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I. INTRODUCTION 

 Although electronic oscillators belong to the very first 

electric circuits at the beginning of the twentieth century a 

complete systematic design concept for this class of 

electronic circuits is not available until now. One of the 

reasons is that the behavior of these dynamical circuits 

depends in an intrinsic manner on the nonlinearities of 

within the circuit and therefore we are confronted with 

nonlinear differential equations. The oscillatory circuit 

behavior is related from a mathematical point of view to the 

so-called limit cycles. However electronic oscillators are 

fascinating circuits in many sense because the progress in 

manufacturing technologies of electronic devices and circuits 

led to new challenges in oscillator modeling and new 

mathematical concepts for solving the descriptive equations 

of oscillators. In certain cases the behavior of an electronic 

oscillator should be influenced by the behavior of other 

electronic systems in a desired manner such that entrainment 

and synchronization effects arise. Therefore driven nonlinear 

oscillators and their descriptive equations have to be 

considered where even chaotic behavior can appear. From a 

physical point of view electronic oscillators can be 

interpreted as such systems where dissipative structures 

occur. Ilya Prigogine coined this phrase as a name for the 

patterns which self-organize in far-from-equilibrium 

dissipative systems and limit cycles are a special case of 

them; see Nicolis, Prigogine [1]. Such dissipative systems 

are nonlinear and have to be connected with a DC power 

supply for delivering energy into the system. Furthermore 

these systems interact with a heat bath where energy is 

dissipated (Fig. 1). Accordingly the fluctuations of the heat 

bath influence the oscillator as electronic noise. As a result 

electronic oscillators have to be modeled by driven nonlinear 

stochastic differential equations with limit cycle- 
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type solutions. In most cases analytical solutions for this type 

of equations are not available and approximation concepts 

have to be developed. From this point of view electronic 

oscillator circuits are until now a source of inspiration for 

new mathematical and physical concept; see e.g. 

Guckenheimer [2]. 

 

Fig. (1). Dissipative structure. 

 However for the oscillator circuit design not only 

approximative solutions of certain descriptive equations are 

needed since at the first stages of a design process only very 

few circuit parameters are known. Note that a circuit design 

concept consists of two steps where it is starting from the 

specifications of a circuit under design. These specifications 

are closely related to the solutions of the descriptive 

equations of the designed circuit. In a first design step the 

circuit architecture - circuit shape (O'Dell [3]) - has to be 

chosen whereas in the second step the free parameters of this 

circuit shape have to be determined. Therefore if not all 

circuit parameters are available it is even not possible to 

know whether the descriptive equations possess oscillatory 

or limit cycle solutions. 

 For this reason Mandelstam and Papalexi [4] developed 

in 1931 the concept of parametrized descriptive equations for 

oscillator circuits based on ideas of the French mathemati-

cian Henry Poincare. This concept was also the basis for the 

bifurcation theory of electronic oscillators; today it is called  
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Andronov-Hopf theorem in the theory of dynamical systems. 

In contrast to the quantitative analysis of nonlinear 

differential equations this theorem studies these equations 

from a qualitative point of view. By means of the qualitative 

analysis we are able to consider the qualitative change of 

different types of solutions of nonlinear differential 

equations in dependence on certain circuit parameters. In the 

case of the Andronov-Hopf theorem the change from an 

equilibrium point to a limit cycle is explained. Although this 

theorem is known in electronic oscillator analysis since 1935 

[5] (see Maggio et al. [6] for a more recent publication) it 

was never used for a systematic design process of electronic 

oscillators until recently; see Mathis & Russer [7], Prochaska 

et al. [8]. As mentioned above the circuit description with 

parametrized equations is well suited for the second step of 

the design process and therefore the Andronov-Hopf 

theorem should be used in design processes for electronic 

oscillator circuits; a first concept idea was presented by 

Mathis [9]. 

 In the following sections of this paper we will discuss a 

systematic design approach of electronic oscillators devel-

oped in my research group where all steps of this approach 

are based on advanced mathematical tools from dynamical 

systems theory. Before we discuss the details of the design 

approach a sketch of the history of electronic oscillator 

theory is presented. Then we discuss deterministic and 

stochastic aspects of oscillator analysis that are useful for the 

oscillator circuit design. 

II. A SKETCH ON THE HISTORY OF OSCILLATORS 

A. Early Oscillator Circuits 

 Since in 1895 Marconi showed for the first time that the 

laboratory arrangement of Hertz can be used for the wireless 

transmission of information along larger distances more 

powerful electrical arrangements were desired. Around 1900 

several researchers (e.g. Thompson, Tesla, Slaby, Braun, von 

Arco and others) suggested improved versions of Marconi's 

arrangement. Probably it was a milestone as Duddel 

published his paper “On rapid variations in the current 

through the direct-current arc” [10] where he used results of 

the German physicist Simon [11]. A few years later Poulsen 

improved Duddel's oscillatory generator substantially from a 

technical point of view and as a result he presented in 1906 a 

new powerful arrangement with an arc as electronic device 

for wireless transmission of telephony signals. For further 

studies we refer to Blake [12] and Nesper [13]. 

 Although the physical processes in arcs are rather 

difficult to understand at this time because of their electronic 

nature reasonable nonlinear models were developed by 

Kaufman, Duddel, Simon, Wagner and others. In the 

dissertation thesis of Wagner many aspects of such circuits 

were discussed [14]. Using these results Zenneck [15], a 

former co-worker of the above mentioned Braun, published 

in 1914 an interesting paper where he studied the start-up 

behavior of such RLC circuit including a nonlinear arc 

device. In contrast to his predecessors he described the 

behavior of the circuit by means of a nonlinear differential 

equation that described the energy (or power) balance. After 

solving this equation he got the approximative solution that 

is similar to the approximative of the van der Pol equation 

which was discovered several years later by van der Pol in 

the analysis of triode oscillators. From a mathematical point 

of view Zenneck's balance equation corresponds to an 

approximative first integral of the van der Pol equation. 

