is presented

in [16]. The target architecture includes an embedded proc-

essor that dynamically changes functionality of the system,

but this method is not applicable for multiprocessor systems.

Another approach [3] considers advantages of partially re-

configurable FPGAs, but it is based on ILP method, thus it

can be applied only for co-synthesis of small systems.

 Other approaches concentrate on design environments for

the implementation of dynamically reconfigurable systems.

In [17] an IP-based design platform is presented. PaDReH

[18] is a framework for design, implementation and valida-

tion of dynamically reconfigurable systems. A self-

reconfigurable platform, where an FPGA dynamically recon-

figure itself under the control of an embedded processor, is

presented in [19]. Approaches concerning the realization of

systolic arrays in FPGAs [20, 21] also consider similar prob-

lems.

 None of the known co-synthesis methods targets at dy-

namically reconfigurable multiprocessor SOPCs. Most of

them are dedicated to outdated FPGAs. Only [12, 22] impose

strict linear placement constraints. Architectures generated

without considering the physical location of tasks may be

unrealizable in many modern FPGAs (e.g. Xilinx Virtex de-

vices). Both methods are dedicated to HW/SW architectures

containing only one CPU. The approach [12] is based on the

Kernighan-Lin/Fiduccia-Matheyes (KLFM) heuristic that

iteratively improves solutions by simple movements of tasks.

In [22] the co-synthesis is based on the genetic approach and

an improved list scheduling algorithm. The approach pre-

sented in this paper also specifies the co-synthesis of dy-

namically reconfigurable systems as a constrained placement

problem.

 The co-synthesis methods operate on internal model of a

system that is based on specification in the form of commu-

nicating tasks. Task graph (TG) is the most popular represen-

tation of an embedded system [5, 6, 10, 12, 23]. In a few
works conditional task graphs are also considered [24-27].
However, these methods are not intended for co-synthesis of

dynamically reconfigurable systems. In some other works

conditional scheduling algorithms are described [28, 29], but

they are not dedicated to scheduling of tasks in DRSOPC

systems. The method presented in this paper considers con-

ditional task graphs (CTG) as a representation of an embed-

ded system that can be dynamically reconfigured.

 The main contributions of the approach presented in this

work are the following:

– it considers multiprocessor SOPC architectures. To

the best of authors’ knowledge there is no known co-

synthesis method dedicated to dynamically recon-

figurable multiprocessor SOPC systems;

– it incorporates a physical layout of hardware modules,

like in [12] and [22], but it takes into account the

placement of processor cores, too;

– it operates on the conditional task graph. Although

there are some co-synthesis methods using CTG,

none of them can be applied to dynamically recon-

figurable SOPC systems;

– the target system is self-reconfigurable. Most of the

co-synthesis methods assume that run-time reconfigu-

ration is performed using an external hardware. In the

presented approach the target system architecture that

includes reconfiguration controller is generated;

– heuristics used in the co-synthesis algorithm are ca-

pable of escaping from local minima. Experimental

results showed that the presented algorithms usually

find significantly better solutions than the first local

maximum of performance.

BASIC CONCEPTS AND DEFINITIONS

 Let the conditional graph CTG=(V,E) represents mutual

relationships between tasks of a system. The node vi V rep-

resents i-th task. The edge eij E corresponds to the commu-

nication between tasks vi and vj. The simple edge eij Es is an

edge without assigned condition. The conditional edge

eijk Ec is an edge with assigned condition ck. The following

equations have to be fulfilled:

Es Ec = and Es Ec = E (1)

 Granularity of tasks is such that data transmission is the

last activity of each task. Task vj may start, only when all its

predecessors have finished their execution and when all data

to this task have been transferred. The volume dij of a data

transfer is associated with the edge eij, if any data depend-

ency occurs. Data transmission runs independently from the

data processing. Fig. (1) shows a sample conditional task

graph. Any number of conditional edges can come from one

branch fork task vfork, but all paths corresponding to the same

condition have to join in the same join task (vjoin). Conditions

may be hierarchical. Two tasks vi and vj are mutually exclu-

sive when exist Pk1 , Pk2 , eklm Ec , and ekpn Ec such that:

cm cn = false and eklm Pk1 and ekpn Pk2 and vi Pk1

and vj Pk2 , where Pk1 and Pk2 represent conditional paths

starting from the node vk.

208 The Open Cybernetics and Systemics Journal, 2008, Volume 2 Czarnecki and Deniziak

Fig. (1). Sample conditional task graph.

 It is assumed that a library of software and hardware

components that can be used for implementation of the sys-

tem is given. In the library there are three types of resources:

general purpose processors (GPPs), hardware virtual com-

ponents (VCs) and communication links (CLs).

 Each task is characterized by the following parameters:

Si(vj) - the area (the number of FPGA logic cells) occupied

by VCi executing task vj, Ci(vj) - the amount of memory re-

quired to execute the task vj (only for software implementa-

tion), ti(vj) – the time of execution of the task vj on the given

processing element. Values of Si(vj) and ti(vj) are known for

IP modules. For another tasks they can be computed using

estimation methods [30].

 Communication link is characterized by its area Sci and

its bandwidth bi. The time of the transmission through CLk,

between tasks vi and vj is defined as follows:

 - when tasks are allocated

tk(vi,vj) = to different resources, (2)

 0 - when tasks are allocated

 to the same resource.

 Tables 1 and 2 show a sample resource library corre-

sponding to the system specified by the graph from Fig. (1).

