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Abstract: In this paper, focusing on general nonlinear programming problems, we attempt to propose a general and high-

performance approximate solution method for them. In recent years, S. Koziel et al. have proposed a floating-point ge-

netic algorithm, GENOCOP V, as a general approximate solution method for nonlinear programming problems and 

showed its efficiency, there are left some shortcomings of the method. In this paper, incorporating ideas to cope with these 

shortcomings, we propose a revised GENOCOP V (RGENOCOP V). Furthermore, we show the efficiency of the pro-

posed method RGENOCOP V by comparing it with two existing methods, RGENOCOP III and GENOCOP V through 

the application of them into the numerical examples.  

INTRODUCTION   

 A nonlinear programming problem is called a convex 

programming problem when its objective function and its 

constraint region are convex. For such convex programming 

problems, there have been proposed many efficient solution 

methods as the successive quadratic programming method 

[1], the generalized reduced gradient method [2] and so 

forth. Unfortunately, no decisive solution method has been 

proposed for nonconvex programming problems. For such 

nonconvex programming problems, as practical solution 

methods, genetic algorithms have been widely used . 

 Genetic algorithms proposed by Holland [3] have at-

tracted considerable attention as global methods for com-

plex function optimization since De Jong considered genetic 

algorithms in a function optimization setting [4]. However, 

many of the test function minimization problems solved by 

a number of researchers during the past 20 years involve 

only specified domains of variables. Only recently several 

approaches have been proposed for solving general nonlin-

ear programming problems through genetic algorithms [4-6].  

 In 1995, Michalewicz et al. [7] proposed a floating-point 

genetic algorithm GENOCOP III and showed its efficiency 

for noncovex programming problems. In GENOCOP III, 

the individual representation using the floating-point format 

is adopted. Furthermore, in GENOCOP III, two populations 

are used: one is the search population consisting of indi-

viduals which satisfies linear constraints, the other is the 

reference population consisting of individuals which satis-

fies all constraints. However, it is known that there exist 

drawbacks about the generation of initial individuals and the 

generation of offsprings in the crossover operation. In re-

cent years, Sakawa et al. [8] proposed the revised, 

 

 

*Address correspondence to this author at the Department of Artificial 

Complex Systems Engineering, Graduate School of Engineering, Hi-

roshima University, Higashi-Hiroshima, Hiroshima, Japan;  

E-mail: kosuke-kato@hiroshima-u.ac.jp 

 

GENOCOP III (RGENOCOP III) involving improvements to 

deal with these drawbacks of GENOCOP III. On the other 

hand Koziel et al. [9] proposed GENOCOP V which is based 

on the homomorphous mapping as a new floating-point ge-

netic algorithm and showed its superiority to GENOCOP III 

in processing time.  

 Unfortunately, some shortcomings exist in GENOCOP V. 

When the homomorphous mapping is used in GENOCOP V, 

we need to find at least one feasible solution which is called 

the basepoint solution.  

 Since GENOCOP V adopts the method to generate the 

fixed number of solutions in order to find the basepoint solu-

tion, it often happens that GENOCOP V cannot start the 

search because no feasible solution is found even if the prob-

lem is feasible. In addition, the precision of (approximate) 

optimal solutions obtained by GENOCOP V is not good since 

they greatly depend on the basepoint solution of the homo-

morphous mapping. Since only one basepoint solution is used 

in the whole search process in GENOCOP V, the precision of 

obtained approximate optimal solutions may not be good. 

 In this research, we propose a revised version of GENO-

COP V (RGENOCOP V) by considering a new way to find 

the basepoint solution where a problem to minimize the 

amount of constraint violation is solved as well as a new 

method to select and update the basepoint solution. 

NONLINEAR PROGRAMMING PROBLEMS 

 In this research, we consider general nonlinear program-

ming problem with constraints formulated as:  

minimize   f(x) 

     subject to   gi(x)  0 ,  i = 1, 2, ... , m                (1) 

                        lj  xj  uj ,  j = 1, 2, ... , n 

                        x = (x1, x2, ... , xn)
T
  R

n
 

where f and gi are convex or nonconvex real-valued functions, 
lj and uj are the lower bound and the upper bound of each 
decision variable xj. In the following, we denote the feasible 
region of (1) by X.   
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GENOCOP V 

 In 1999, Koziel et al. [9] proposed GENOCOP V, a 

floating-point genetic algorithm incorporating the homo-

morphous mapping.  