Zenneck's paper was also the first that studied the start-up 

behavior of oscillatory circuits in more details. Further 

details are considered in an other publication [16]. 

 Circuits including sparks or arcs were the first successful 

generators for oscillatory currents. These electronic circuits 

had several disadvantages. Although engineers and 

physicists in the leading industrial companies (e.g. Marconi 

Comp., Telefunken, AT&T, Western Electric Comp.) tried to 

improve these circuits by using interesting ingenious ideas 

the robustness of these arrangements as well as their 

transmitting power were rather restricted. Therefore a new 

generation of generators applied and now nonelectronic 

principle to get high-power oscillatory currents. For this 

purpose the static frequency doubling effect which was 

studied by Epstein, Joly and Vallauri was used for the 

development of rotating alternators (see Kühn [17], Meißner 

[18]). These generators had much better properties than the 

spark or arc circuits. Only the frequency of oscillatory waves 

generated by these electrical machines was restricted. 

However at this time transmitting stations worked with long 

waves. Around 1925 the situation was changed as the 

Heaviside layer was observed by nonprofessional users using 

transmitting stations with short waves. Within this range of 

frequencies rotating alternators cannot be applied. Moreover 

short waves did not need high-power transmitting stations 

such that the power can be reduced for these frequencies. As 

a conclusion electronic vacuum tubes were used to build 

generators with oscillatory behavior for powerful 

transmitting stations. 

B. Tubes and Oscillators 

 First ideas for a new electronic device were published by 

Fleming in 1904. For the invention of his thermionic diode 

(or Fleming detector) he used research results in the area of 

emission and transport of electrons (Edison effect, 

Richardson, Wehnelt; see Johannsen [19]) in vacuum 

although the physical details were not well-known at this 

time. A modulation of the current in Fleming's thermionic 

diode was achieved by adding a grid. This was done by de 

Forest in 1906. This electronic device was called by de 

Forest as Audion [20]. In the same year v. Lieben presented 

a patent of triode type of amplifier valve [21] that was 

improved by him in a patent from 1910 together with Reisz 

and Strauß [22]. The audion as well as the “Lieben-valve 

were three-pole devices with cathode, grid and anode. In 

contrast to de Forest's audion the “Lieben-valve was filled 

with mercury. Therefore Lieben's valve was called “gas 

relay” and de Forest's “electron relay” (audion). This 

difference remained unclear in the following years and led to 

many discussions; see e.g. Armstrong [23] (p. 220) and 

Meißner [24] (p. 65). Further references can be found in a 

paper of Tucker [25]; see also Johannsen [19]. After the 

discovery of these triode valves it lasted further six years 
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until first practical circuits were available. The first two 

classes of circuits were amplifiers and oscillators. Several 

groups in Germany, USA, United Kingdom, and Austria 

were participated in these activities and there were many 

relationships between these groups. Therefore it is difficult 

to solve the problem of priority with respect to the different 

electronic circuits; see e.g. Tucker [25], Johannsen [19], 

Barkhausen [26] (part II, pp.112), Meißner [24], and 

Skowronnek [27]. In 1913 Meißner presented a first high 

frequency transmitter including an electronic oscillator with 

a von Lieben tube (Fig. 2). It should be remarked that the 

principles of thermionic conduction were studied based on 

physical foundations by Langumir, 

 

Fig. (2). Meißner's oscillator with a v. Lieben tube. 

 Dushman and Schottky between 1913 and 1915 (see 

Paschke [28] and Barkhausen [26] (p. 27)). In this paper we 

are interested in the descriptions of valves that use currents 

and voltages. This is suitable if we consider circuits from a 

network theoretical point of view. Therefore these electronic 

devices are described by characteristic curves (Armstrong 

[23]) or the corresponding German expression “Kennlinien” 

(Möller [29] (p. 326)). 

 A first example of an electronic oscillators with a valve 

which is the main subject of our paper was invented between 

1912 and 1913 where the difference between De Forest's 

audion and the Lieben-Reisz valve is not considered (but see 

remarks of Meißner [24] (p. 65) and Hazeltine [30] (p. 98)). 

In agreement with Hazeltine [30] it seems that Meißner and 

Armstrong had similar ideas at the same time with respect to 

an oscillating circuit including a valve. The corresponding 

comments of Tucker [25] are a little bit obscure. Since the 

problem of the design of electronic circuits and especially 

oscillators with valves in order to transmit electromagnetic 

waves and receive them was a main subject in all military 

laboratories in all industrial states which are involved in the 

first world war many information became a secret. At the 

end of this war several electrical engineers and physicists 

published their results with a delay of one or more years (see 

corresponding remarks in the papers of Hazeltine [30], 

Barkhausen [26], Meißner [24] and others did not have an 

opportunity to publish it, just like Colpitts or Hartley). 

Hazeltine [30] (p. 98) gave some more references to 

interesting collections of oscillating circuits. Obviously at 

the end of the first world war many different oscillator 

circuits were known and several authors began to publish 

their theoretical results about this interesting class of 

electronic circuits. 

C. Descriptive Equations for Electronic Oscillators 

 Probably the first theoretical paper about electrical 

oscillators with a valve was published by Vallauri [31] 

which was published in German some months later [32]. In 

this paper Vallauri used a linearization of the characteristic 

curves for the anode current and the grid voltage. As a result 

he received a linear theory of oscillators where he assumed 

that a sinusoidal oscillatory behavior already exists. By 

means of this approach Vallauri got “the exact determination 

of the conditions for oscillations in an audion circuit”. After 

the publication of this paper many othe authors presented 

results that are more or less equivalent. These results were 

different in modifications of the valve model or the 

decomposition and its interpretation of the linearized 

oscillator circuit. We would like to mention only the 

comprehensive papers of Hazeltine [30], Heising [33] and 

Barkhausen [26]. The different approaches were compared 

by Albersheim [34]. 