Table 1. Library of Software and Hardware Components

FPGA Area: 2000 CLBs, tr=0.86 μs / CLB

GPP

(Su=203 CLBs)
VC

Si(vj)

Task ti(vj) [μs] Ci(vj) ti(vj) [μs]
[CLB]

v0 434 30 89 158

v1 817 27 94 227

v2 811 23 59 92

v3 747 7 57 80

v4 444 40 54 175

v5 1020 43 33 411

v6 755 34 1 319

v7 335 86 22 283

v8 250 57 5 482

v9 655 66 61 152

v10 382 32 94 224

v11 408 24 30 184

v12 945 29 21 109

v13 190 32 26 167

v14 881 8 40 181

Table 2. Parameters of the Communication Link

CL CC [CLB] b Availability

B1 10 9kB/μs GPP, all VC (HW)

 It is assumed that the target architecture includes proces-

sor cores GPPs and dynamically reconfigurable sectors RSs

that communicate with each other by communication links

CLs. Hardware components (VCs) are placed in sectors RSs.

One or more VCs can be assigned to one sector in the same

time frame, thus RS can execute exactly one selected subset

of tasks. Tasks assigned to one RS may run in parallel. After

all tasks assigned to the same sector have finished their exe-

cution the sector is reconfigured to allocate new VC mod-

ules.

 Areas of all available RSs are calculated as the sum of

areas of some VCs from the library, next they are justified

according to the requirements of a module based reconfigu-

ration. The algorithm of RSs generation is explained in the

next section. Reconfiguration time for each RS is calculated

on the basis of the reconfiguration time of one logical cell

(tr), which is taken from the datasheet of a target FPGA.

 It is assumed that the target architecture includes an addi-

tional embedded processor GPPr, which controls reconfigu-

ration process.

dij
bk

Co-Synthesis of Dynamically Reconfigurable SOPCs The Open Cybernetics and Systemics Journal, 2008, Volume 2 209

 There are two other parameters associated with GPPs:

the maximum memory load (CMi) is a maximum memory

that can be used for an application, and the area occupied by

the processor core (Sui). There is also one parameter defined

for RSi : the area of an FPGA occupied by the sector (SRSi).

 Let the architecture of a system be composed of p proc-

essor cores GPPi (i=1,…, p), one processor that controls re-

configuration GPPr occupying the area Sur, r sectors RSi

(i=p+1,…, p+r) and c communication links CLj (j=1,…, c).

The total area of the system is defined as follows:

S = Sui
i=1

p

+ SRSi
i= p+1

p+r

+ Scj
j=1

c

+ Sur (3)

 Execution time of all tasks in the system is defined as

follows:

T=max(max(tk(GPP1),…,tk(GPPp)),max(tk(VCp+1),…,

tk(VCr)),max(tk(CL1),…, tk(CLc))) (4)

where: tk(PEj) is the finish time of a task scheduled as the

last one on PEj ((VCj or GPPj) and tk(CLj) is the finish time

of a communication scheduled as the last one on CLj. There-

fore, performance of the SOPC system is the following:

=1/T (5)

 The goal of the co-synthesis is to find the fastest architec-

ture of a self-reconfigurable SOPC system that meets the

functional requirements given by CTG graph. The architec-

ture has to guarantee feasible implementation (assuming

module reconfiguration) and hasn’t to exceed size of a target

FPGA.

INITIALIZATION

 In the presented approach the hardware-software co-

synthesis starts with an initialization. In this step all available

sizes of RS are being calculated. Next, an initial solution is

created.

 The best sector size is the size that can contain as many

as possible different groups of tasks. To achieve greater

flexibility a few different sizes of RS should be available. Let

r be the number of VCs in the library, l - the maximum num-

ber of sizes to be generated and Cj
i
 - the j-th subset of any i

different VCs. The algorithm of computing l available sizes

of sectors looks as follows:

RSInit(){

i=1;

Sv={};

Ss={};

repeat {

 for each subset Cj
i
do {

 s = S(VCk
VCk Cj

i

) ;

 if s max(S(VC1), ...,S(VCr)) then Sv=Sv {s};

 }

 i++;

} until i>r;

for k=1 to l do {

 Find sk which occurs most times (at least 2 times) in

 Sv;

if there is not such sk then

Find sk Sv such that values from the range <sk- ;

sk+ > occurs most times in Sv;

Remove all occurrences of sk from the set Sv;

 }

for k=1 to l do {

Round sk to the nearest available size of RS;

 Ss=Ss {sk};

 }

}

 In the first loop the algorithm computes sums of areas of

all possible VC groups. Next (the second loop), it chooses

sums which are most frequent or sums which values are the

most similar (values are in a given range). In the last loop it

rounds these sums to the nearest value of a reconfigurable

block size required by the module reconfiguration and

chooses them as available sector sizes.

 The initial solution is the architecture where all tasks are

assigned to one general purpose processor. Such solution

leaves most space in FPGA available for RSs.

 If an embedded system is represented by the conditional

task graph, then all mutually exclusive tasks should be de-

termined in the initialization step. For this purpose, the algo-

rithm of a CTG labeling is used.

CTG LABELING

 Determining mutually exclusive tasks in the CTG is not

straightforward, especially when conditions are hierarchical.

The algorithm of the CTG labeling simplifies this problem.

For each task, a few labels will be assigned. The label ck(vj)

equals cond, where cond is the identifier of a condition (all

conditions are numbered). The label level(vj) corresponds to

the level of vi in the hierarchy of conditional paths. The level

is incremented after each conditional edge belonging to the

same path in the CTG. The table of labels vj->fork[level(vj)]

contains task numbers that checks the condition correspond-

ing to the level level(vj) in the hierarchy of conditional paths.