Homomorphous Mapping 

 In [9], they considered a mapping T: F  [-1,1]
n
,  

shown in Fig. (1), where X is the feasible region of the prob-

lem and [-1,1]
n
 is an n dimensional hypercube.  

(1) The mapping T maps some point r  X to the origin 

0  [-1,1]
n
, i.e., T: r  0. The solution r is called 

the basepoint solution of T.  

(2) The mapping T maps each point x  X to a point y 

 [-1,1]
n
, determined as:  

T: x y = 
x - r

tmax max {x1 - r1, x2 - r2, ... , xn - rn}
      (2) 

where tmax is a positive real number such that r + (x - 

r) tmax is on the boundary of X.  

 

Fig. (1). Homomorphous mapping T. 

 The mapping T can be executed fast and the local rela-

tion of points is preserved.. In particular, if we use the n 

dimensional hypercube [-1,1]
n
 as the search space in place 

of the feasible region X, we do not have to prepare special 

genetic operators to keep the feasibility of solutions since [-

1,1]
n
 is convex. Thereby, the improvement of the search 

efficiency of the genetic algorithm is expected by the intro-

duction of the homomorpous mapping.  

Computational Procedures of GENOCOP V 

 Step 1: Calculate the upper bound and the lower bound 

for each decision variable xj based on linear constraints and 

upper-lower bound constraints, and generate individuals 

satisfying these constraints at random. If there is a solution 

to satisfy all constraints of the problem, i.e., there is a feasi-

ble solution, it becomes the basepoint solution r. If not, re-

peat the generation of individuals satisfying the above con-

straints at random several times. Go to step 2. If we can find 

no feasible solution through all trials, it is judged that the 

problem is infeasible and the procedure is terminated.  

 Step 2: Generate initial individuals in the n dimensional 

hypercube [-1,1]
n
 randomly. Go to step 3. 

 Step 3: Calculate a solution in the feasible region X cor-

responding to each individual in the n dimensional  

 

hypercube [-1,1]
n
 by using the inverse mapping T

-1
 of the 

homomorphous mapping T based on the basepoint solution r, 

and evaluate all solutions in X. Go to step 4. 

 Step 4: If the termination conditions are satisfied, the pro-

cedure is terminated. Otherwise, go to step 5. 

 Step 5: Apply reproduction operator. Go to step 6.  

 Step 6: Select an operator randomly from among seven 

operators: uniform mutation, boundary mutation, non-uniform 

mutation, whole arithmetical crossover, simple arithmetical 

crossover, whole non-uniform mutation, a version of whole 

arithmetical crossover (some of them are shown in Fig. (2)), 

and apply the selected operator. Go to step 3. 

     

 

Fig. (2). Typical operators in step 6. 

 However, there exist the following shortcomings in 

GENOCOP V.  

(1) Since GENOCOP V adopts the method to generate the 

fixed number of solutions in order to find the base-

point solution, it often happens that GENOCOP V 

cannot start the search because no feasible solution is 

found even if the problem is feasible. In addition, the 

precision of (approximate) optimal solutions obtained 

by GENOCOP V is not good since they greatly depend 

on the basepoint solution of the homomorphous map-

ping.  

(2) It is known that approximate optimal solutions ob-

tained by GENOCOP V greatly depend on the 

basepoint solution of the homomorphous mapping. 

Since only one basepoint solution is used in the whole 

search process in GENOCOP V, the precision of 

obtained approximate optimal solutions may not be 

good.  
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REVISION OF GENOCOP V 

 In this section, we propose the revised GENOCOP V 

which resolves shortcomings of GENOCOP V mentioned in 

the previous section.  

Generation of Initial Basepoint Solution 

 In GENOCOP V [9], we have to obtain at least one fea-

sible solution before the first mapping. However, we often 

cannot find any feasible solutions as initial feasible solu-

tions since they are searched by randomly generating a 

given number of solutions which satisfy both upper bound 

constraints and lower ones. Thereby, the shortcoming (1) 

will be resolved by using the following optimization prob-

lem to minimize the degree of violation of constraints like 

RGENOCOP III [8].  

     minimize  

=

m

i

ig

1

2)}({ x  

     subject to   lj  xj  uj ,  j = 1, 2, ... , n                       (3) 

                        x = (x1, x2, ... , xn)
T
  R

n
 

Updating of Basepoint Solutions 

 In RGENOCOP V proposed in this paper, the homo-

morphous mapping is used as in GENOCOP V. As pointed 

out in the shortcoming (2) of GENOCOP V, the precision of 

obtained approximate optimal solutions greatly depends on 

the basepoint solution of the homomorphous mapping. In 

order to improve the precision, updating basepoint solutions, 

i.e., substituting the best individual in the current solution 

for the current basepoint solution r is adopted in RGENO-

COP V, as shown in Fig. (3). 