 Unfortunately it was known already before 1920 that a 

linear theory cannot be complete for describing all aspects of 

electronic oscillators. Whereas the conditions of oscillatory 

behavior can be derived by a linear model a nonlinear model 

is essential to determine the amplitude of these oscillators. 

This statement was given by Möller [29] in a very similar 

manner (p. 331). Based on the idea of the feedback principle 

for the functionality of electronic oscillators this author 

developed a theory for these circuits that used again the idea 

of a power balance equation (just like Zenneck in 1914 for 

the case of oscillator circuits with an arc). For this purpose 

Möller developed a concept that takes into consideration 

only the first harmonics of the oscillatory behavior and a 

nonlinear differential equation for the circuit was not 

derived. As a result he got the method of the “oscillatory 

characteristic” (in German “Schwingkennlinie”) that can be 

interpreted now as a variant of the harmonic balance or 

averaging method. Some remarks to the history of this 

methods can be found in the monograph of Sanders and 

Verhulst [35] (pp. 181). Again other authors presented 

similar approaches that correspond to the fundamental 

mathematical problem of nonlinear oscillatory systems or 

nonlinear differential equations. 

 In contrast to Möller's approach van der Pol [36] derived 

in his doctorate thesis for the first time a nonlinear 

differential equation for an oscillatory electrical circuit and 

especially for an electronic oscillator circuit including a 

triode valve. Furthermore he was able to apply a special 

perturbation method that resulted in a solvable nonlinear 

differential equation. It was a variant of an averaging method 

(Lagrange's secular perturbation method) that was known to 

van der Pol from his studies in physics. In his famous paper 

from 1920 he states that the equation under consideration “is 

closely related to some problems which arise in the 

analytical treatment of the perturbation of planets by other 
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planets.” The differential equation of van der Pol became an 

eminent impact to a new mathematical discipline “nonlinear 

oscillations” and at the end the mathematical theory of 

dynamical systems. On the other hand we have to emphasize 

that although interesting from a theoretical point of view van 

der Pol's equation was not useful in practical situations at 

this time for two reasons: 1) Graphical differentiations of 

higher order arise. 2) Only in the simplest cases the 

perturbation method leads to a solvable differential equation. 

In other cases only the steady amplitudes can be calculated. 

Although Möller's method leads also to tedious calculations 

an semi-analytical approach was presented by Joos [37]. 

This author started with a good analytical approximation of 

the characteristic curves in form of an arctan-function and as 

a result he got another kind of oscillatory characteristics that 

did not include circuit parameters or valve constants. But 

also this method did not become popular. 

 Between 1920 and 1929 only very few scientific groups 

tried to develop new impacts to the theory of electrical 

oscillators. One of the few exceptions were van der Pol and 

Appleton. They published very interesting papers about the 

entrainment problem, forced oscillations and on relaxation 

problems as well as other aspects of nonlinear oscillators. 

The main results of these authors are contained in van der 

Pol's review paper from 1934 [38]. 

 A new era of oscillator theory began as the Russian 

school of Mandelstam and Papalexi entered this area. 

Although Papalexi had published a book about “The Theory 

of Oscillators with Electronic Valves” in 1922 and 

Mandelstam was already a well-known scientist who was 

involved also in aspects of wireless transmission of 

electromagnetic waves they considered electronic oscillators 

from a new point of view. In 1929 Andronov who had 

Mandelstam as his academic teacher published a brief paper 

[39] where he applied Poincare's theory of limit cycles to the 

van der Pol equation. Another paper together with Witt [40] 

followed in 1930. In a further paper [41] these two authors 

showed that Poincare's theory is useful for studying rather 

difficult aspects of the entrainment effect in nonlinear 

oscillations. By means of these results it could be shown that 

the theory of limit cycles of Poincare was a suitable 

framework to study problems in nonlinear oscillations. 

Another important step towards an unified theory of 

nonlinear oscillations was the introduction of parametrized 

nonlinear differential equations and again Poincare's ideas 

were used. Mandelstam and Papalexi showed [4] that first 

aspects of a theorem that is now called Andronov-Hopf 

theorem and describes a bifurcation of a limit cycle from a 

static equilibrium point. These ideas became a big impact in 

Russia for the theory of nonlinear oscillations and several 

very active groups studied many aspects of this problem. The 

references of the famous book of Andronov, Witt and 

Chaikin [42] first published in 1937 illustrates this exciting 

area. In a review paper from 1935 Mandelstam, Papalexi, 

Andronov, Chaikin, and Witt [5] presented a complete 

concept of nonlinear oscillations that contains already almost 

all modern aspects of this theory; see also Mathis [43] and in 

particular the papers of Bissell [44], Aubin, Dalmedico [45] 

and Pechenkin [46]. It should be mentioned that at the same 

time Krylov and Bogoliubov [47] developed the 

mathematical foundations of a perturbation theory for 

oscillatory differential equations that is known now as 

averaging method or harmonic balance. It lasted more than 

40 years until this subject was considered by Mees and Chua 

[48] in 1979. Afterwards Andronov-Hopf bifurcation 

became an essential subject in the theory of electrical circuits 

(e.g. Mathis [16]). It should be remarked that in higher 

dimensional systems (d > 2) additional methods are needed; 

see section III-A. 

D. Entrainment and Synchronization 

 In many situations an electronic oscillator does not work 

in an autonomous manner but in a driven mode where some 

interesting phenomena arise. Historically entrainment effects 

were observed for the first time by Huyghens; see e.g. 