The algorithm of the CTG labeling is the following:

labeling (vj) {

if level(vj)==0 then { ck(vj)=0; cond=0;}

for each successor vi of vj do {

 if eij is an edge without condition and ck(vj)=0, then {

 level(vi)= level(vj); ck(vi)=0;

 }

 else {

 if eij is a conditional edge then {

level(vi)= level(vj)+1;

cond++;

ck(vi)=cond;

 }

else if vi vjoin then{

 ck(vi)= ck(vj);

level(vi)= level(vj);

 }

 else if vi==vjoin then{

level(vi)= level(vj)-1;

210 The Open Cybernetics and Systemics Journal, 2008, Volume 2 Czarnecki and Deniziak

ck(vi)=ck(vi->fork[level(vi)]);

 }

 for (m= level(vi); m 1; m--) do

 vi->fork[m]=vj->fork[m];

 }

 labeling(vi);

}

 If execution of vi is not dependent on any condition then

level(vj)=0, and ck(vj), vi->fork are undefined. The edge

without condition may be outside the conditional path (the

first if statement in for loop) or may belong to the condi-

tional path (the third if statement in for loop). If there are

some tasks in the conditional path starting from vfork and end-

ing in vjoin, then each of them has the same labels ck and level

as the immediate successor of the vfork. If there is any condi-

tional edge belonging to the conditional path then the level

and the condition number are increased (the second if state-

ment). If the task belonging to the conditional path is the vjoin

task then ck and level are decreased. In the last for loop, the

table of all numbers of fork tasks corresponding to vi task,

belonging to the conditional path, is created.

ARCHITECTURE REFINEMENT

 The presented method of the hardware-software co-

synthesis (COSEDYRES) is an iterative improvement pro-

cedure that creates new solutions (architectures of a system)

through modifications of previous ones. Refinement process

is controlled by the gain that describes quality of the im-

provement. The gain is the difference between two compared

solutions. Quality of the solution is usually characterized by

a few parameters (e.g. cost, performance). Two methods of

the modification are used: adding one GPP or RS, and re-

moving one GPP or RS. Both modifications can be made in

one step of the algorithm. In this way, moving group of

tasks, from one resource (processor or sector) to another, is

possible in one step. Algorithm stops when there are no pos-

sibilities to obtain better solutions.

 In the COSEDYRES, the physical constraints on place-

ment of reconfigurable modules are taken into account [16].

Reconfigurable sectors are always strict linearly placed, i.e.

each RS occupies a contiguous set of CLB columns. Such

restrictions eliminate some possible optimal solutions, but

physically unrealizable because of placement infeasibility.

 The list scheduling method, where priorities are assigned

to each task, is applied in the algorithm. For each task vi,

times of execution of tasks, on all paths starting from vi are

computed. The longest time is taken as the priority of the

task. Tasks with higher priorities are scheduled first. Task

scheduling, allocation of CLs and communication scheduling

are done simultaneously.

 In each iteration step all possible modifications of the

current solution are evaluated. The best solution, i.e. a solu-

tion giving the best gain, is chosen to the next step. To in-

crease the probability of getting out of local maxima of per-

formance, the possibility of optimization in the next steps is

also taken into consideration, in the calculation of the gain.

 Let the parameter be defined as the available space in

the FPGA:

 =Smax - Scur (6)

where: Smax is the area of the target FPGA device and Scur is

the area of the current solution. The best solution is a solu-

tion with the highest . But from the other side, for solutions

with the highest , there is a greater probability of optimiza-

tion in the next steps of the refinement. Thus, the gain E,

that describes the quality of the improvement, is defined as

follows:

 * when > 0

E= when = 0 and > 0 (7)

 - / when < 0

 0 when 0

where: = (A
cur

) - (A
prev

) is the increase in the available

area caused by the modification, = (A
cur

) - (A
prev

) is the

increase in the speed, (A
cur

) and (A
cur

) are parameters of

the current solution, (A
prev

) and (A
prev

) are parameters of

the best solution, found in the previous step.

 Let PEi be any processing element taken from the library

of available resources (GPPi or RSi). The draft of the co-

synthesis algorithm for dynamically reconfigurable SOPC

systems is the following:

COSYDYRES(){

Generate available sizes of RS;

Label CTG graph;

Create an initial architecture A;

Compute the area Scur of A;

Compute the performance cur of A;

repeat

Gain=0;

for each PEi do {

if (number of resources in A) 2 then {

for each PEj A do {

A’=A - PEj;

for each vk PEj do {

Find PEl A’ that gives greatest value of E

after moving task vk to it;

Assign vi to PEl

 }

if E>Gain then {

Gain= E;

A
best

=A’;

 }

}

 }

A’’=A’ PEi;

repeat

Find task vk which gives greatest E after moving it

to PEi;

if E>0 then assign vk to PEi

until there is no task that gives E>0 after moving;

A’’=A’’- PEs without tasks assigned;

Co-Synthesis of Dynamically Reconfigurable SOPCs The Open Cybernetics and Systemics Journal, 2008, Volume 2 211

if E>Gain then {

Gain= E;

A
best

=A’’;

}

Place sectors in the FPGA;

}

if Gain>0 then A=A
best

;

until Gain == 0;

}

 In the first part, the COSEDYRES algorithm tries to re-

move one resource (PE) from the architecture. All tasks from

the removed PE are moved to other PEs (the inner for loop)

according to the greatest value of a local gain E (which will

be described later). To remove PE the number of resources in

the architecture has to be greater then two. This step is re-

peated for each PE in the architecture then the solution giv-

ing the highest gain is stored as the best architecture. In the

second part, the algorithm tries to allocate a new resource

(this step is repeated for each resource from the library) and

moves tasks from other PEs to the new one according to the

highest gain (in the inner repeat loop). If the solution is bet-

ter then the previous one then it is taken as the best architec-

ture A
best

.

The refinement is repeated until there is no better solu-

tion (the gain is not greater than 0). In the inner loops, where

tasks are moved from one PE to another, the area of the

SOPC system does not change. Hence, the new parameter:

local gain E, is used to rate such modifications. The per-

formance of a system is not always increased after moving a

task vk, but may lead to higher speed of the system in further

steps. When the execution time of vk in software is longer

than the sum of the reconfiguration time and execution time

of vk in hardware, then moving vk from software to hardware

increases the probability of getting architecture with higher

performance (more tasks are executed in hardware). If there

are no possibilities to improve the solution then we assume

that E=-1. Finally, the local gain is defined as follows:

 when > 0;

E = (ti(vk)- tres(RSj))/tj(vk) when =0 and (8)

 tres(PEj)< ti(vk)

 -1 in other cases

where: ti(vk) and tj(vk) are times of execution of task vk by

PEs from which and to which the task is moved, respec-

tively; tres(RSj) is the reconfiguration time of the sector RSj.

