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Abstract: A theory is developed for describing the electrocardiogram (ECG) in terms of underlying cellular processes of 

ion transport. ECG evolvement over time is regarded as a sequence of partly overlapping self-similar transient potentials, 

with the generic mass potential (GMP) being the basic element. Using equations of the nonhomogeneous birth-and-death 

process (BDP), a particle model of GMP in the form of chaotic BDP is deduced. The formalism of deterministic chaos not 

only brings together the deterministic and stochastic factors underlying ECG genesis, but also does this with the minimum 

number of free parameters. No matter how complex the system of underlying ion transport, just a single parameter (the 

chaos factor), yet directly derived from microscopic scale equations, aggregates essential aspects of the ECG dynamics. 

This paradigm is investigated in numerical experiments, and qualified as the chaotic transformations effect. At the global 

level the mass effect of chaotic transformations is described by a system of nonlinear differential equations. Applications 

of this theory are supported by the method of high-resolution fragmentary decomposition which resolves component 

temporal overlap and reconciles the ECG waveforms with the dynamics of chaotic processes. This technique goes beyond 

conventional measures such as ECG peak amplitudes and latencies, and provides a more comprehensive analysis of the 

dynamics of ECG waveforms. In particular, the resolution of the component overlap provides means for recognising the 

complex composition of Q, R and S waves, and co-operative action of the systems producing R and S waves. 

Keywords: ECG, multi-scale-model, chaos, nonhomogeneous BDP, fragmentary decomposition, generic mass potential, 

Fourier analysis, SBF algorithm. 

INTRODUCTION 

 The surface electrocardiogram (ECG) obtained by 

recording the potential differences between electrodes placed 

on the surface of the skin is widely accepted as an objective 

marker of the heart control mechanisms under normal and 

pathological conditions. Conventional conceptualization of 

the ECG as an ensemble of P, Q, R, S and T major waves, 

associates these deflections in ECG with different aspects of 

heart performance during the cardiac cycle. Quantitative 

analysis of ECG waveforms is essential for the identification 

of cardiac diseases including myocardial ischemia, 

myocardial infarction, bundle branch block, ventricular 

hypertrophy, atrial and ventricular arrhythmia, etc. The ECG 

can also indicate the presence of generalized disorders that 

affect the rest of the body. 

 However, interpretation of ECG waveforms is largely 

empirical, and there have been many efforts to create testable 

analytical models of ECG generation from cellular sources. 

The mechanisms involved in electrical activity of the heart 

are organized spatially in a hierarchical fashion from 

elements of diverse nature. Accordingly, numerous models 
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of heart activity include a variety of levels of description and 

implement different modeling approaches [1]. The most 

fundamental advances in modeling of electrical phenomena 

have been achieved using the formalism of the Hodgkin-

Huxley equations of the squid giant axon as a mathematical 

framework for creation of cardiac cell models [2]. The major 

developments in this field were recently reviewed by 

Winslow and colleagues [3, 4]. They showed that a number 

of models have reached a high degree of physiological detail 

in an attempt to link the machinery of voltage-gated 

membrane currents with the dynamics of the action potential 

produced by the heart muscle cell. 

 The wide interest in the models of the heart muscle cell 

in the search of advanced tools of ECG quantitative analysis 

arises from the proposal that model myocyte can be used as a 

“building block” for establishment of structure-function 

relationships between the parameters of transmembrane ionic 

channels and conventional ECG parameters [5-7]. However, 

there are two major problems inherent in the integration of 

cellular sources into the global models. 

 The first problem is how to deal appropriately with 

modeling complications posed by the multiplicity of cellular 

elements and uncertainty surrounding the character of their 

interactions. Remarkable progress has been achieved in the 

significant increase of the number of cellular elements which 
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can be modeled in numerical simulations. However, an 

unambiguous physical and physiological interpretation of 

these results demands solution of the second problem. 

 The second problem is the absence of a consensus on the 

basis model. The two leading computational models of 

ventricular cells differ widely in dynamic assumptions, 

physiological and anatomical detail [8, 9]. The extent to 

which the models are in contradiction is uncertain. A meta 

analysis of these models in the context of their re-use as 

subcomponents of multiscale biophysical systems exposed 

“significant differences in representations of model 

components together with a number of unresolved issues 

surrounding the description of model construction and the 

link with experimental data” [10]. The authors conclude that 

none of the models subjected to the meta analysis is superior, 

and declare the necessity of new modeling approaches. 

 Yet the investigation of similar theoretical problems in 

connection with the component composition of event related 

potential (ERP) put forward a model of the mass potential as 

a composite of self-similar geometric waveforms, with the 

GMP as a basic element [11]. Subsequent developments 

have been supported by advanced method of fragmentary 

decomposition which combines identification of GMPs with 

the resolution of component temporal overlap [12]. The 

method has proven to be a powerful tool for analysis of the 

eyeblink electromyogram (EMG) [13]. Functional neuro-

anatomy of the cellular sources of this complex oscillatory 

potential is quite different from the neural sources of ERPs. 

Despite these differences, the fragmentary decompositions of 

ERPs and eyeblink EMGs into ensembles of generic mass 

potentials produced remarkably similar results. 

 In our attempts to explain this unexpected situation in 

mathematical terms, we focused our attention on the fact that 

GMP represents a specific combination of two Gaussian 

functions. In view of the ubiquity of the Gaussian 

distribution, this study has been motivated by the idea that 

rather than being an oversimplification, the analytical form 

of GMP provides the key insight into the physics of mass 

potentials, and suggests a constructive framework for 

development of pertinent theory which involves questions of 

probability and deterministic chaos. To our knowledge, this 

study is the first to treat the emergence of ECG waveforms 

from elementary sources using concepts and methods of the 

deterministic chaos. 

THEORY 

Physical Basis 

 It is generally accepted that the ECG is produced by 

electrical activity of the heart muscle cells. Since the 

electrodes for ECG recordings are distant from the heart, the 

ECG reflects some peculiarities of an electrical field 

surrounding the heart. 

 Quantitative analysis of the field is complicated by the 

unobservability of all relevant variables. Every theory of the 

ECG is therefore based on simplifications which determine 

the field under idealized conditions. 

 One of the most fruitful simplifications comes from the 

fact that boundaries of the intracellular space, the cell 

membranes, have high resistance, compared with resistance 

of the extracellular space. This experimental fact implies that 

little current from extracellular sources flows through the 

cell membrane. Hence, the intracellular and extracellular 

electric transients are governed by different physical factors. 