Rosenblum et al. [49] and Pantaleone [50]. At the beginning 

of the twentieth century entrainment effects were observed in 

superhet receivers where the local oscillator was entrained 

by the frequency of the antenna signal. This behavior was 

first studied by Möller in 1919 [51, 52] and later on he called 

it “Mitnahme” (entrainment); see also Fack [53] for further 

references and historical remarks. Möller presented a first 

theoretical explanation based of his invention of the so-

called “Schwingkennlinie” and he showed that entrainment 

is a nonlinear phenomenon; see e.g. Kurz, Mathis [54] for a 

simplified explanation of entrainment. In the following years 

several other authors studied the entrainment phenomenon 

where more involved concepts from the theory of nonlinear 

differential equations were applied; we mention the papers of 

Appleton, van der Pol [55] and Andronov, Witt [41] (see 

also Mathis [56]). Although the principle behavior of the 

entrainment phenomenon was solved around 1930 Rjasin 

[57] published an interesting paper with further details where 

the transient behaviors were considered. At this time the 

entrainment behavior was interpreted as a disturbance 

without any applications. It should be remarked that acoustic 

entrainment effects were already observed by Rayleigh [58] 

in the nineteenth century; see also Chaikin [59]. Although 

the entrainment phenomenon was considered as a 

disturbance some engineers developed applications using it. 

One of the first was de Bellescise [60] in 1932 but other 

suggestions in measurement instrumentations came from 

Kaden and Reynauld (see Kirschstein [61]). One of the first 

major applications was the synchronization of vertical and 

horizontal scan in TV receivers. In 1938 Urtel [62] found out 

that entrainment can be interpreted as a control process 

where the frequency of the entrained oscillation is controlled 

in such a manner that the phase between this oscillation and 

the controlling oscillation is constant. Therefore Urtel 

observed similarities to the PLL concept for the first time, 

but this concept was unknown to him. 

III. DETERMINISTIC ASPECTS OF OSCILLATOR 
DESIGN 

A. The Andronov-Hopf Bifurcation 

 Although the descriptive equations of oscillatory circuits 

are in general of the type of the so-called differential 

algebraic equations (DAEs [43]) we will consider only those 
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oscillator models which can be described by explicit 

ordinary differential or state-space equations 

 
x = F(x), F : n n

           (1) 

 As already mentioned above we do not consider transient 

analysis problems but (stable) asymptotic solutions of (1) 

and especially limit cycles in oscillator circuits. This kind of 

solutions can exist only if the circuit is described by 

nonlinear differential equations. Note that in textbooks of 

circuit theory and design Barkhausen's criteria or alternative 

methods are used in order to determine the frequency and 

something like the “amplitude” of sinusoidal oscillators. 

However these methods are based on the linearized 

descriptive equations of oscillator circuits and therefore the 

question about the sense of these methods arises. The answer 

to this question was given by the author of this article in the 

year 2000 [9] by 

means of the Hartman-Grobman theorem. This theorem says 

that the dynamics of a nonlinear system in the neighborhood 

of an equilibrium point is equivalent to the dynamics of its 

associated linearized system only if it is a so-called 

hyperbolic system where the Jacobian matrix has only 

eigenvalues with nonzero real part; see also Mathis [63]. In 

this case the dynamical behavior is exponential. Only if we 

have a non-hyperbolic system where eigenvalues with zero 

real parts occur we can expect a more complex dynamical 

behavior - e.g. limit cycles. Since the Barkhausen-like 

criteria leads to a pair of eigenvalues on the imaginary axes a 

necessary condition for a stable limit cycles is fulfilled. This 

is the true reason behind the analysis of the associated 

linearized system in the sense of Barkhausen and others 

although the behavior of electronic oscillators is dominated 

by the nonlinearities. 

 In higher dimensions of the state space of a circuit no 

systematic methods for calculating limit cycles are available 

Papalexi, Mandelstam and Andronov developed the 

bifurcation approach for electrical oscillators using ideas 

from Poincaré's results. The main idea of these researchers 

was the embedding of (1) into a μ-parametrized family of 

differential equations 

 
x = F(x, μ), F : n n

          (2) 

and searching for a qualitative changing of asymptotic solu-

tions within this family. 

 The Andronov-Hopf bifurcation theorem results in an 

efficient method for the analysis of limit cycles of 

autonomous one-parameter nonlinear ordinary differential 

equations of first order (2). By means of this theorem 

frequency and amplitude can be calculated in an 

approximative manner. Furthermore the stability of a limit 

cycle can be determined. 

Andronov-Hopf Theorem 

 If the following conditions 

Cl. the Jacobian matrix JF (x, μ) μ=μc
x= xc

 has a pair of conjugated 

complex eigenvalues 1,2 = (μ) ± j (μ) with the additional 

condition:  

• (μ) μ=μc = C > 0 , 

• (μ) μ=μC = 0 , 

• d (μ) / dμ μ=μc 0  

 

C2. all other eigenvalues have a negative real part  

C3. and the first Lyapunov coefficient l1 is negative, that is, 

the equilibrium point is asymptotic stable for μ = μC, 
 

are fulfilled, then for bifurcation parameters μ > μC a stable 

limit cycle exists and the oscillatory amplitude as well as the 

fundamental frequency can be approximated.  (Fig. 3). 

 

Fig. (3). Andronov-Hopf bifurcation. 