 The last step in each pass of the refinement is a sector

placement. Details are given in the next section. A
best

 is the

best architecture found in the current pass and it is taken as

the initial architecture in the next pass.

 If a few MET tasks vi,…,vi+n are assigned to the same RS,

then the area of such RS has to be computed as:

max(Svc(vi),…, Svc(vi+n)), where Svc(vi) is the area of VC im-

plementing vi. The algorithm prefers to assign MET tasks to

the same RS. In this way the area of a system is decreased

and then more tasks may be assigned to hardware, thus the

system performance may be higher. When MET tasks are

assigned to the same GPP, they can be scheduled in the same

time frame; therefore the scheduling algorithm takes them

into account, too.

SECTOR PLACEMENT

 It is assumed that the basic reconfigurable module is a

frame, spanning the height of an FPGA (as in Xilinx

FPGAs). Each RS consists of multiple adjacent frames.

Hence, RS placement should be strict linear. Another con-

straint concerns the communication scheduling: the sector

reconfiguration and any transmission through this sector are

not allowed in the same time. Therefore, transmissions can

not overlap in time with reconfiguration.

 To find the best sector placement, all possible layouts of

RSs in an FPGA are evaluated. For each RSs placement, task

scheduling and communication scheduling, satisfying recon-

figuration requirements, are performed. The fastest imple-

mentation is selected as the A
best

. The draft of the placement

algorithm is the following:

SectorPlacement(){

Find all permutations of sectors in A
best

;

 for each permutation A
p
 do {

 Schedule tasks, communications and

 reconfigurations;

 for each RSk do{

 if there are transmissions through RSk

 during the

 reconfiguration of the RSk then{

Modify the schedule by changing reconfigura-

tions start times and/or start times of transmis-

sions;

 }

}

 Compute (A
p
);

 if (A
p
)> (A

best
) then A

best
=A

p
;

 }

}

 For each permutation of sectors, the algorithm checks if

the reconfiguration time frame of RSk does not overlap with

the time frame of the data transmission, between two com-

municating resources located on both sides of the RSk. If

there is such conflict, the reconfiguration or the transmission

is delayed. Among all permutations, the one with the best

performance is taken as the A
best

 in the current step of the

algorithm.

 Fig. (2) illustrates sector placement in the architecture

obtained for the system specified by the task graph from Fig.

(1), using the algorithm described above. Fig. (3) shows the

tasks scheduling and reconfigurations scheduling for this

implementation. There are two dynamically reconfigurable

sectors: RS1 and RS2, two GPPs and a control processor

212 The Open Cybernetics and Systemics Journal, 2008, Volume 2 Czarnecki and Deniziak

GPPr. All tasks assigned to RS1 and RS2 are implemented in

hardware. Dynamic reconfiguration allows allocating more

tasks than the sector size. Arrows show the order of recon-

figurations. Such placement of sectors allows avoiding con-

flicts between reconfigurations and data transmissions. The

only conflict that would appear is associated with the recon-

figuration of the sector RS2 and the transmission from v7 to

v10. To avoid it, the reconfiguration of this sector is delayed

till the end of the data transmission from v7 to v10.

SELF-RECONFIGURABLE SYSTEMS

 Architecture generated using COSEDYRES is supple-

mented with the GPPr processor that controls the reconfigu-

ration of sectors. GPPr is a general purpose processor or a

special IP module. Part of an FPGA is reserved for GPPr,

before the algorithm starts. In this way the whole system is

implemented in one FPGA and there are no other external

modules to control reconfiguration process.

 The method of implementation of self-reconfigurable

systems is based on the Xilinx platform for dynamically self-

reconfigurable architectures (SRP) [19]. One processor con-

trols the reconfiguration of sectors. It can be an IP module

like MicroBlaze soft core or a hardware core like the embed-

ded PowerPC. Only one sector can be reconfigured at the

given moment. The fastest 32-bits SelectMAP programming

mode is used.

 Bitstreams are generated by standard Xilinx tools accord-

ing to Modular Design Flow [1]. One bitstream is generated

for the initial system configuration, and partial reconfigura-

tion bitstreams are generated for all configurations of each

RS separately. Each reconfiguration starts after finishing

preceding task or transmission. The procedure controlling

reconfigurations that is executed by the GPPr looks as fol-

lows:

Reconfigure(){

Load initial configuration Ai to FPGA;

 do{

wait until rri=true;

Fig. (2). Sector placement.

Fig. (3). Gantt charts of scheduled tasks and reconfigurations

FPGA

GPPr
ICAP CM

rr21

rr14

rr11

rr12

rr13
Bitstream11

Bitstream12

Bitstream13

RS1

GPP1

GPP2

V6 V13

V5

V1 V7 V8

R11

R14

R13

V3 V11

V14
V10

Configuration memory

V4

R12

V2

V12

R21

B
us

M
ac

ro

V12

V1
4

V10
V4

V3

V2

 V0

V11

V9

B
us

M
ac

ro

RS2

Co-Synthesis of Dynamically Reconfigurable SOPCs The Open Cybernetics and Systemics Journal, 2008, Volume 2 213

 Get the next bitstream for RSi from a cache;

Reconfigure RSi with the new bitsream;

 } while there are no waiting bitstreams in the cache;

}

 GPPr waits for any reconfigure request signal (rri), which

is activated by PE finishing preceding task or transmission.

Then, system is dynamically reconfigured by loading next

bitstreams for the sector corresponding to the rri signal. Sec-

tors are reconfigured through special ICAP port (Internal

Configuration Access Port) [19] (Fig. 2).

EXPERIMENTAL RESULTS

 In this section some experimental results, showing the

efficiency of COSEDYRES algorithm, will be presented.