A membrane potential transient that takes place uniformly 

over the entire membrane surface of a cell would generate no 

extracellular current flow and would therefore generate no 

extracellular potential transient. A nonuniformity of the 

membrane potential creates a loop of current flow which 

arises from a set of current sources embedded in an 

extracellular medium. 

 The shape and inhomogeneity of the volume conductor 

may also influence the recorded extracellular potential 

transient. However, these factors are usually neglected in the 

calculations of extracellular potentials. It is generally 

accepted that within the range of frequencies of 

physiological interest, capacitive, inductive, magnetic, and 

propagative properties of the extracellular medium can be 

neglected [14]. In other words, the extracellular space is 

regarded as a three-dimensional resistive medium. 

 The simplest model of how the extracellular current 

sources create a dipole is indicated schematically in Fig. (1). 

The large circles in (a) and (b) show the membrane as a 

closed surface which separates the extracellular space from 

intracellular medium. One might imagine that this separating 

material is in some way sewed together from the membranes 

of individual cells, and thus controls movements of ions 

from intracellular space to extracellular space and vice versa 

according to the general rules of the membrane transport. 

 

Fig. (1). Schematic representation of an idealized membrane that 

separates intracellular medium (IM) of an ensemble of heart cells 

from the extracellular space. The shaded areas show the 

extracellular layers of charged particles. (a) A uniform distribution 

of charged particles. (b) Under the non-uniformity in the 

distribution of charged particles, the volume elements act as a 
source and a sink of an electrical dipole. 

 The sources of electricity are ions, i.e. charged particles, 

which cross the cell membrane in both directions during all 

phases of the heart activity. It is realistic to regard a thin 

layer uniformly distributed over the entire exterior 

membrane surface as the container of extracellular charged 

particles. Let us divide this layer into small volume elements 
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of equal size. Two of such compartments are shown in (a) 

and (b) of Fig. (1) by the small circles. 

 Since the transport of ions across the membrane is 

governed by probabilistic rules, it is natural to describe the 

particle populations in stochastic terms. All random variables 

will be written in boldface letters. Given particular 

compartment, let integer-valued random variables 

N
+
t( ) and N t( )  measure at the time t the numbers of 

elementary positive and negative charges, respectively. From 

the point of view of a distant point in the extracellular 

medium, the compartment can be envisaged as a positive 

charge if N
+
t( ) > N t( ) , or as a negative charge if 

N
+
t( ) < N t( ) . The summary charge of the compartment is 

proportional to the integer-valued random 

variableX t( ) = N+
t( ) N t( ) . 

 A uniform distribution of charged particles that is 

characterized by practically equal values ofX t( )  for 

different compartments does not create a significant potential 

difference between the two compartments, as it is shown in 

Fig. (1a). In this situation the galvanometer does not indicate 

an extracellular current. 

 A condition that is necessary to create potential 

differences in the extracellular space is the non-uniformity in 

the distribution of charged particles close to the external 

surface of the membrane. This non-uniformity may take 

different forms. In our theory, we associate creation of a 

dipole with synchronous activation of a large number of cells 

in local conductance volumes. Such regions of the non-

uniformities are depicted in Fig. (1b) as the current source 

( ) and current sink ( ) which are attached from the two 

different sites to the membrane. The current source is 

associated with a positive charge the size of which is 

measured by integer valued random variableX t( ) . The 

current sink is associated with a negative charge described in 

a similar way byX t( ) . Given resistive external medium, 

the voltage created by the dipole is 

V t( ) X t( ) X t( ) .  This form of the field potential is 

quite general, and may be used as a starting point for 

stochastic modelling of different conditions. We wish to 

work out in mathematical detail the ionic machinery of the 

GMP generation. 

Generic Mass Potential 

 Based on a series of papers concerned with the dynamics 

of mass potentials [11-13], we regard the GMP as a model of 

a monolithic waveform of the mass potential. The GMP is 

economically defined by the set of the three parameters, ,  

and ,
 
in the form 

g(t) =  bud t( ) / ,          (1) 

where 

bud x( ) =
1

2
e x 1( )2 2 e x+1( )2 2( ) 1 x( )         (2) 

is a standard GMP. In this formula 1(x) is a unit step 

function, 

1(x) =
1 for x 0,

0 for x < 0.
 

 Being illustrated by Fig. (2), the standard GMP has a 

steeply rising left flank and a slowly decreasing right flank. 

The peak value indicated by the vertical dotted line 

corresponds to x 1.2 at which bud 1.2( ) 0.356.  

 

Fig. (2). Shows shifted positive (b) and negative (c) Gaussian 
functions the sum of which gives at x>0 the standard GMP (a). 

Non-Homogeneous BDP 

 The equation (1) may be given a physical basis in terms 

of the source and sink if we present GMP in the form 

g(t) =
1

2
[g (t) - g (t)] 1 t( ),           (3) 

where 

g (t) = e
(t )2

2 2

, g (t) = e
(t+ )2

2 2

,
 

and subscripts “ ” and “ ” indicate the source and sink as the 

origins of the corresponding terms of g(t). The unit step 

function attributes the beginning of the transient to the t=0. 

Given a deterministic character of GMP, we associate g (t) 

and g (t) with expected values of the random variables 

X t( ) and X t( ) , i.e. 

g (t) = E{X (t)} and g (t) = E{X (t)},
 

where E{} denotes a mathematical expectation. 

 A general framework within which we will 

describeX t( ) and X t( )  is adopted from previous 

modelling studies of the short-term synaptic plasticity in 

which the “birth-and-death” process has been settled as a 

tool for the analysis of transmembrane particle transfers [15]. 

The idea is to regard the membrane as a border that divides 

the population of relevant particles into the two 

compartments. A particle is allowed to leave or enter the 
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compartment through the membrane. Such event is regarded 

as the “death” of a particle in the primary compartment, and 

simultaneous “birth” of a particle in the target compartment. 

Given particular compartment in Fig. (1b), we regard the 

“birth” as an admission of a particle to the compartment 

from the cell interior. The “death” is regarded as removal of 

a particle from the compartment. 

 We choose as an adequate mathematical framework a 

nonhomogeneous birth-and-death process in which the birth 

and death rates are arbitrary functions of time [16]. Let the 

integer-valued time-dependent random variable X(t) measure 

at time t the size of the population. In the general case, the 

mean of a non-homogeneous BDP is [16] 

m(t) = E{X(t)} = e (t ) ,
 

where 

(t) = [μ ( )- ( )]d ,
0

t

 

μ( ) and ( ) are the rates of the death and birth, 

respectively. 