 

Fig. (3). Update of the basepoint r of the homomorphous mapping. 

NUMERICAL EXPERIMENTS 

 In this section, we show the efficiency of the proposed 

RGENOCOP V through numerical experiments. We use 

five test problems in [9], and apply RGENOCOP III [8], 

GENOCOP V [9] and RGENOCOP V to them.  

Problem #1 

minimize   f1(x) = 

=

4

1

5

j

jx

=

4

1

2
5

j

jx

=

13

5j

jx  

     subject to   2x1 + 2x2 + x10 + x11 10 

                        2x1 + 2x3 + x10 + x12 10 

                        2x2 + 2x3 + x11 + x12 10 

                       8x1 + x10 0,  8x2 + x11 0 

                       8x3 + x12 0,  2x4 x5 + x10 0 

                       2x6 x7 + x11 0,  2x8 x9 + x12 0 

                        0 xj 1,  j = 1, 2, ... , 9,  0 x13 1 

                        0 xj 100,  j = 10, 11, 12 

 The objective function f1 is quadratic and its globally op-

timal solution is known as follows.  

x
*
 = (1,1,1,1,1,1,1,1,1,3,3,3,1),   f1(x

*
) = 15. 

 For the optimal solution, six constraints are active.  

Problem #2 

minimize   f2(x) = x1 + x2 + x3 

     subject to   0.0025(x4 + x6) 1 0 

                        0.0025(x5 + x7 x4) 1 0 

                        0.01(x8 x5) 1 0 

                       x1x6 + 833.33252x4 + 100x1 

83333.331 0 

                       x2x7 + 1250x5 + x2x4 1250x4 0 

                       x3x8 + 125000 + x3x5 2500x5 0 

                        100 x1 10000,  1000 x2 10000 

                        1000 x3 10000 

                        10 xj 1000,  j = 4, 5, ... , 8 

 The objective function f2 is linear and its globally optimal 

solution is as follows.  

x
*
 = (579.3167, 1359.943, 5110.071, 182.0174,  

295.5985, 217.9799, 286.4162, 395.5979),  

f2(x
*
) = 7049.330923.  

 For the optimal solution, all constraints are active.  

Problem #3 

minimize   f3(x) = (x1 10)
2
 + 5(x2 12)

2
 + x3

4
 

+ 3(x4 11)
2
 + 10x5

6
 + 7x6

2
 

+ x7
4

4x6x7 10x6 8x7 

     subject to  127 + 2x1
2
 + 3x2

4
 + x3 + 4x4

2
  

+ 5x5 0 

                       282 + 7x1 + 3x2 + 10x3
2
 + x4 x5 0 
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                       196 + 23x1 + x2
2
 + 6x6

2
8x7 0 

                        4x1
2
 + x2

2
3x1x2 + 2x3

2
  

                                                     + 5x6 11x7 0 

                       10 xj 10,  j = 1, 2, ... , 7 

 The objective funtion f3 is polynomial and its globally 

optimal solution is as follows.  

x
*
 = (2.330499, 1.951372, 0.4775414,  

4.365726, 0.6244870, 1.038131, 1.594227), 

f3(x
*
) = 680.6300573. 

 For the optimal solution, two constraints are active.  

Problem #4 

minimize   f4(x) = x1
2
 + x2

2
 + x1x2 14x1 16x2 

+ (x3 10)
2
 + 4(x4 5)

2
 + (x5 3)

2
 

+ 2(x6 1)
2
 + 5x7

2
 + 7(x8 11)

2
 

+ 2(x9 10)
2
 + (x10 7)

2
 + 45 

     subject to  105 + 4x1 + 5x2 3x7 + 9x8 0 

                        10x1 8x2 17x7 + 2x8 0 

                       8x1 + 2x2 + 5x9 2x10 12 0 

                        3(x1 2)
2
 + 4(x2 3)

2
 + 2x3

2 

7x4 120 0 

                        5x1
2
 + 8x2 + (x3 6)

2
2x4 40 0 

                        x1
2
  + (x2 2)

2
2x1x2 

+ 14x5 6x6 0 

                        0.5(x1 8)
2
 + 2(x2 4)

2
 + 3x5

2 

x6 30 0 

                       3x1 + 6x2 + 12(x9 8)
2

7x10 0 

                       10 xj 10,  j = 1, 2, ... , 10 

 The objective function f4 is quadratic and its globally 

optimal solution is as follows.  

x
*
 = (2.171996, 2.363683, 8.773926,  

5.095984, 0.9906548, 1.430574,  

1.321644, 9.828726, 8.280092, 8.375927), 

f4(x
*
) = 24.3062091.  