First, the benefits of the dynamic reconfigurability will be

demonstrated. For this purpose, the same systems will be

synthesized and implemented as DRSOPC and SOPC sys-

tems [31, 32]. Next, by comparing results of the co-synthesis

of systems represented by TG and CTG graphs, the benefits

of considering mutually exclusive tasks in the system opti-

mization will be presented.

 First, TG from Fig. (1) (but without considering MET

tasks) and a library of available resources (Tables 1 and 2)

were considered. For the target FPGA consisting of 2000

CLBs and reconfiguration time of one CLB equal to 0.86 s,

the DRSOPC system with execution time equal to 1818 s

and the area equal to 1974 CLBs was received. The same

system implemented as SOPC executes all task in 2463 s

and had the area equal to 1900 CLBs.

 In order to estimate average benefits of the dynamic re-

configuration, some systems, specified by different random

task graphs (from 10 to 150 nodes), where synthesized as

SOPC and DRSOPC architectures. In the library of available

resources were: one GPP, one VCs for each task and one

communication link. The area of the target FPGA was ad-

justed to the number of tasks. Experimental results are given

in Table 3. The following columns of Table 3 contain: the

size of the graph (number of nodes), the area of the FPGA,

characteristics of architectures (for DRSOPC systems and

SOPC systems). Architectures are characterized by: the total

execution time of all tasks, the area and the number of GPPs,

RSs and VCs. The last column shows speed-up of the system

with dynamic reconfiguration in comparison with the system

without dynamic reconfiguration (in percentage).

 The experimental results show advantages of using par-

tially reconfigurable FPGAs. Dynamically reconfigurable

systems usually are significantly faster than these without

dynamic reconfiguration. The same regions of the FPGA

were used a few times for different functionalities, so more

tasks were executed in hardware. The main bottleneck of

dynamically reconfigurable systems is the time required for

the reconfiguration, but proper scheduling of tasks lets

minimize this problem.

 Besides the quality of obtained results, the efficiency of

the algorithm should be estimated by its computational com-

plexity. Table 4 shows the estimation of the computational

complexity based on experimental results. The following

columns of Table 4 contain: the size of a graph, the total

Table 4. Computational Complexity of the COSEDYRES

Algorithm

Nodes [N]
No. of

Solutions l
No. of Passes k (CPU/n

3
)*10

4
 l/n

2

10 16 4 2.04 0.16

30 90 8 0.79 0.10

50 115 8 0.51 0.05

70 212 10 0.89 0.04

90 463 15 2.43 0.01

110 386 12 1.99 0.03

130 531 10 1.95 0.03

150 807 14 2.15 0.03

number of evaluated solutions, the number of passes, the

computational complexity (CPU seconds to the number of

nodes ratio), the number of solutions to the number of nodes

Table 3. Experimental Results for DRSOPC and SOPC Implementations

DRSOPC SOPC

Nodes [N] FPGA Area

Time Area Architecture Time Area Architecture

Performance inc. [%]

10 1100 2509 933 2p,1s,5hw 4078 927 2p, 3hw 62%

30 1500 4302 1498 3p,2s,18hw 6734 1425 4p, 2hw 57%

50 2000 5926 1786 3p,3s,29hw 8352 1825 6p, 3hw 41%

70 2500 6435 2480 5p,2s,30hw 9605 2407 7p, 5hw 49%

90 3000 8508 2865 4p,4s,43hw 9707 2658 8p, 6hw 14%

110 3500 8360 2708 5p,5s,50hw 8859 3353 11p, 7hw 6%

130 4000 8815 2661 6p,3s,56hw 9564 3995 12p, 13hw 9%

150 4500 10891 3332 7p,4s,60hw 13037 4295 9p, 13hw 20%

214 The Open Cybernetics and Systemics Journal, 2008, Volume 2 Czarnecki and Deniziak

ratio. On the basis of experiments for random task graphs,

the computational complexity of the COSEDYRES algo-

rithm can be estimated by: O(n
3
), where n is the number of

nodes, and the complexity depending on the number of solu-

tions can be estimated by O(n
2
). The theoretical analysis

indicated that the complexity of COSEDYRES can be esti-

mated by O(r
2
n
2
), where r is the number of resources avail-

able in the library. In these examples there were two types of

resources (one GPP and one VC for each task), so experi-

mental results confirm the theoretical analysis. Moreover, in

practice the computational complexity of the presented algo-

rithm is even a little lower.

 Finally, benefits of the optimization based on mutually

exclusive tasks were estimated. The results of the synthesis

of systems specified by random CTG graphs (COSE-

DYRES-CTG) were compared with results obtained for the

same systems specified by TG graphs (COSEDYRES). The

number of MET tasks in CTG graphs was adjusted to the

number of nodes (such tasks were placed randomly in each

CTG). The following columns of Table 5 presents: the size

of the graph, the FPGA area, characteristics of architectures.

Each system is characterized by: the execution time, the area

and the number of hardware tasks in the architecture. The

number of MET tasks in CTG is also given. The last column

shows speed-up of the system that is represented by CTG in

comparison with the system represented by TG (in percent-

age).

 The experiments showed that considering mutual exclu-

sive tasks, specified by CTG, enables to increase perform-

ance of a DRSOPC system using the COSEDYRES method.

If MET tasks are assigned to the same reconfigurable sector,

more tasks can be executed in hardware. METs are allocated

only when the proper condition is satisfied (after reconfigu-

ration of a sector). The performance increase depends on the

number of MET tasks in CTG. If the number of METs in

CTG is low then the performance increase may not be sig-

nificant.