Chaotic “Birth-and-Death” Processes 

 The formalism of a non-homogeneous BDP allows us to 

treat the creation of the dipole using both stochastic and 

deterministic factors. We introduce two specific types of 

non-homogenous processes termed a “chaotic birth-and-

death process” and “chaotic death process”. Both processes 

are specified by the parameter  named a “chaos factor” or “  

factor”. 

 We introduce the chaotic birth-and-death process 

,μ t( ),{ } as the model of the particle population in the 

source compartment. The process is defined at t 0 by the 

following rates of the birth and death of particles:
 

= 1 , μ t( ) = t 2 .           (4) 

 The mean of the chaotic process is 

m (t) = E{X (t)} = e t( ) ,           (5) 

where 

t( ) =
t 2 2t

2 2

 

 With regard to (3), it is easily deduced that 

g (t) = m t( ) e.
 

 We define the chaotic death process μ t( ),{ }  as the 

model of the particle population in the sink compartment. 

The process is defined at t 0 by the following rate of the 

death of particles:
 

μ t( ) = t +( ) 2 .            (6) 

 The mean of X (t) is 

m (t) = E{X (t)} = e t( ) ,           (7) 

where 

t( ) =
t 2 + 2t

2 2 .
 

 Comparison with (3) shows that 

g (t) = e m t( ).
 

The Resting Conditions 

 Full description of the particle populations necessitates 

the definition of the initial conditions. We suppose that at 

t<0 the both populations are at the resting state, and use 

linear BDP [17] as the model of this condition. We define 

the rates of the death and birth by the following constants: 

μ = μ = 1 , = = 1 .           (8)
 

GMP Model at Microscopic Scale 

 We have expressed g (t) and g (t)  in terms of chaotic 

BDPs. The basic probabilistic assumption is that during a 

sufficiently small element of time t the probability of the 

change of the population size by more than one element is 

negligibly small: 

Pr X t + t( ) = X t( ) + m = o t( ) if m > 1,         (9) 

where Pr denotes probability and m is an integer. 

The probabilities of permitted changes in the particle 

populations are: 

Pr X t + t( ) = X t( ) +1 = t( )X t( ) t + o t( ) birth( )  (10) 

Pr X t + t( ) = X t( ) 1 = μ t( )X t( ) t + o t( ) death( ) (11) 

 Accordingly, the probability of keeping the population 

size unchanged is 

Pr X t + t( ) = X t( ) = 1 t( ) μ t( ) X t( ) t + o t( ).  

 We use these conditions as a basis for numerical 

investigation of above defined chaotic processes. We deal 

with the samples X (t) and X (t) of chaotic 

,μ t( ),{ } and μ t( ),{ } processes, respectively. As an 

initial condition, we suppose that X (0) = X (0) . 

 The following changes of X (t) and X (t) are computed 

step by step at the intervals from ti to ti+1, where ti=i  and i 

takes values from 0 to I. Thus we deal with the discrete time, 

and may regard Xi = X (ti ) and Xi = X (ti )  as the states of 

particle systems. The choice of the value for  is supported 

by the same notions as t in (9)-(11). Therefore, we can 

express general probabilistic statements (10) and (11) using 

parameters of concrete chaotic processes. 

 Given the birth and death rates from (4), it follows rather 

straightforwardly from (10) and (11) that 

pb i( ) = Xi , pd i( ) = Xi
2i 2 ,

       (12)
 

where pb i( ) and pd i( ) are the probabilities of a particle birth 

and death, respectively, in the interval from ti to ti+1. 
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 With regard to the death rate from (6), 

pd i( ) = Xi i +( ) 2 ,          (13) 

where pd i( ) is the probability of a particle death at the 

interval from ti to ti+1. 

 The transition from Xi to Xi+1 may have the following 

outcomes: Xi+1 = Xi 1, Xi+1 = Xi  or Xi+1 = Xi +1 . In the 

case of the sink, Xi+1 = Xi 1  or Xi+1 = Xi . Given the 

values of probabilities from (12) and (13), the inter-state 

transitions are calculated using Monte-Carlo simulations of 

the corresponding birth and death processes. 

 Numerical experiments were supported by a specially 

designed computer program written in the object Pascal 

language of Embarcadero Delphi 2010. 

 

Fig. (3). Illustrates dynamics of particle populations under the 

resting and transient conditions. The y-axis units are the numbers of 
particles. 

 For the sake of illustration the chaos factor was set to be 

=10 ms; the value compatible with the time scale of 

conventional ECG. Typical results of numerical experiments 

are exemplified by Fig. (3) which compares numerical 

solutions with theoretical functions
 
a g (t), a g (t) , 

and a g t( )  where a is a coefficient defined in such a way 

that
 
a g (0) = a g (0) = N0 , N0=100 is the number of 

particles taken as the initial condition for simulations. The 

black lines in Fig. (3a-c) are the graphs of the theoretical 

functions at the interval from -10 to 40 ms. The transients 

were induced at t=0, and preceded by the resting conditions 

during which a g (t) = a g (t) = N0  
(t<0). 

 The segmentation points for numerical calculations 

were ti = i , where i takes values from -5,000 to 20,000 

and =0.002 ms. In the time interval from -10 ms to 0 the 

particle populations in both compartments were simulated as 

simple BDPs with constant rates of the birth and death (8). 

As an initial condition it was supposed that the size of each 

compartments at t=-10 ms is equal to N0. The transition from 

the resting to transient condition was simulated as the change 

of the constant rates of the birth and death (8) to the time 

dependent rates (4) and (6) of chaotic ,μ t( ),{ } and 

μ t( ),{ } , respectively. The blue lines in (a) and (b) 

show X t( ) and X t( )  from one and the same trial. The blue 

line in (c) is X(t) = X t( ) X t( ) . 

 To define the limits to which the statistical solutions 

converge, the averages of single trial samples were 

computed. The red lines in (a)-(c) show the averages of ten 

samples obtained in independent trials. This example, as well 

as the results of similar computations with different 

parameter sets, unambiguously indicates the consistency of 

statistical outcomes with expected theoretical dependencies. 