Bifurcation Analysis of a LC-Tank VCO 

 In modern RF circuits for mobile communication systems 

so-called VCOs (Voltage Controlled Oscillators) for a few 

GHz belong to the most essential subcircuits. Therefore a 

design concept is needed where the necessary nonlinearity of 

VCOs has to be included. A first step to develop such a 

design concept based on the Andronov-Hopf theorem was 

the bifurcation analysis of LC-tank oscillators; see Mathis 

[9]. In order to design VCOs the voltage controlled 

capacitors have to be included in the analysis. Recently we 

present interesting semi-analytical results of a bifurcation 

analysis for a VCO in a 2.4 GHz CMOS technology where 

the charge-based EKV-MOS model is used (Fig. 4) and 

Bremer, Zorn, Mathis [64]. It turns out that the reduced 

descriptive equations have the form 

diL
dt
dvt
dt

=
0 C

C (μ)

iL
vt

+ f (vt , iL ),          (3) 

where 

(μ) =
1

C0 (Vtune )

Ibias μnCoxWn

2 IbiasLn

1

Rt
,          (4) 

and 
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C =
1

C0 (Vtune )Lt
;            (5) 

 Wn is the width of the cross coupled pair and Ln is its 

channel length. C0(Vtune) denotes the effective large signal 

capacitance of the VCO. It consists of the voltage dependent 

varactor capacitance Cv0(Vtune) and the parasitic capacitances 

of the other components of the VCO 

C0 (Vtune ) = Cv0 (Vtune ) + Cpar .           (6) 

 Obviously we can show that the condition Cl of the 

Andronov-Hopf bifurcation theorem is fulfilled if we have 

Wn,C =
4Ln

μnCox IbiasRt
2            (7) 

and also the transversality condition C1-3 and the stability 

condition are fulfilled. The limit cycle amplitude can be 

approximated by 

r =
8

3

Rt Ibias (Rt Ibias vn ) vn
Rt Ibias

,           (8) 

where vn = IbiasLn( ) / (μCoxWn ).  

Example: Design of a 2.4 GHz LC-Tank VCO 

 In this section we show the application of our proposed 

design concept to a practical oscillator design. The desired 

specifications are shown in Fig. (5) (a 0.25μm RF CMOS 

technology from IHP (SGB25V) is used). An inductor with a 

series inductance of Li,s = 11.1nH is chosen for the requested 

frequency range. Using our proposed model for the voltage 

dependent varactor capacitance [64] we are able to 

approximate the varactor dimensions. Fig. (6) shows an 

approximation of the frequency characteristic of the VCO in 

dependency of the varactor width Wv. Our calculations show, 

that as a first estimation a varactor width of Wn = 150μm is 

an appropriate choice for the requested frequency range (Fig. 

5). 

 

Fig. (4). LC-tank voltage controlled oscillator. 

 Setting Lv to two times the minimum channel length is a 

good compromise between series resistance and Cv,max/Cv,min 

ratio [65]. In order to minimize the parasitic resistance the 

length of the transistor pair Ln is set to the minimum channel 

length. We set the value of Ibias to the maximum value 

allowed by the specifications in order to maximize the output 

amplitude and optimize the phase noise characteristics of our 

VCO [66]. All design variables have been determined except 

the width Wn of the transistor pair. It is guaranteed that a 

variation of the width of the transistor pair Wn leads to a 

stable limit cycle as was shown in the previous section. 

Using expression (7) it is possible to calculate the needed 

width Wn. We find the bifurcation point and therefore the 

starting point of a stable oscillation at a parameter value of 

Wn = 2.03μm. Increasing Wn leads to an expansion of the 

limit cycle and accordingly to a rising of the oscillation 

amplitude (8) (Fig. 6). 

 The obtained design parameters are subsumed in Fig. (5). 

In order to validate the theoretical results we have simulated 

the VCO on circuit level in Cadence using a BSIM 3.4 MOS 

model (Fig. 7). The simulation results show that a stable 

oscillation is built up at a width of the transistor pair of Wn = 

3.05μm, which is pretty close to our calculated bifurcation 

parameter. Calculation of the tank amplitude is only valid 

close to the bifurcation point and here the amplitude is too 

small to fulfill the required specifications. Increasing Wn 

leads to a larger amplitude (see equation 8). We found that 

for a width of Wn = 4μm the VCO has an amplitude of vt = 

1.37V which fulfills the requested amplitude specifications. 

Increasing the width Wn beyond 4μm does not increase the 

amplitude anymore. Until now we have only ensured that the 

VCO possesses a stable oscillation for a tuning voltage of 

Vtune = 0V. An increase of Vtune leads to an increase of the 

tank capacitance because of the voltage-dependent varactor 

capacitance and thus to a higher VCO frequency. An 

increase of the frequency leads to a higher Rt since the 

equivalent tank resistance Rt is frequency-dependent. 

According to (7) the required width Wn is inversely 

proportional to Rt
2

, therefore it is ensured that the VCO 

designed at Vtune = 0V oscillates for the whole tuning range. 

The proposed design concept enables to find the minimum 

Wn in order to built up a stable oscillation and additionally 

optimizes the amplitude of the VCO. Doing so the effect of 

the nonlinearity of the transistor pair and therefore the 

influence of the higher harmonics can be minimized. The 

design procedure leads to a VCO that possess a high spectral 

purity with a highly sinusoidal output signal. 

Higher Dimensional State Space Representation 

 A higher dimensional state space representation allows 

the inclusion of other parasitic effects and structural 

enhancements in comparison to the 2-dimensional state 

space modeling. Examples of possible parasitic effects could 

be the nonlinear effects of the cross-coupled transistor pair 

or substrate effects for instance. An example for a structural 

enhancement that could be included in the modeling using 

higher dimensional state space equations is a filtering 

capacitance parallel to the current source (Fig. 8). In order to 

carry out the bifurcation analysis of an sinusoidal oscillator 
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with a higher dimensional state space in a more simple 

manner we have to calculate the corresponding center 

manifold and transform the descriptive equations to 

equations with a 2-dimensional state space. There are several 

important systematic techniques for the simplification of 

systems where simplification means that we can study the 

main aspects of a system on lower dimensional state space. 