EXAMPLE 1: USB HUB

 The first example, presenting advantages of our method,

is the co-synthesis of the USB 2.0 Hub. The most complex

function in the Hub is the Transaction Translator (TT). Other

functions should be implemented in hardware or have no

hard constraints. Therefore, the co-synthesis will be only

used to optimize a module implementing the TT. Specifica-

tion of the TT may be composed of the following processes:

HSH that implements communication between TT and a host

(HSH may be decomposed into two processes: HSHR - re-

ceiving data from the host, and HSHT - transmitting data to

the host), SSF that manages periodic transmissions from the

Table 5. Comparison of results for COSEDYRES and COSEDYRES-CTG

COSEDYRES COSEDYRES-CTG

Nodes [N] FPGA Area
Time Area HW Time Area HW

Number of MET Performance Increase [%]

10 1500 941 1498 4 804 1490 5 1 15

30 2000 4642 1863 13 3448 1986 15 2 26

50 2500 7054 2303 6 6531 2373 13 3 8

70 3000 9174 2935 21 8396 2964 35 4 9

Fig. (4). Conditional task graph for TT.

Co-Synthesis of Dynamically Reconfigurable SOPCs The Open Cybernetics and Systemics Journal, 2008, Volume 2 215

host to devices, CSF – responsible for periodic transmissions

from devices to the host, BC – manages block transmissions

from devices to the host (decomposed into BCU and BCD).

The CTG graph specifying the TT is presented in Fig. (4).

Two pairs of tasks are mutually exclusive: (SSF, BCD) and

(BCU, CSF). Information about it may allow performing

better optimization.

 Assume, that only one GGP module (with an area equal

to 100 CLBs), and only one communication channel (with

bandwidth equal to 80 MB/s), are available. The library of

software and hardware components is given in Table 6. The

amount of data transmitted between tasks is showed in Fig.

(4) as labels of edges. Time required for transmissions will

be the following:

- for transmission of 188 B: 188/ 80 MB/s = 2350 ns,

- for transmission of 64 B: 64 B / 80 MB/s = 800 ns.

Table 6. Resource Library for the TT

SW HW

Task
t [s] t [s] S [CLB]

HSHR 2400 20 400

HSHT 2400 20 400

SSF 1800 12 100

CSF 2000 12 135

BCD 1600 12 120

BCU 1600 12 120

FLSHR 1400 8 170

FLSHT 1400 8 170

 It was assumed that the area of the TT is limited to 800

CLBs. First, the TT was synthesized without taking into

consideration the MET tasks. As a result, the architecture

with the total execution time equal to 4408 s and the area

equal to 741 CLBs was found. In this architecture 3 tasks

were executed by GPP and others in hardware. Moreover,

there was no possibility to increase the system performance

using dynamic reconfiguration.

 Next, the COSEDYRES method was used for the synthe-

sis of the TT specified by the CTG graph from Fig. (4). The

architecture consisting of two GPPs and two RSs were

found. All MET tasks were assigned to the same RS sector.

In this way, there is not necessary to allocate these tasks in

the same time period, but they can be allocated, depending

on actual value of the corresponding condition. Hence, the

area occupied by these tasks was decreased twice. Task

scheduling in this implementation is presented in Fig. (5).

The total time of execution of all tasks in TT equals 2993 s

and area equals 760 CLBs. This is the best solution for as-

sumed space constraint. This example shows that taking into

consideration MET tasks enables to get significantly faster

architectures (about 33% in this case).

 Next, the refinement process of the TT architecture will

be demonstrated. Fig. (6) illustrates successive solutions

chosen by the COSEDYRES algorithm during the refine-

ment. Big points indicate solutions with the highest gain

found in each step. It should be noticed that the algorithm is

not greedy; it chooses not only solutions with the highest

performance, sometimes chooses also slower ones but with

larger available space in the FPGA. Such solutions give

higher probability of achieving better solution in the next

steps (like solution 8).

EXAMPLE 2: EMBEDDED WEB SERVER

 Today, many devices are controlled through Internet by

HTTP protocol. Therefore, many embedded systems imple-

ment some network functionalities. The next example, dem-

onstrating the advantages of the COSEDYRES method, will

be the co-synthesis of the module implementing a simple

web server. Function of this server may be specified by the

Fig. (6). Convergence chart for TT described by CTG.

216 The Open Cybernetics and Systemics Journal, 2008, Volume 2 Czarnecki and Deniziak

conditional task graph presented in Fig. (7). It consists of the

following tasks:

– GetReq: process that waits on notifications on port

80. All requests are send to ProcReq and after empty-

ing transceiver buffer the information is send to

Trans.

– ProcReq: process that is activated after receiving

information from GetReq. It reads data packages into

buffer. After receiving a full HTTP request the infor-

mation is send to ProcGet or ProcPost, depending on

the request type. Since this process is the most com-

plex, it is decomposed into ProcReq1 and ProcReq2.

– ProcGet: processing the GET requests.

– ProcPost: processing the POST requests.

– Trans: sends consecutive parts of HTML files.

– ManCon: manages of connection status.

 Tasks Trans and ProcReq (ProcReq1, ProcReq2) will

never be executed in the same time, but depending on the

Dir condition. If Dir=1 then after finishing ProcReq, task

ProcGet or ProcPost will be executed, depending on the Req

condition. Thus, in this CTG hierarchical conditions exist.

 Assume that there is only one GPP module available

with an area equal to 200 CLBs, and that the available com-

munication channel transmits 30 B during 75 ns. Table 7

presents the library of hardware and software components. In

the following experiments, the embedded web server was

synthesized assuming the space constraint of the FPGA

equals to 1000 CLBs.

 First, the system was implemented as a SOPC. The fast-

est SOPC architecture contains one GPP executing 3 tasks

and four VCs. The Gantt chart for such SOPC system is

given in Fig. (8). The characteristic of this system is the fol-

lowing: the total execution time T=5150 μs and the area

S=968 CLBs.

 Next, the COSEDYRES method was applied to obtain

DRSOPC implementation, but the system was represented

by the task graph (without conditional edges). In the initiali-

zation phase the following available sector sizes were gener-

ated: 56, 168, 280 and 336 CLBs. As the result of the co-

synthesis, the architecture where all tasks were assigned to

hardware was generated. It was possible due to dynamic re-

configuration. Scheduling of tasks for DRSOPC implemen-

tation, where system is represented by TG is illustrated in

Fig. (9). For such system, characteristic is the following:

T=4026 μs, S=996 CLBs. Increase in performance, in com-

parison to the SOPC implementation, equals 22%. Recon-

figurations were partially performed in parallel with compu-

tations, thus the impact of the reconfiguration time on the

decrease in the system performance was reduced.