 A key role in the dynamics of g  (t) and g (t) can be 

associated with the specific combination of random and 

deterministic factors that produce a deterministic chaos. An 

important aspect of chaotic dynamics is a nonlinearity of 

underlying system. Note that the variable which describes 

the state of the system in (12) and (13) is the size of the 

particle population, i.e Xi or Xi . Multiplication of these 

variables by ti=i  is the source of nonlinearities at 

microscopic scale. 

The Chaotic Transformations Effect 

 The role of deterministic factors in statistical samples 

increases with increase in the number of particles involved. 

Single trial samples shown in Fig. (3) develop from initial 

populations of 100 particles. A tenfold increase of N0 to 

1000 particles significantly reduces variability and brings 

X t( ) and X t( )  to a better proximity with deterministic 

solutions. On purely theoretical grounds we may regard the 

Gaussian components of standard GMP (2) as the limits to 

which the transients converge with an infinite increase of the 

population size. 

 However, the situation is not that simple when we regard 

the chaotic BDP as a physical model. The point is that 

calculations of statistical samples should be consistent with 

condition (9). Therefore, the probabilities of the birth and 

death of a particle during the  interval should be low. Given 

the experimental runs from Fig. (3), the values of all 
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probabilities from (12) and (13) were usually (98% of trials) 

below 0.065. Specially designed tests with different types of 

BDPs, as well as the previous experience in simulations of 

transmembrane particle transfers [15], indicate that this 

range of probabilities provides correct interpretation of the 

condition (9) in numerical simulations. 

 A free parameter that allows us to keep the values of 

probabilities at low levels is the sampling interval . 

Physically, the value of this parameter should be compatible 

with the time interval that is necessary for an ion channel to 

change the state; this event moves an ion through the 

membrane. With regard to the millisecond order of such 

transition, the value =0.002 ms used in above simulations 

may be considered as a reasonable parameter. However, the 

corresponding size of the particle population (100-200 units) 

is small compared with actual numbers of ions participating 

in the trans-membrane transport processes. Even in the case 

of a single cell, the number of excitable channels is 

estimated to be large (on the order of tens of thousands of 

ion channels). To keep the birth and death probabilities at 

reasonably low levels in the case of such large particle 

populations, it is necessary to reduce sampling intervals to 

physically unrealistic values. 

 To avoid such situation and resolve the problem in a 

physically acceptable way, we refer to the independence 

principle according to which the behavior of a particular 

group of ions involved in the transmembrane transport 

processes is independent of the number and type of other 

participating ions [18]. Using this principle, we divide the 

whole particle population into the sub-populations each of 

which is described by chaotic ,μ t( ), k{ } and μ t( ), k{ }  

processes specified by the chaos factors 
k
 (k is an index of 

particular population). Given equal initial sizes and 
k
 values 

of the -factor for each sub-population, we actually deal with 

the same realizations of the chaotic process as those 

reproduced in numerical experiments. Indeed, note that the 

red lines in Fig. (3a, b) are the averages of 10 independent 

samples of chaotic processes produced by a single particle 

population. We may as well interpret these results as the 

averages of single trial samples produced by 10 independent 

populations with equal parameters. 

 However, the sub-populations are the models of different 

groups of ions associated with a single cell or a cell 

ensemble. Therefore, it is reasonable to propose that 

different sub-systems have different parameters. We 

analyzed this situation in numerical experiments. Typical 

results illustrated by Fig. (4) deal with the model composed 

of 50 sub-systems with different parameters. The minimum 

and maximum values of parameters were 7 and 12ms (mean 

9.89 ms) for the -factor, and 76 and 125 (mean 101) for 

initial size of the population at t=0. The parameter 

distributions between these extremes, are illustrated by the 

histograms in (a) and (b). 

 Fig. (4c) refers to the function Xk (t) = Xk t( ) Xk t( ) , 

where Xk t( ) and Xk t( )
 

are the samples of chaotic 

processes ,μ t( ), k{ } and μ t( ), k{ } , respectively. 

Given the parameter values indicated by the histograms, each 

of the 50 systems under the analysis is presented by a trace 

of X(t). The red solid line is the average of these traces. The 

black dotted line is the theoretical solution for particle 

population with N0 and parameters. These are the mean 

values of N0
k and k

 parameters; N0 = 101, = 9.89 ms.
 

 
Fig. (4). Illustrates the chaotic transformations effect. 

 This and similar numerical experiments show that 

differences in the sizes of particle populations and  factors 

do not affect the general form of statistical solutions (5) and 

(7). No matter how complex the particle system, from the 

viewpoint of a chaotic dynamics, the system behaves as if it 

consisted only of a single dipole. The parameters of this 

equivalent dipole, N0 and , represent the mean values of 

the corresponding parameters of participating sub-

populations. We qualify this finding as the chaotic 

transformations effect. 

Nonlinear Equations of GMP (Global Scale) 

 We present an explicit description of the system 

producing deterministic chaos in the form of the following 

system of nonlinear differential equations: 

 

x(t) =
t

2 x t( ),          (14)

 

 

y(t) =
t +

2 y t( ),          (15)

 

z t( ) =
x t( ) y t( )

2
1(t),          (16) 

where 
 
x t( ) and y t( )

 
denote the derivatives of the state 

variables x t( ) and y t( )  with respect to the time t. 
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 Since the state variables in (14) and (15) are multiplied 

by t, the system is non-autonomous, i.e. it is driven by time-

varying signals. Substitution of g t( ) and g t( )  into (14) 

and (15), respectively, shows that these functions are the 

solutions of the system. The initial conditions are settled by 

the unit step function in (16). 

 The form of (14)-(16) is consistent with the notion that 

equations of deterministic chaos must be non-linear to 

generate chaotic solutions, but apart from that, they can be 

remarkably simple. Prior to these results, the analytical 

models of chaotic systems in the field of the heart research 

were very few. Thus, such active area for applications of the 

chaos theory as the heart rate variability is not supported by 

the basic nonlinear equations [19]. 

 The generalization of our global scale model in the form 

of nonlinear equations provides access to various methods of 

nonlinear dynamical analysis, such as the Poincare map, the 

frequency domain transfer function, attractors, Lyapunov 

exponents, etc. We use in this study the frequency domain 

methods to construct a tool for identification of specific 

“chaotic” elements of ECG waveforms. 

The Frequency Domain 

 Given the standard GMP (2) as a function of time, we 

regard bud(t) as an impulse response of the system described 

by (14)-(16), i.e. the transient induced by a Dirac delta 

impulse. This allows us to define the frequency transfer 

function of the system by a classical one sided Fourier 

integral 

B( ) = BR ( ) iBI ( ) = bud(t)e i t dt
0

,  

where i = 1, = 2 f ,  and f is frequency. The imaginary 

part function is expressed analytically in the form 

BI ( ) = exp 2( )sin .  