 For the optimal solution, six constraints are active.  

Problem #5 

minimize   f5(x) = (x1 10)
3
 + (x2 20)

3
 

     subject to  (x1 5)
2

(x2 5)
2
 + 100 0 

                        (x1 6)
2
 + (x2 5)

2
82.81 0 

                       3x1 + 6x2 + 12(x9 8)
2

7x10 0 

                        13 x1 100,  0 x2 100 

 The objective function f5 is polynomial and its globally 

optimal solution is as follows.  

x
*
 = (14.095, 0.84296), f5(x

*
) = 6961.81381.  

 For the optimal solution, all constraints are active.  

 The properties of test problems are summarized in Table 1. 

The table shows the number of decision variables n, the type 

of the objective function, the number of linear constraints mL, 

the number of nonlinear constraints mN, the number of active 

constraints at the optimal solution m
*
. 

Table 1. The Properties of Test Problems 

 

Problem Type of f mL mN m
*
 

#1 quadratic 9 0 6 

#2 linear 3 3 6 

#3 polynomial 0 4 2 

#4 quadratic 3 5 6 

#5 polynomial 0 3 3 

 

 We apply RGENOCOP III [8], GENOCOP V [9] and the 

proposed method (RGENOCOP V) to these problems and 

compare their results. 

 In this experiment, the parameters of genetic algorithms 

are set as: the number of individuals = 70, the maximal search 

generation number = 5000 and the number of trials = 10. Ta-

ble 2 shows the results. In the table, RG III, GV and RG V 

mean RGENOCOP III, GENOCOP V and RGENOCOP V, 

respectively. 

 Next, we apply these methods to the following  noncon-

vex programming problem.  

Problems #6 

minimize   f4(x) = x1
3
 + (x2 5)

2
 + 3(x3 9)

2
 

                      12x3 + 2x4
3
 + 4x5

2
 + (x6 5)

2 

                        + (x6 5)
2

6x7
2
 + 3(x7 2)x8

2 

                       x9x10 + 4x9
3
 + 5x1x3 3x1x7  

                              + 2x8x10 

     subject to    3(x1 2)
2
 + 4(x2 3)

2
 + 2x3

2
7x4 

                       + 2x5x6x8 120 0 

                        5x1
2
 + 8x2 + (x3 6)

2
2x4 40 0 

                        x1
2
 + 2(x1 2)

2
2x1x2 + 14x5 

 + 6x5x6 0 

                        0.5(x1 8)
2
 + 2(x2 4)

2
 + 3x5

2
x6x8

 

30 0 
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                        5x1
2
 + 8x2 + (x3 6)

2
2x4 40 0 

                       3x1 + 6x2 + 12(x9 8)
2

7x10 0 

                        4x1 + 5x2 3x7 + 9x8 105 

                        10x1 8x2 17x7 + 2x8 0 

                       8x1 + 2x2 + 5x7 2x10 12 

                        0 xj 10,  j = 1, 2, ... , 10 

Table 2. Results for Five Test Problems 

 

Objective Function Value 
Prob.  

RG III G V RG V 

Best -14.89 -15.00 -15.00 

Average -14.89 -9.68 -12.88 

Worst -14.89 -2.15 -9.50 
#1 

Optimal -15.00 

Best 7129.00 7255.54 7068.44 

Average 7508.32 8559.57 7182.63 

Worst 7796.21 11597.24 7273.53 
#2 

Optimal 7049.33 

Best 680.63 680.65 680.63 

Average 680.63 680.67 680.85 

Worst 680.63 680.69 680.98 
#3 

Optimal 680.63 

Best 25.57 24.62 24.78 

Average 28.23 27.14 25.31 

Worst 35.25 35.79 25.61 
#4 

Optimal 24.30 

Best -6961.81 -6873.59 -6961.81 

Average -6961.80 -6787.49 -6961.79 

Worst -6961.80 -6614.13 -6961.77 
#5 

Optimal -6961.81 

 

 The globally optimal solution to this problem is un-

known. In the application to this problem, the parameters of 

genetic algorithms are set as: the number of individuals = 

70, the maximal search generation number = 5000 and the 

number of trials = 10. Table 3 shows the results. 