The so-called center manifold reduction based on the center 

manifold theorem (e.g. Guckenheimer, Holmes [2]) takes 

advantage of the natural separation of timescales that occurs 

when some of the eigenvalues of a equilibrium point pass 

through zero. If a center manifold exists and no unstable 

solutions occur, the slow time dynamics dominate on this 

submanifold in the complete space and all other solutions 

rapidly approach this manifold (Fig. 9). To be more precise 

the vector field F of 
 
x = F(x) is divided into a linear and a 

nonlinear part 

 
x = Ax + Fc (x, y),            (9) 

 
y = By + Fs (x, y),          (10) 

where the eigenvalues of A have only zero real parts and of B 

only negative real parts. The center manifold of this system 

is 

WC (0) := x, y( ) C S | y = h(x),h(0) = 0,{       (11) 

Dh(0) = 0},            (12) 

 The function h(x) is determined by 

Bh(x) + Fs (x,h(x)) = Dh(x)(Ax + Fc (x,h(x)))        (13) 

which is usually approximated in a power series. The sim-

plified dynamics on the center manifold are described by the 

reduced system 

 
z = Az + Fc (z,h(z)) z C

.        (14) 

 Moreover the center manifold approach for simplifying 

dynamical systems has a nice geometric interpretation. 

Further investigations of the reduced system with analytical 

methods are well-known in system theory [2]. The following 

methods are predestinated for the use in common with center 

 

Fig. (5). Specifications and design parameters for Vtune = 0. 

 

Fig. (6). Maple: (a) Estimated tuning range (b) Estimated amplitude. 
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manifolds because they are formulated only in the 2-

dimensional case or easier to handle in that dimension: 

• Poincare-Normal-Form: A nonlinear system is trans-

formed in a form showing the resonant (important) 

nonlinear terms [2]. The stability of equilibrium 

points can be estimated. 

• Andronov-Hopf Bifurcation: A system's steady-state 

can be changed by parameter from a stable 

equilibrium point to a stable limit-cycle [2] where 

oscillation conditions can be identified. 

• Amplitude-Angle-Form: A system with periodic (limit 

cycle) solutions is transformed into new coordinates 

representing amplitude and angle of the expected 

solution [67] where a separation of amplitude and 

angle is used. 

• Averaged Form: Periodic solutions are averaged over 

a period of the basic oscillation [2]. Via Lie-series 

transformation nonlinear oscillating systems can be 

averaged with the help of computer-algebra [43]. This 

corresponds to a filtering-out of high-frequency-

oscillations. 

 The use of computer-algebra for the presented methods is 

of high value, because they all depend on equivalence 

transformations [63]. These coordinate transformations are 

well done by symbolic manipulators. The approach can be 

illustrated by means of rather simple oscillator circuits (e.g. 

Colpitts and Hartley oscillators). 

B. Theoretical Aspects of Entrainment 

 There are several theoretical approaches to analyze the 

entrainment phenomenon where in general we have to 

consider a nonlinear oscillator with excitation. Because the 

associated nonlinear differential equations cannot be solved 

and a perturbation concept is needed (see e.g. Mathis [43]). 

which characterizes the different approaches. Furthermore 

different kinds of differential equations with an oscillatory 

behavior can be presumed. The above mentioned papers of 

Appleton, van der Pol and Andronov, Witt as well as Rasjin 

are based on the van der Pol equation and applied van der 

Pol's perturbation method. Andronov and Witt studied the 

perturbation equations with the qualitative method of 

Poincaré but this method is rather complicated. A more 

simple method is Möller's “Schwingkennlinien” method 

(oscillatory characteristic; but see also Cassignol [68] and 

the generalized Barkhausen method) that based on a first 

order Fourier series approximation. A reformulation of this 

method based on a feedback model of an oscillator where an 

excitation is incorporated. As a result the amplitude of an 

oscillator can be determined. 

 

Fig. (8). LC-tank VCO with filter capacitance. 

 In more details an oscillator is modeled as a cascade of a 

nonlinear and a linear two-port where the output of the 

cascade is connected to its input. The nonlinear two-port is 

described by a nonlinear characteristic. The frequency 

characteristic of the linear two-port has a resonant form and 

only signals with the resonance frequency can pass. 

Therefore the corresponding term of the Fourier series of the 

output signal of the nonlinear two-port is necessary. In 

 

Fig. (7). Cadence: (a) Frequency characteristic (b) Transient output signal. 
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mathematical terms an input voltage of the nonlinear two-

port is assumed 

U1(t) = Ee
j ( t )

          (15) 

and at its output voltage can be expressed by 

U2 (t) = Fe
j ( t ) .          (16) 

 

Fig. (9). Transient behavior near the center manifold. 

 From the feedback connection we have U1 =U2 or E = 

F(E), where F = F(E) is the nonlinear characteristic and the 

center frequency 0 of the passband of the resonator filter 

has to be introduced. It can be shown that  = (  - 0)t0. If a 

graphical representation is available the amplitude of the 

oscillator can be determined in a graphical manner using E = 

F(E). In the case of entrainment an additional excitation 

voltage Ue (t) = Eee
j et has to be included. Again a sinusoidal 

signal is assumed, but now E and  are no longer constant 

but depend on time. In a similar way we derive the output 

voltage of the cascade of the two-ports 

 
U2 (t) = F(E)e

to (E /F (E ))F (E )e j ( et ( e 0 )t0 ) ,        (17) 

where the momentum frequency is determined in a more 

complicated way and 0 and t0 are constants of the linear 

two-port. With feedback connection of the cascade U2 = U1 - 

Ue we find 

 
F(E)e t0 (E /F (E ))F (E ) = E2

+ Ee
2 2EEe cos ,       (18) 

where 

 

tan(( e 0 )t0 ) =
Ee sin

E Ee cos
.        (19) 