 We were unable to find an analytical solution for the real 

part functionBR ( ) , and constructed instead a reasonably 

accurate approximant in the form BR ( ) R ( ) =  

R1 ( ) + R2 ( ),where 

R1( ) = exp 2( )cos

and R2 ( ) = 1.204 exp( 2 /1.518).
 

 On this basis, 

BM ( ) = B( ) BR
2 ( ) + BI

2 ( ).
 

 For the range of  from =0 to =2.5 

BM ( )
2

s
 - 2 /2s2e ,          (17) 

where s=1.364. 

 We will use this function as a frequency domain template 

for the identification procedure described in the section (3.5). 

 

IDENTIFICATION OF THE CHAOS 

Conceptual Framework 

 To apply our theory to the ECG analysis, we now 

consider how to reconcile the ECG waveform with the 

dynamics of chaotic processes. Almost without exception, 

current approaches to the ECG analysis regard “peak” 

synonymous to a functional component. It is widely accepted 

to consider the ECG as a set of waves, to pick the peaks of 

these waves, and to measure the peak amplitude and latency. 

On an understanding of a component as being not just a peak 

in the waveform, but a whole deflection with particular 

shape, we assume that underlying system at the microscopic 

scale can be adequately described in terms of chaotic BDPs. 

The conceptual framework is that rather than a continuous 

process, the ECG represents a series of consecutive, partly 

overlapping transient potentials, each of which is produced 

through intermittent synchronization of specific ensemble of 

the heart muscle cells in a local conductance volume. 

Chaotic dynamics of these processes combines deterministic 

and random components which coexist at the microscopic 

scale level. However, the random components are hidden at 

the global level because the mass effect of large particle 

populations emphasizes coherent components and supresses 

random components. Therefore, we may associate the 

dynamics of ECG waveforms with the mean values (5) and 

(7) of chaotic BDPs, i.e. with GMPs. 

Fragmentary Decomposition 

 The question is how to identify these GMPs on empirical 

basis? Based on previous work, we implement the method of 

high resolution fragmentary decomposition [12]. Taking the 

ECG to be v(t), we divide v(t) into the segments by the 

points i i = 0, .., ..N( )  in which v(t) has zero crossing or 

v t( )  has a minimum. 

 The piece of v(t) between adjacent segmentation points is 

termed a half-wave function (HWF), and defined as 

wk t( ) =
v t + k 1( ) if 0 t k ,

0 otherwise,
 

where k = k k 1 . 

In terms of HWFs, the ECG is 

v(t) =  
k=1

N

 kw  (t - k-1).          (18) 

 Phenomenologically, wk(t) may be associated with 

development of the kth peak of v(t). On assumption that 

generation of a peak is produced by chaotic processes 

described by our theory, we may regard GMP as an adequate 

model of the HWF. Therefore, we may present ECG by the 

following fragmentary model 

u(t) = gk t( )
k=1

N

,           (19) 

where 
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gk (t) =  k bud t k( ) / k .  

 A criterion that establishes relationships between the 

model (19) and empirical ECG (18) is the interpolation 

condition 

u(Lk ) = v(Lk ) k = 1,..., P( ),         (20) 

where Lk is the peak latency of the kth peak (interval from 

k-1 to k ). Consequently, the peak latencies and amplitudes 

of the model must be equal to the peak latencies and 

amplitudes of the original ECG. 

Resolution of the Component Overlap 

 The possibility of a component overlap is an important 

concern with regard to the identification process. After [12], 

we implement a model based approach to the problem. 

 Let us regard the m (m<N) first terms from (19), 

um (t) = gk t( )
k=1

m

,
 

as the solution of identification problem for the ECG 

segment from 0 to m . By this we particularly mean that 

um(t) captures the ECG dynamics in the interval 

from m-1 to m . The essence of the model based approach is 

that we use an analytical um(t) as an extrapolation tool which 

enables us to predict the development of the ECG waveform 

at t> m. For the following m , m+1[ ] segment, we define an 

overlap corrected HWF in the form 

 
wm+1(t) = v t + m( ) um t + m( ). (0 t m )  

 This formula supports processing of the kth segment by 

the parameters of the previous segment (for the first segment 

g0(t)=0). Using this opportunity, the identification of GMP 

parameters is performed in successive steps from the first to 

the last segments of the signal. At each step our aim is to 

estimate the values of GMP parameters which provide the 

best fit to the corresponding overlap corrected HWF. To 

estimate the parameters using the minimization routines 

which are generally employed in this context, we need to 

organize an iterative search of an optimal solution in a 3-

dimensional parameter space. We implement more 

straightforward approach using the frequency domain 

identification technique. 

Time-Frequency Analysis 

 The idea is to use a characteristic Gaussian profile (17) of 

GMP amplitude spectrum as a frequency domain template 

for comparison with the amplitude spectrum of HWF 

Wk
M ( ) = Wk ( ) , where Wk( ) is the complex spectrum 

defined by the following finite Fourier integral 

Wk ( ) = wk t( ) e it dt
0

k

.     

 This standard form of short-time Fourier transform 

demands special algorithms of numerical integration. We use 

the similar basis function (SBF) algorithm which is adequate 

to the time-frequency analysis, i.e. the spectral analysis of 

successive signal segments of arbitrary length [20, 21]. 

 We specify wk(t) by its sampled values wk(ti) in a finite 

number of nodal points ti i = 0,1,..,N( )  with 

t0 = 0 and tN = k . The nodes need not be spaced equally. 

The algorithm creates a piece-wise linear interpolant and 

decomposes it into the sum of finite elements termed 

“similar basis functions”. The algorithm provides means for 

an explicit treatment of discontinuities at the boundaries of 

the integration interval. This eliminates the need for 

windows for spectral analysis, along with their distorting 

impact. 

 As a means to control the accuracy of the calculations, 

we restore the initial signal from the real or imaginary part of 

the complex spectrum Wk( ) using the SBF algorithm for 

calculation of relevant inverse Fourier transform. 

Frequency Domain Template Matching 

 An apparent advantage of the frequency domain is that 

amplitude spectrum Wk
M ( ) is invariant to the time shifts of 

the HWF. This removes the parameter  of the 

corresponding GMP from the frequency domain 

identification procedures. 