 Finally, the system specified by the conditional task

graph was synthesized. A few pairs of tasks are mutually

exclusive: {(Trans, ProcReq1), (Trans, ProcReq2),

(ProcGet, ProcPost), (Trans, ProcGet), (Trans, ProcPost)}.

COSEDYRES algorithm found an architecture with two re-

configurable sectors, with areas equal to 280 and 336 CLBs.

Fig. (10) illustrates scheduling of tasks for DRSOPC system

specified by the CTG graph. Tasks ProcReq2 and Trans

were assigned to the same RS1 sector and scheduled parallel

(they are executed depending on the Dir condition). Simi-

larly tasks ProcGet and ProcPost were assigned to the same

RS2 and they are executed depending on the Req condition.

Such tasks need not be allocated in the same time, but can be

allocated by dynamic reconfiguration after the condition is

evaluated. The characteristic of the architecture obtained

using COSEDYRES method is: T=3694 μs and S=850

CLBs. Performance was increased by 8% in comparison

with the previous solution and the area occupied by web

server was decreased by 15%. Much better utilization of the

space in the FPGA (smaller areas of sectors) caused that re-

configuration times of RSs were shorter, thus reducing the

total execution time of the system.

GetReq

Trans

ProcReq1

ProcGet ProcPost

ManConn

30

30

30

Dir=0

Dir=1

Req=GET Req=POST

ProcReq2

Fig. (7). CTG specification of the embedded web server.

Fig. (5). Gantt chart for TT obtained as a result of COSEDYRES-CTG.

Co-Synthesis of Dynamically Reconfigurable SOPCs The Open Cybernetics and Systemics Journal, 2008, Volume 2 217

 Presented examples showed that the dynamic reconfigu-

ration gives faster systems when reconfiguration tasks are

properly scheduled and executed in parallel with computa-

tions. Moreover, considering mutually exclusive tasks in a

system model brings additional possibilities of optimiza-

tions, in order to achieve faster dynamically reconfigurable

systems (when MET tasks are allocated in the same sector).

Table 7. Parameters of Tasks from the Embedded Web

Server Specification

SW HW

Task
t[μs] S[B] t[μs] S[CLB]

GetReq 2000 600 400 250

ProcReq1 1200 1500 650 300

ProcReq2 2800 500 850 200

ProcGet 2500 1300 1000 300

ProcPost 1500 1200 300 50

Trans 500 400 150 150

ManConn 600 500 200 200

CONCLUSIONS

 In this paper the co-synthesis algorithm that targets at dy-

namically reconfigurable multiprocessor SOPC systems, with

possibility of considering mutually exclusive tasks, was pre-

sented. The method is dedicated to the most popular partial

reconfigurable Xilinx FPGAs. Reconfiguration of parts of the

FPGA is controlled by the embedded processor. Hence, the

whole system is placed in one FPGA. Dynamic reconfigura-

tion enables different functionalities to be allocated in the

same part of an FPGA. Due to implementation of more tasks

in hardware, the overall performance is significantly higher,

even if the reconfiguration may take some additional time. To

the best of our knowledge, it is the first co-synthesis algorithm

for multiprocessor SOPCs dealing with dynamically self-

reconfigurable systems, and one of the first algorithms taking

into consideration placement constraints for most popular

modern FPGAs. This is also the first co-synthesis algorithm

for dynamically reconfigurable SOPC systems that considers

mutually exclusive tasks specified by the CTG graph. Such

information let better utilize the space allocated to the de-

signed system by assigning more task to hardware, thus speed-

ing up the system. Moreover, the COSEDYRES algorithm has

Fig. (8). Gantt chart of the web server implemented as SOPC.

Fig. (9). Gantt chart of the web server represented by TG and implemented as DRSOPC.

Fig. (10). Gantt chart of Web Server represented by CTG and implemented as DRSOPC.

218 The Open Cybernetics and Systemics Journal, 2008, Volume 2 Czarnecki and Deniziak

a low computational complexity, and it has a capability of

avoiding local maxima of the performance (that is the most

common drawback of refinement methods).

REFERENCES

[1] Xilinx Inc., “Two flows for partial reconfiguration: module based
or difference based”, Xilinx Application Note XAPP290, v.1.2,

2004.
[2] K. Compton and S. Hauck, ”Reconfigurable computing: a survey of

systems and software”, ACM Comput. Surv., vol. 34, no. 2, pp.
171-210, June 2002.

[3] S. Fekete, J. van der Veen, J. Angermeier, D. Göhringer, M. Majer,
and J. Teich., ”Scheduling and Communication-aware Mapping of

HW-SW Modules for Dynamically and Partially Reconfigurable
SoC Architectures”, Proc. of the Dynamically Reconfigurable Sys-

tems Workshop, 2007.
[4] S. A. Khayam, S. A. Khan, and S. Sadiq, “A Generic Integer Pro-

gramming Approach to Hardware/Software Codesign”, Proc. of
IEEE International Multi Topic Conference IEEE INMIC 2001.

Technology for the 21st Century, pp.6-9, 2001.
[5] R. P. Dick and N. K. Jha, “CORDS: hardware-software co-

synthesis of reconfigurable real-time distributed embedded sys-
tems”, Proc. ICCAD, pp. 62-68, 1998.

[6] K. B. Chehida and M. Auguin, ”HW/SW Partitioning Approach for
Reconfigurable System Design”, Proc. CASES 2002, pp. 247-251,

2002.
[7] A. Jhumka, S. Klaus, S. A. Huss, “A Dependability-Driven Sys-

tem-Level Design Approach for Embedded Systems”, Proc.
DATE’05, vol. 1, pp. 372-377, 2005.