Table 3. Results for Problem #6 

 

Objective Function Value 

Prob.  
RG III G V RG V 

Best 9.12  9.31  8.87  

Average 11.50  21.38  10.14  #6 

Worst 13.84  40.05  13.19  

 

 From Tables 2 and 3, RGENOCOP V proposed in this 

paper gives better results than those by GENOCOP V [9] 

with respect to accuracy and precision. In the comparison of  

results by RGENOCOP V with those by RGENOCOP III [8], 

RGENOCOP V can obtain better results for #2, #4 and #6, 

while RGENOCOP III is superior for #1, #3 and #5. Table 4 

summarizes the results of Tables 2 and 3.  

 Table 4 indicates that the proposed RGENOCOP V was 

more accurate and more precise than other methods on aver-

age for problems in numerical experiments. Furthermore, we 

show the computation time in Table 5. From Table 5, with 

respect to the computation time, there is no serious difference 

between RGENOCOP V,  GENOCOP V [9] and  RGENO-

COP III  [8]. In addition, the transition of objective function 

values with the progress of generation in a trial is shown in 

Table 6 and Fig. (4). 

Table 4. The Summary of the Results of Tables 2 and 3 

 

Prob. Criterion Best of RG III, G V, RG V 

Accuracy G V, RG V 
#1 

Precision RG III 

Accuracy RG V 
#2 

Precision RG V 

Accuracy RG III, RG V 
#3 

Precision RG III 

Accuracy G V 
#4 

Precision RG V 

Accuracy RG III, RG V 
#5 

Precision RG III 

Accuracy RG V 
#6 

Precision RG V 

 

Table 5. Computation Time 

 

Computation Time (Sec.) 
Prob. 

RG III G V RG V 

#1 315 343 339 

#2 209 310 291 

#3 144 214 131 

#4 174 432 368 

#5   60 229 185 

#6 219 354 386 

 

 In Table 6, it is shown that the improvement of solutions 

obtained by RGENOCOP III [8] and that by GENOCOP V 

[9] are slow, while solutions obtained by RGENOCOP V are 

rapidly improved. From this result, RGENOCOP V could 

find better solutions in earlier generations, i.e., in shorter time 

than RGENOCOP III  and GENOCOP V. 
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Table 6. The Transition of Objective Function Values with 

the Progress of Generation in a Trial 

 

Objective Function Value 

Generation 
RG III G V RG V 

1 651.49  2641.93  929.38  

50 191.12  860.18  726.49  

100 111.26  152.53  638.70  

500 51.75  57.25  12.84  

1000 19.81  57.25  9.92  

1500 17.04  57.25  9.75  

2000 16.49  24.14  9.56  

3000 15.23  24.00  9.52  

4000 14.82  23.57  9.52  

5000 12.14  23.57  9.52  

 

0
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300

400
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0 1000 2000 3000 4000 5000

RGENOCOP III GENOCOP V RGENOCOP V
 

Fig. (4). The transition of objective function values with the pro-
gress of generation in a trial. 

CONCLUSIONS 

 In this paper, focusing on noncovex nonlinear program-

ming problems, we considered a new solution method based 

on a floating-point genetic algorithm, GENOCOP V [9]. 

Unfortunately, in GENOCOP V, there exist two shortcom-

ings: the difficulty of generating initial feasible solutions and 

the stop around local optimal solutions. For dealing with the 

first shortcoming, we incorporated an efficient method to 

generate initial feasible solutions by solving an optimization 

problem to minimize the degree of violation of constraints 

into it. In addition, for the second shortcoming, we proposed 

the procedure of updating basepoint solutions of the homo-

morphous mapping. Furthermore, in order to show the effi-

ciency of the new method proposed in this paper, called 

RGENOCOP V, which adopts two improvements mentioned 

above, we applied it with existing methods (RGENOCOP III 

[8] and GENOCOP V [9]) to several numerical examples. 

Since the proposed RGENOCOP V was more accurate and 

more precise than other methods on average in numerical 

experiments, it seems a promising approximate solution 

method for noncovex nonlinear programming problems. In 

near future, we will report the application of RGENOCOP V 

into multiobjective nonconvex nonlinear programming prob-

lems.  
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