 The frequency domain procedures deal with the 

normalized functions 

BM ( ) = BM ( ) BM 0( ) and WM ( ) = WM ( ) WM 0( ).

 Fig. (5b) illustrates BM 2 f( )  for the following values of : 

dash-dot line – 30 ms, solid line – 11 ms and dash line – 3 

ms. The change of  does not alter the form of BM 2 f( )  but 

shifts the entire function along the frequency axes. Thus, it is 

a simple matter to find a best fit of theoretical BM 2 f( )  to 

empirical Wk
M 2 f( )  

which gives the estimate of k. 

 The criterion that establishes the estimates of remaining 

parameters is the interpolation condition (20). Given that 

standard GMP (2) has its maximum at x 1.2, it is easily 

deduced from this condition that k = Lk 1.2 k . The 

corresponding amplitude value is 

 
k = wk 1.2 k( ) bud 1.2( ).

 

Self-Similar Waveforms and Standard Variables 

 Suppose that gk(t) is an identified model of wk(t). How 

can we compare these geometrical forms and test the validity 

of the GMP as a model or improve the parameter estimates? 

We approach this problem using the self-similarity of GMPs. 

Given a pair of GMPs with different parameters, it follows 

from (1) and (2) that 

 
1

i

gi i x + i( ) =
1

j

g j j x + j( ) = bud x( ) ,
 

where i and j can take values from 0 to N, i j. 
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Fig. (5). Identification of the  factor using the time-frequency 

analysis. (a) Shows the ECG (black line) and the HWF (red line) 

selected for identification. The y-axis units are mVs. (b) The red 

line shows the amplitude frequency spectrum of the HWF from (a). 

The black lines show different positions of the frequency domain 
template. The y-axis displays dimensionless units. 

 This formula transfers GMP from the space of physical 

variables (voltage as a function of time) to the space of 

dimensionless or standard variables (dimensionless 

amplitude as a function of standard variable x) where the 

GMP degenerates into the dimensionless waveform of 

standard GMP. Therefore, the GMPs may be regarded as an 

ensemble of self-similar functions the waveforms of which 

are identical in the space of standard variables. 

 Given the parameter set, k , k and k , the 

transformation of corresponding overlap corrected HWF has 

the form 

zk x( ) = 
1

k

wk k x + k( ).         (21)

 

 The power of this normalization is that it removes 

diversity in the physical measures of initial empirical 

waveforms and provides dimensionless bud(x) as a golden 

standard for the analysis of modelling accuracy. The 

residual, rk x( ) = zk x( ) bud x( ) , is a universal measure of 

the HWF deviation from the model in the space of standard 

variables. 

Software 

 The computer implementation of the identification 

procedures has been supported by specially designed 

software package “FD_ECG” using the object Pascal 

language of Embarcadero Delphi 2010. The functional 

organization of the FD_ECG includes the three major 

processing engines. 

 First, an automated analysis engine the major processing 

routines of which perform the following operations: (1) ECG 

artifact elimination using digital recursive boxcar filters, (2) 

ECG adaptive segmentation and selection of HWFs, (3) 

short-time spectral analysis of HWFs, (4) identification of 

GMP parameters, (5) control of modelling accuracy using 

inverse Fourier transforms and standard variables. 

 Second, the visualization engine designed as a tool for 

visualizing the analysis results. This tool provides means to 

display the results of automated analysis for any specified 

ECG segment. The image includes the original ECG, the 

waveforms of identified GMPs and the values of estimated 

parameters. 

 Third, the engine of the time-frequency analysis using the 

SBF algorithm. This analysis and visualization tool provides 

means to analyse selected ECG segments and compare their 

spectral profiles with standard frequency characteristics of 

typical elements of control systems. 

RESULTS 

ECG Recording and Processing 

 The ECG data analysed for this paper came from two 

independent sources. 

 First, ambulatory ECGs were recorded over ten seconds 

from patients in an outpatient cardiac clinic. Standard 12-

lead surface electrocardiograms were obtained in the 

recumbent resting position with a microprocessor-based 

commercial system (Mortara Instruments Inc.) at a sampling 

rate of 1000 Hz. Each acquisition was obtained in triplicate, 

with the last or most visually artifact-free trace used for 

further quantitative analysis. ECGs of 20 subjects without 

heart disease were selected for this study. 

 Second, set of ECG recordings of normal subjects were 

obtained from the PTB diagnostic ECG database [22, 23]. 

Being available over the Internet, the PTB database is the 

source of high fidelity digital ECG records. Each recording 

has duration of 115.2 sec and includes 15 simultaneously 

measured signals at sampling frequency of 1 kHz: the 

conventional 12 leads together with the 3 Frank lead ECGs. 

For this study we have selected ECGs of 20 normal subjects. 

For each of these subjects, the ECG data for analysis were 

prepared in the same format as for the first group of subjects, 

i.e. 10,001 point time series (10 s segment from the 

beginning of the record) from each of 12 conventional leads. 

 The automated analysis of ECGs from these 40 subjects 

was performed on 12-channel, 10-sec ECG segments 

running the FD_ECG automated analysis routine on a 

Compaq Presario 3.06 GHz PC with 4 GB RAM. The 

analysis results have been examined using the visualization 

and time-frequency analysis engines. To support our theory 

by empirical data, we describe below some typical results 

which were observed in the both ECG sources. 

Major ECG Waveforms 

 The solid black line in Fig. (6) is a 601 point time series 

(1 ms sampling interval) which shows a typical ECG during 

a heartbeat. The colored lines are model waveforms 

superimposed on the corresponding P, Q, R, S and T 

components. 

 This gives a visual impression of reasonable accuracy 

with which the equations of chaotic BDPs describe the 
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dynamics of a real ECG. The parameters of identified BPDs 

are shown in the Table 1. 

 The values of the chaos factor are also displayed by the 

bars in the right upper panel of Fig. (6). 

 

Fig. (6). Model GMPs are superimposed on the major P, Q, R, S 
and T components. 

Table 1. Parameter Values of Identified GMPs from Fig. (6) 

 

 P Q R S T 

, μV 80.5 -268 1960 -380 416 

, ms 73 98 185 210 448 

, ms 11 34 14 26 38 

 

 An equally satisfactory description of particular ECG 

waveform could no doubt have been achieved with equations 

of very different form. However, different models may yield 

similar results, but one may require fewer model parameters 

and is therefore more efficient in handling the physics of the 

process. In this regard, a remarkable aspect of nonlinear 

equations (14)-(16) is that the solution in the form of GMP 

contains a minimum number of free parameters, 

, and . and  are similar to conventional measures 

of the amplitude and timing of the ECG waveform. Hence, 

just a single parameter, the  factor, appears as an inclusive 

measure of the waveform dynamics without any adjustment 

to make the nonlinear equations fit the features of particular 

waveform. 