[8] S. Deniziak, "Cost-Efficient Synthesis of Multiprocessor Heteroge-
neous Systems", Control Cybern., vol. 33, no. 2, pp. 341-355,

2004.
[9] T.-Y. Yen and W. H. Wolf, “Sensitivity-Driven Co-Synthesis of

Distributed Embedded Systems”, Proc. of International Symposium
on System Synthesis, pp. 4-9, 1995.

[10] K. S. Chatha, R. Vemuri, “Hardware-software codesign for dy-
namically reconfigurable architectures”, Proc. FPL, pp. 175-184,

1999.
[11] S. Lee, S. Yoo, and K. Choi, “Reconfigurable SoC design with

hierarchical FSM and synchronous dataflow model”, Proc.
CODES, pp. 199-204, 2002.

[12] S. Banerjee, E. Bozorgzadeh, and N. Dutt, “Physically-aware HW-
SW partitioning for reconfigurable architectures with partial dy-

namic reconfiguration”, Proc. DAC, pp. 335-340, 2005.
[13] Y. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure, and J. Stock-

wood, “Hardware-software co-design of embedded reconfigurable
architectures”, Proc. DAC, pp. 507-512, 2000.

[14] L. Shang, R. P. Dick, and N. K. Jha, ”SLOPES: Hardware–
Software Cosynthesis of Low-Power Real-Time Distributed Em-

bedded Systems With Dynamically Reconfigurable FPGAs”, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and

Systems, pp. 508-526, 2007.
[15] J. Ou, S. B. Choi, V. K. Prasanna, „Energy-Efficient Hard-

ware/Software Co-synthesis for a Class of Applications on Recon-

figurable SoCs”, Int. J. Embedded Syst., vol. 1, no. 1/2, pp. 91-102,

2005.
[16] F. Ferrandi, M. D. Santabrogio, and D. Sciuto, “A Design Method-

ology for Dynamic Reconfiguration: The Coronte Architecture”,
19th IEEE International Parallel and Distributed Processing Sym-

posium – Workshop 3, pp. 163-166, 2005.
[17] H. Kalte, D. Langen, E. Vonnahme, A. Brinkmann, and U. Ruckert,

“Dynamically reconfigurable system-on-programmable-chip”,
Proc. Euromicro PDP, pp. 235-242, 2002.

[18] E. Carvalho, N. Calazans, E. Briao, and F. Moraes, “PaDReH – a
framework for the design and implementation of dynamically and

partially reconfigurable systems”, Proc. SBCCI, pp.10-15, 2004.
[19] B. Blodget, P. J. Roxby, and E. Keller, “A Self-reconfiguring plat-

form”, Proc. FPL, pp.565-574, 2003.
[20] G. M. Megson, “Exploiting reconfigurability through high level

synthesis.”, IEE Colloquium on Hardware-Software Cosynthesis
for Reconfigurable Systems (Digest No: 1996/036), pp. 5/1 - 5/4,

1996.
[21] I. M. Bland and G. M. Megson, "The Systolic Array Genetic Algo-

rithm, An Example of Systolic Arrays as a Reconfigurable Design
Methodology", IEEE Symposium on FPGAs for Custom Computing

Machines, pp. 260-261, 1998.
[22] B. Mei, P. Schaumont, and S. Vernalde, “A hardware-software

partitioning and scheduling algorithm for dynamically reconfigur-
able embedded systems”, Proc. ProRisc Workshop on Ckts, Sys-
tems and Signal Processing, 2000.

[23] Y. Qu, J.-P. Soininen, J. Nurmi, “A Parallel Configuration Model

for Reducing the Run-time Reconfiguration Overhead”, Proc.
DATE’06, pp. 965-969, 2006.

[24] A. Daboli and P. Eles, “Scheduling Under Data and Control De-
pendencies for Heterogeneous Architectures”, Proc. of the Interna-

tional Conference on Computer Design, pp. 602-608, 1998.
[25] Y. Xie and W. Wolf, “Allocation and Scheduling of Conditional

Task Graph in Hardware/Software Co-synthesis”, Proc. DATE, pp.
620-625, 2001.

[26] D. Wu, B. M. Al-Hashimi, and P. Eles, “Scheduling and mapping
of conditional task graph for the synthesis of low power embedded

systems”, IEE Proceedings Computers and Digital Techniques,
Vol. 150 Issue: 5 pp. 262-273, 2003.

[27] Y. Xie, L. Li, M. Kandemir, et al., “Reliability-aware co-synthesis
for embedded systems”, J. VLSI Sig. Process. S., vol. 49, no. 1, pp.

87-99, 2007.
[28] S. Chakraborty, T. Erlebach, and L. Thiele, “On the complexity of

scheduling conditional real-time code”, Algorithm. Data Structure.,
vol. 2125, pp. 38-49, 2001.

[29] W. Bossung, S. A. Huss, and S. Klaus, “High-level embedded
system specifications based on process activation conditions”, J.

VLSI Sig. Process. S., vol. 21, no. 3, pp. 277-291, 1999.
[30] J. Henkel, R. Ernst, “High-level estimation techniques for usage in

hardware/software co-design”, Proc. Asia and South Pacific Auto-
mation Conference, pp. 353-360, 1998.

[31] R. Czarnecki, S. Deniziak, and K. Sapiecha, “An iterative im-
provement co-synthesis algorithm for optimization of SOPC archi-

tecture with dynamically reconfigurable FPGAs”, Proc. EUROMI-
CRO DSD, pp. 443-446, 2003.

[32] R. Czarnecki and S. Deniziak, “Resource Constrained Co-synthesis
of Self-reconfigurable SOPCs”, Proc. DDECS, pp. 49-54, 2007.

Received: March 31, 2008 Revised: May 30, 2008 Accepted: June 2, 2008

© Czarnecki and Deniziak; Licensee Bentham Open.

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.5/), which
permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