 In the case of a horizontal part of the “Schwingkennlinie” 

we have F’(E)  0 and therefore it results in 

F(E) = E2
+ Ee

2 2EEe cos .         (20) 

 If Ee << E eq. (19) can be simplified to 

 

(t0 ) = ( e 0 )t0
Ee

E
sin .         (21) 

 Since this differential equation can be integrated, the 

following relation can be derived to: 

(t) =
2
+ arccos

m + f (t)

1+ mf (t)
,          (22) 

where f (t) = cos( e 0 ) 1 m2 t and 

m = Ee / (E( e 0 )t0 ) . We find out that  will be constant 

if t approaches infinity for the case m
2
 > 1; in this case 

1 m2 is complex. The value ( )  depends on m. If 

m=1, we have ( ) = / 2  and if m =  it is ( ) = 0 . 

The cases of a constant phase are corresponding to the 

entrainment phenomenon. The phase will be increased if m
2
 

< 1 and m = 0 leads to a linear increasing behavior. 

 In conclusion we find out by this analysis that in the 

cases of a constant phase (entrainment) the phase varies 

between  = ± /2 and  = 0 where the concrete value of the 

asymptotic phase depends on m (that is circuit parameters). 

IV. STOCHASTIC ASPECTS OF OSCILLATOR 
DESIGN 

A. Liouville and Langevin Equation 

 In the state space theory of deterministic dynamical 

systems the traditional approach emphasizes trajectories in 

the state space S where trajectories can be interpreted as 

solutions of differential equations with prescribed initial 

states. In certain cases the trajectory approach of dynamical 

systems is not useful. Boltzmann observed that the dynamics 

of sets of initial states instead of single initial state is suitable 

to calculate interesting physical quantities (see van Kampen 

[69], chapt. XIV). The deterministic behavior of a system is 

described by a set of differential equations 

dx

dt
= F(x),           (23) 

where F : n n
. If we are interested in the dynamics of 

a suitable class of density functions f : n
 an equation 

with an associated Frobenius-Perron-Operator P
t
 can be 

written down 

f (x, t) = Pt ( f (x)).          (24) 

 For an explicit representation we interpret the density 

function f as a probability function which fulfills the 

following conservation law 

1

N
f (x)dV = 1           (25) 

 

       x(t0)    x(t0) 

Fig. (10). Types of sets of initial points. 

where dV is a suitable measure in the state space of the 

dynamical system with a suitable normalizing constant N. 

An equivalent formulation of this relation is the continuity 
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law and together with the equations of motion (23) the 

generalized Liouville equation can be derived to: 

f

t
= div f F{ } =

f Fi( )
xii=1

n

.         (26) 

 This equation is an equivalent description of 

deterministic systems if we consider a whole set of initial 

conditions with a weighting function f instead of a single 

initial point 
0
x  (Fig 10). In the Langevin approach of 

stochastic systems we start with such a deterministic 

description and add a stochastic process  

dx

dt
= F(x) + (x) ,          (27) 

where the coefficient (x)  characterizes the coupling of the 

noise source. The first term should be interpreted as a 

dissipation term where as the second term corresponds to a 

fluctuation term. 

 Using the concept of stochastic differential equations  

has to be interpreted as a generalized white noise process, 

but in order to solve these equations a more generalized 

concept of integration (e.g. Kunita [70]) is needed. In 

essential there are two concepts of stochastic integration 

which are due to Ito and Stratonovich, respectively, and 

associated types of stochastic differential equations 

dx = F(x)dt + (x)dW ,           (28) 

where W is the so-called Wiener process. Both concepts are 

mathematicaly equivalent to a Fokker-Planck partial 

differential equation 

f

t
=

f Fi( )
xi

+

2 ( 2 f )

xi x j
,

i, j=1

n

i=1

n

        (29) 

which generalizes in some sense the concept of the Liouville 

equation (26); see also Arnold [71], section 4.2. An 

alternative approach to the Fokker-Planck equation uses the 

stochastic Liouville equation and a suitable averaging 

process; see Kubo [72]. 

 In the case of linear stochastic differential equations - the 

original subject of Langevin [73] - there is no difference 

between Ito's and Stratonovich's type. Unfortunately stochas-

tic differential equations (of Ito or Stratonovich type) are 

sound concepts only from a mathematical point of view if we 

consider nonlinear Langevin equations. The reason is that 

each type corresponds to a certain interpretation rule; 

otherwise its meaning is not well defined. It is interesting to 

see that for nonlinear Langevin equations in contrast to 

linear ones the deterministic equation (without noise) does 

not correspond to the averaged equation (see van Kampen's 

paper for further details [74]) 

dx

dt
=
d x

dt
= F(x) + (x) .          (30) 

 Even if  is constant and the stochastic part vanishes 

( = = 0)  we note that the function F and the 

average operator  do not commute. Only if 

F(x) = F( x )  is valid the averaged equation (first moment 

of the stochastic process x) fulfills the deterministic equation 

 
x = F(x) . Therefore with van Kampen [75] we come to the 

conclusion that there is no good reason why the dissipation 

term should be identical to the vector field of the 

deterministic equation in nonlinear cases. In order to obtain a 

sound description of physical systems additional 

considerations are needed. Based on Stratonovich's ideas 

Weiss and Mathis [76-78] have presented a substantial work 

for reciprocal electrical circuits. Since oscillator circuits have 

to be described by non-reciprocal circuits we use Langevin's 

approach to construct stochastic equations without a sound 

physical reasoning for modeling oscillator circuits with 

noise. 