 The success of the theory in predicting the dynamics of 

ECG waveforms encouraged us to examine in a more detail a 

complex component composition of ECG waveforms. 

Historically, each of conventional P, Q, R, S and T 

components of ECG has been associated with specific 

cellular process. This outlook has shaped virtually every 

aspect of the ECG waveform analysis, particularly the 

concept of a monolithic component, and the lack of attention 

to the component temporal overlap. Our results reveal 

considerably more complex and informative dynamics of 

conventional ECG waveforms than previously thought. 

Below we address this issue to the morphology of Q and S 

waves. 

 

 

Composite Structure of Q and S Waves 

 The QRS complex is the most characteristic waveform of 

the ECG signal. The high amplitude, positively deflecting R 

wave makes detection of the QRS complex easier than the 

other waves. Thus, the R wave is generally used as a 

reference within the cardiac cycle. Once the R wave is 

identified, the Q and S waves are conventionally regarded as 

negative ECG deflections before and after R, respectively. 

Actually, the shapes of such defined morphological elements 

of the ECG show remarkable diversity of geometrical forms. 

In some cases the technique of high resolution FD resolves 

the Q and/or S waves into the sum of slow and fast 

components. 

 Fig. (7a) shows a characteristic example of ECG with 

complex negative deflection preceding the R wave. The FD 

decomposes this waveform into the earlier slow wave sQ 

with =32 ms and the later fast wave fQ with =10. 

 A composite S wave is exemplified by Fig. (7b). The 

results of FD indicate that negative ECG deflection 

following the R wave consists from the earlier fast fS 

component with =8 ms and the later slow component sS 

with =15 ms. 

 

Fig. (7). Examples of complex Q and S waves. (a) Illustrates the 

slow Q (sQ) which develops before conventional Q wave. (b) The 

R wave is followed by an almost simultaneous induction of the 

conventional S wave and slow S (sS). The y-axis units in (a) and 
(b) are μVs. 

 The morphology of identified components allows us to 

propose that fQ and fS are the conventional Q and S waves, 

i.e. the elements of the QRS complex. By contrast, striking 

differences in the values of the  factor of slow and fast 

components indicate a distinct nature of slow components. 

Double Peak R Wave 

 The R wave is conventionally regarded as a monolithic 

waveform. However, in some cases the R wave may have a 

complex structure. In our analysis the complex morphology 

of the R wave has been identified in two normal subjects 

from different groups. In both cases a major peak of the R 

wave is followed by a small positive deflection lR (late R) as 

illustrated in Fig. (8a, the ECG is from the first group). 
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Fig. (8). Example of complex R wave. (a) ECG segment with 

complex R waves. (b) The R wave highlighted in (a) is 

decomposed into the two components: conventional R and late R 

(lR). The y-axis units are μVs. (c) After transformation to the space 

of standard variables, the empirical counterparts of R and lR, i.e. 

the corresponding HWFs, are compared with the standard GMP 

(sGMP). The y-axis displays dimensionless units. 

 Such small waveform perturbations are difficult to study 

by quantitative analysis using conventional routines. 

However, it appears that our technique of the component 

overlap resolution is capable of reliable separation of lR 

from the R wave. Identified as separate entities, the R and lR 

waveforms are shown in Fig. (8b) in comparison with the 

corresponding segment of original ECG. The values of the  

factor for R and lR are 12 and 13 ms, respectively. The 

component normalization according to the formula (21) 

provided a capability for direct comparison of R and lR 

waveforms with the standard GMP in the space of standard 

variables. A remarkably accurate match of both curves to the 

template is illustrated by Fig. (8c). Therefore, the dynamics 

of both components is consistent with nonlinear equations 

(14)-(16). 

 Appearance of the late peak in time course of the R wave 

is an infrequent event, i.e. the marker of very specific aspects 

of the heart performance. The relevant conditions in this 

regard are the hypothermia and high blood levels of calcium 

[24]. 

 There are clearly several factors at work which 

complicate recognition and identification of different 

components of ECG waveforms. A most difficult problem is 

the resolution of the component temporal overlap. Success of 

the FD algorithm in a number of practical cases provides 

basis for further insight into the underlying constituents of 

the ECG dynamic performance. 

Collective Properties of R-S Waves 

 According to the conceptual framework of our modeling 

approach, the ECG signal develops as a series of 

consecutive, partly overlapping GMPs. Such 

phenomenological picture should include some form of co-

operative actions between underlying cellular systems. Our 

previous study of the heart self-regulation using the 

frequency domain identification technique has found that 

temporal dynamics of QRS complex may be described with 

reasonable accuracy in terms of classical underdamped 

harmonic oscillator [25]. These results indicate a highly 

coordinated temporal dynamic of R and S waveforms. To 

illustrate this type of a global scale dynamics, we take the 

ECG from Fig. (6) as an example. We describe coordinated 

activity of the sources of R and S components as a transient 

process f t 185( ) = gR t( ) + gS t( ) , where the GMPs are the 

models of R and S, respectively. The parameters of these 

GMPs were taken from Table 1 for R and S waves. Due to 

185 ms time delay, f(t) begins from t=0 as illustrated by Fig. 

(9a). Despite the fact that gS(t) begins 25 ms after gR(t), the 

transition is smooth. This gives a visual impression of f(t) as 

a continuous transient process. 

 The frequency domain identification of f(t) using the 

harmonic oscillator as a model gave the following 

parameters: damping ratio =0.53, natural frequency f0=11.5 

Hz. Fig. (9) illustrates reasonable accuracy with which the 

characteristics of the oscillator (red lines) fit the empirical 

dependencies (black lines). What is of particular interest for 

the understanding the effect of the cooperative action of R 

and S is that the slope of the Bode diagram (frequencies 

from 10 to 100 Hz) is 40 dB per decade. This unambiguously 

indicates that the dynamic system is described by a second 

order differential equation. 

 

Fig. (9). Transient dynamics of R and S waves. (a) Compares the 

transient process formed as the sum of GMP models of R and S 

waves (R+S) with the impulse response (IR) of the underdamped 

harmonic oscillator. (b) Shows the frequency domain counterparts 

of the transients from (a) in the form of logarithmic amplitude 
frequency characteristics (LAFC). 
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 The details of the numerical algorithms and relevant 

equations can be found in our previously published articles 

[21, 25]. 

DISCUSSION 

 As we demonstrate in this study, a wide range of 

monolithic deflections identified in the time course of 

normal ECG may be qualified as self-similar processes that 

resemble a geometric form of a standard GMP. Rather than a 

continuous process, the ECG develops as a series of 

consecutive, partly overlapping self-similar potentials, each 

of which is produced through intermittent synchronization of 

specific ensemble of the heart muscle cells in a local 

conductance volume. We found that dynamical behaviour of 

GMP ensembles may progress in a highly coordinated 

fashion. Thus, while the onset of the R wave leaves behind 

the onset of the S wave, the collective effect of both 

processes is amalgamated on the global level into a single 

oscillation. 

 Our theory suggests that fairly simple analytical form of 

self-similar GMP composed from two shifted Gaussian 

distributions is rooted in the physics of the mass potentials. 

And so provides the deterministic chaos as a clue to bring 

together the deterministic and stochastic factors underlying 

ECG genesis. 

 Previous models of ECG emergence from cellular 

sources have been supported by the landmark Hodgkin-

Huxley (HH) model of conduction and excitation in the cell 

membrane [2]. However, the applications of HH equations 

for modelling the cardiac muscle cells are not supported by a 

unique solution for at least the two following reasons. 

 The first is a significant redundancy of model parameters. 

Original HH model consists of the set of four coupled, 

highly nonlinear ordinary differential equations with 

multiple parameters [18]. Numerous modifications of HH 

model provide more condensed descriptions of particular 

phenomena. For example, an elegant two-parameter model 

of FitzHugh [26] allowed the rigorous analysis of action 

potentials in terms of the fast action potential and a slow 

recovery variable. 

 The second is a gap between purely deterministic 

equations of HH model and probabilistic notions that support 

the central kinetic relationships. The key objects in this 

context are the voltage dependent conductances 

gK n4 and gNa m3h for K
+
 and Na

+
 channels, 

respectively. Hodgkin and Huxley [18] note that the type of 

kinetics described by gK is obtained on assumptions that 

there are four identical particles, each with probability n of 

being in the correct position to have an open K
+
 channel. The 

term m
3
h in gNa presumes that there are three m-gates and 

one h-gate that must be open to enable the Na
+
 current to 

flow via the sodium channel. 

 This stochastic background of the membrane machinery 

inspired the development of an alternative class of cardiac 

cell models in which ion transport is described in the 

probabilistic terms of Markov processes [4]. 

 Thus, the previous descriptions of the ECG cellular 

sources can be partitioned into the two separate classes of 

broadly defined deterministic and stochastic models. To our 

knowledge, the model of a chaotic BDP in our theory for the 

first time puts the randomness and determinism in the ECG 

generation from cellular sources on the common theoretical 

framework of deterministic chaos. The model not only 

predicts how the chaotic transient evolves over the time, but 

also does this with the minimum number of degrees of 

freedom. Note that  and  parameters may be regarded as 

natural measures of the onset time and amplitude of the mass 

potential. Therefore, just a single parameter, the -factor, 

defines the shapes of the self-similar element of the ECG. 

No matter how complex the system of the ion transport, from 

the viewpoint of the global scale, the chaos factor 

accumulates dynamic aspects of the microscopic machinery. 

We qualify this paradigm as the chaotic transformations 

effect or simply the  effect. 

 The ability of chaotic transformations to accumulate the 

information from multiple sources into a concise set of 

parameters may be associated with the presence of the 

Gaussian distribution in the GMP equation. The normal 

(Gaussian) distribution is well known as the most important 

probability distribution in the whole field of probability and 

statistics. This is because, in accordance with the central 

limit theorem, any process of random sampling tends to 

produce a normal distribution of sample values, even if the 

whole population from which the samples are drawn does 

not have a normal distribution. A single Gaussian 

distribution is not suited to account for the temporal changes 

in the system from which the samples come. In the context 

of a chaotic BDP, a specific combination of two shifted 

Gaussian distributions describes how the mean size of the 

particle population evolves over the time. It is clearly 

plausible to conclude that standard GMP may be regarded as 

a time dependent statistical distribution relevant to specific 

class of chaotic processes. 

 Our study is in a sharp contrast with the previous 

approaches to the multi-scale ECG modelling the guiding 

principles of which presume that extension of the range and 

number of microscale biophysical and biochemical 

parameters is a means to reconcile the time evolution of 

ECG waveform with the underlying cellular machinery. This 

is a highly under determined task. In reality, the large 

amount of details and free parameters contained in the model 

can often obscure rather than illuminate the essentials of the 

underlying physical processes. The chaotic transformations 

effect discriminates those aspects of the cellular machinery 

that are significant on the global scale from those that are 

not. A crucial deduction from our theory is that mass effect 

of many micro-scale elements is independent of the physical 

nature of these elements. 

 In this context, we may divide GMP parameters into the 

two main categories:  and  – physical parameters, - factor 

– chaos based parameter.  and  are physical parameter 

because they are the measures of physical entities, the 

voltage and time, respectively. We introduce a special 

category of a chaos based parameter because the -factor 
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accumulates both physical measures and statistical 

variability. As a physical parameter, the -factor plays the 

role of a time constant of the transient potential produced by 

the deterministic chaos. With regard to statistical issues, the 

-factor accumulates essential aspects of statistical 

fluctuations at the microscopic scale. To bring the chaos 

factors into sharper focus, note that transient process in 

linear dynamic system is defined as the solution of 

differential or integro-differential equations defined by the 

physical parameters of the system. By contrast, the -factor 

reflects the chaotic dynamics of the parameters rather that 

their physical nature. We regard this view as a unique 

explanation of the fact that self-similar elements identified 

here in the ECG waveforms replicate the self-similar 

elements of ERP and eye-blink EMG uncovered in a series 

of previous studies [11-13]. 

  and  parameters are closely related to conventional 

ECG measures, the peak amplitudes and latencies. Our 

theory goes beyond these conventional parameters and 

suggests a more comprehensive analysis of ECG waveforms 

using the  factor as the measure of the shape for each 

component identified in the ECG time course. This richer 

account of the dynamics of the heart electrical activity may 

provide a basis for a more profound understanding of the 

ECG, making this already useful measure even more 

informative in research and clinical settings. 
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