B. Bifurcation Concepts in Noisy Circuits 

 In the last section we consider two related concepts for 

describing general stochastic or noisy circuits and systems if 

a deterministic description of the form 
 
x = F(x)  is assumed. 

If we consider non-reciprocal (nonlinear) circuits we have to 

apply the heuristic Langevin approach where an associated 

stochastic differential equation can be derived. From a 

system's theoretical point of view stochastic differential 

equations belong to the class of state space equations which 

are formulated in time-domain. An alternative concept of 

describing noisy circuits uses a probability density function f 

which satisfies a Fokker-Planck-type equation. 

 In this section we are concerned with parameterized 

families of stochastic dynamical systems in the Langevin 

form 
 
x = F(x, μ) +G(x)  and its associated Fokker-Planck 

equation. Although it is known that both concepts are 

equivalent from a mathematical point of view, it turns out 

that there are different concepts of stochastic bifurcation. 

The earlier stochastic bifurcation concept is based on a 

Fokker-Planck description and was founded in physical 

applications by Horsthemke and Lefever [79]. In this 

approach qualitative changing of the stationary solution 

within the family of Fokker-Planck equations is studied. 

Although it is a suggestive concept which can be illustrated 

easily there is no time dependence and therefore it is rather a 

static concept to bifurcation. In the mathematical literature it 

is called “P-bifurcation” (e.g. Arnold [80]). 

 A dynamical concept of stochastic bifurcation is based on 

the stochastic differential equation. In contrast to the P-

bifurcation concept where we look for qualitative changes of 

the asymptotic probability density function the dynamical (or 

D-) bifurcation concepts is concerned with qualitative 

changes of certain properties within the family of stochastic 

differential equations. For this purpose suitable analogues for 

equilibrium points of deterministic differential equations is 

needed. It turns out (see Arnold [80]) that so-called invariant 

measures of stochastic flows are adequate analogues for 

deterministic equilibrium points. In doing so we assume that 

like in the deterministic case a stochastic differential 

equation is replaced by a “stochastic flow” or so-called 

cocycle (Arnold [80]). 
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Fig. (11). Transistor meissner oscillator. 

 Note that if x0 is a deterministic equilibrium point of a 

cocycle (t, ,x0) = x0 then the Dirac measure x0  is 

stationary and invariant. Therefore there is a close 

relationship of deterministic equilibrium points and invariant 

measures. 

 Therefore the fundamental question of D-bifurcation is 

“Are there other invariant measures than Dirac measures?”. 

It turns out that a necessary condition for qualitative 

changing in the sense of D-bifurcation is the vanishing of a 

Lyapunov exponent. It should be mentioned that there is no 

general relation between P-bifurcation and D-bifurcation. 

 For illustrating these bifurcation concepts we restrict us 

to 2-dimensional systems. For higher dimensional systems 

stochastic concepts for normal forms and/or center manifolds 

are needed (see Arnold [80]). We consider a Meissner 

oscillator circuit in Fig. (11). If k2 = 0 the following circuit 

equation for the voltage between base and emitter can be 

derived with 0
2
= 1 / (LC)( )  

 

üBE +
R

L 0
2M (k1 3k3uBE

2 ) uBE + 0
2uBE = 0.       (31) 

 Equation (31) can be normalized in the standard van der 

Pol form 
 
x (μ x2 )x + x = 0 . Now we assume with 

Ariaratnam [81] that we have a noisy resistor which results 

in an additive decomposition of 

 
x (μ0 + x2 )x + x = 0.         (32) 

 If (32) is converted into first order equations and polar 

coordinate transformations are applied to the system, we 

obtain after a stochastic averaging the following stochastic 

differential equation for the amplitude process a(t) 

da =
1

2
μ0 +

5

8
2 1

4
a2 adt +

3

8

1

2
adWa .        (33) 

 For the analysis of D-bifurcations we have to determine 

the stability of stationary solutions as(t) by means of 

associated Lyapunov exponents. If small variations r(t) of 

as(t) are considered the following linearized stochastic 

differential equation for amplitude process can derived to: 

dr =
1

2
μ0 +

5

8
2 3

4
as
2 rdt +

3

8

1

2
rdWa .        (34) 

 For the bifurcation analysis the zeros of the Lyapunov 

exponents have to be found 

=
1

2
μ0 +

1

4
2 3

4
as
2 .          (35) 

 Obviously  is zero for the trivial solution as = 0 under 

the condition μ0 = -
2
/4. Furthermore for the same value of 

μ0 we have a zero for as  0, such that we have a D-

bifurcation. For studying the P-bifurcation we need a 

solution of the stationary Fokker-Planck equation associated 

to the noisy van der Pol equation. It turns out that a first P-

bifurcation occurs at μ0 = 
2
/8 where the peak of the 

probability density function shifts as ap :=2(( 0- /8)/ )
1/2

. 

 Another changing occurs at μ0 = 
2
/2 where the uni-

modal density centered at the origin changes to a bi-modal 

density possessing a ring of peaks; see Ariaratnam [81]. Note 

that the μ0-values for the D- and P-bifurcation differ 

substantially. Additional examples can be found in Arnold 

[80]. 

V. CONCLUSION 

 In this paper we considered the essential steps of a 

systematic concept for the design of electronic oscillator 

circuits. It can be shown that by means of advanced 

mathematical methods the intrinsic nonlinear problem of 

oscillator design is manageable. Using a high-efficient 

computer algebra system (e. g. MAPLE or 

MATHEMATICA) semi-analytical expressions for the os-

cillator design can be derived. Based on our previous work 

further research will be done in order to develop a computer-

aided design for electronic oscillators in the GHz area. It is 

our goal to enable expert analog designers to design 

oscillators by means of a variety of well-adapted tools 

instead of a general purpose circuit simulator. 
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