
 The Open Cybernetics & Systemics Journal, 2011, 5, 45-52 45

 1874-110X/11 2011 Bentham Open

Open Access

Operating System Level Trace Analysis for Automated Problem Identification

Gabriel N. Matni
*
 and Michel R. Dagenais

*

Department of Computer and Software Engineering, Ecole Polytechnique de Montreal, C.P. 6079, Station Downtown,

Montreal, Quebec, H3C 3A7, Canada

Abstract: Performance bottlenecks, malicious activities, programming bugs and other kinds of problematic behavior

could be accurately detected on production systems if the relevant events were being monitored. This could be achieved

through kernel level tracing where every time a relevant event occurs, the information is analysed or saved in a trace file

to be inspected during post-mortem analysis. While collecting the information from the kernel has a very low impact, the

offline analysis is typically performed remotely with no overhead on the system whatsoever.

This article presents an automata-based approach for analyzing traces generated by the kernel of an operating system.

Some typical patterns of problematic behavior are identified and described using the State Machine Language. These

patterns are fed into an offline analyzer which efficiently and simultaneously checks for their occurrences even in traces of

several gigabytes. The analyzer achieves a linear performance with respect to the trace size. The remaining factors

impacting its performance are also discussed. The main interest of the proposed approach is the efficiency obtained in

monitoring such extensive and detailed execution traces for a very large number of simultaneous possible patterns of

problematic behavior.

Keywords: Finite state machines, kernel tracing, trace analysis, pattern matching, performance debugging.

1. INTRODUCTION

 By carefully examining execution traces of a computer

system, experts can detect problematic behavior caused by

software design defects, inefficiencies as well as malicious

activities. Kernel tracing can often reveal the main source of

such problems. Tracing consists in instrumenting the kernel

code to precisely record its behavior at execution time.

Typical kernel events traced include all system calls from

processes, scheduling events, interrupts, I/O operations and

may include locking operations.

 It is now possible to achieve low overhead, low

disturbance tracing of multi-core Linux systems with the

Linux Trace Toolkit next generation (LTTng). It provides

precise, low impact, highly reentrant tracing and is used for

efficiently debugging large clusters [1] as well as narrowing

time constraints problems in real-time embedded

applications [2]. The information about the filesystem, inter-

process communication, system calls, memory management

and networking is efficiently collected, precisely time

stamped and saved at runtime. This information is used to

debug the monitored system and a large class of problems

may be detected, such as excessive disk swapping, excessive

threads migration, frequent writes of small data chunks to

disk, locking problems, security problems and many others.

Once the execution trace is available, the objective is thus to

automatically validate it against a pool of predefined

problematic patterns.

*Address correspondence to these authors at the Department of Computer

and Software Engineering, Ecole Polytechnique de Montreal, C.P. 6079,

Station Downtown, Montreal, Quebec, H3C 3A7, Canada;

Tel: +1 514 340 4711/4029; Fax: +1 514 340 3240;

E-mails: gabriel.matni@polymtl.ca, michel.dagenais@polymtl.ca

 The novelty of the approach lies in the application of

powerful patterns to detailed operating system level traces.

The applications run unmodified, with a minimal overhead

imposed by the operating system level tracing. A particular

emphasis was placed on performance, given the detailed

level of the traces (their size potentially in tens of gigabytes),

the increasing number of parallel cores in systems, and the

multiple patterns to be checked simultaneously.

 Execution traces can either be analysed on the fly in

memory or offline (on a different system or a posteriori on

the same system). On the fly analysis may obviate the need

to store on disk the execution trace and may be interesting

from an overhead point of view if a small number of

simplem patterns are searched for; in that case the pattern

searching may be faster than storing the trace. For many

applications, however, it is interesting to store the trace

anyway. The stored trace may indeed be used to dig into an

issue further when a problem is detected. Moreover, in many

cases, it may be desirable to search for a large number of

complex patterns without impacting much the performance

of the studied system. For these reasons, an offline system

was implemented. It should be noted, however, that the

algorithms presented in this article work in a single pass and

would thus be just as well applicable to on the fly analysis.

 The most popular kernel trace analysis tools that help

simplify the debugging task provide offline event filtering

and trace visualization. These tools include LTTV [3], QNX

Momentics [4] and Windriver Workbench [5]. Offline filters

are used to highlight the events of interest satisfying a set of

constraints. Visualizers, such as the Gantt chart of the

control flow view (e.g. LTTV [3]), help the developer seek

throughout the trace and determine visually any sort of

46 The Open Cybernetics & Systemics Journal, 2011, Volume 5 Matni and Dagenais

unexpected behavior. Even when these tools are used,

validating the existence of a set of problematic patterns in

one or several large traces remains a manual and time

consuming task. This motivated the development of an

automated approach to represent patterns of problematic

behavior and to automatically and simultaneously check for

their existence in one or several large traces.

1.1. Related Work

 Frequent pattern mining for kernel trace data [6] is a

recent work aiming at the detection of recurring runtime

execution patterns, such as inter-process communication

patterns. The work finds the set of all temporally proximal

events that occurred frequently in a trace. This helped

identify the processes that are heavy consumers of system

resources but still remain invisible to traditional tools such as

top. This approach is interesting but doesn't allow validating

the trace against a set of predefined patterns which may

occur very rarely in the trace.

 Systemtap [7] and DTrace [8] provide scripting

languages resembling C that are used to enable probe points

in the kernel (instrumentation sites) and to implement their

associated handlers. These handlers could be used to perform

run-time checking and to generate warnings when something

bad happens. The script file is translated into C code and

then compiled into a binary kernel module. These C-like

scripting languages do not provide a simple way to describe

complex patterns at a high level of abstraction. While this

approach implements the basic instrumentation mechanism,

it does not provide a framework to either perform pattern

searching or to store the event data in an execution trace for

later analysis.

 In parallel computing, many tools exist that are able to

automatically detect performance problems in MPI, OpenMP

or hybrid applications. These tools include Paradyn [9] and

EXPERT [10]. EXPERT instruments the application's source

code so that a trace file in the EPILOG format is generated

upon running the program. The performance patterns are

supplied to the tool and are written as Python classes

implementing a common interface, making them

exchangeable from the perspective of the tool. These pattern

classes register callback functions for every event of interest

and are capable of accessing additional events by retrieving

the updated state information or by following some event

dependencies. In the system that we propose, the patterns

coded using the State Machine Language can similarly

access the updated system state maintained by the LTTng

Viewer.

 Using Finite State Machines to describe patterns is found

in the field of network based Intrusion Detection,

particularly in misuse detection systems or scenario-based

systems. The State Transition Analysis Technique (STAT)

[11], developed at University of Santa Barbara, is used to

model computer penetrations with Finite State Machines

(FSM) patterns called attack scenarios. Each scenario is

composed of states and transitions. Transitions are triggered

by the occurrence of particular events on the network and

can take the system from an initial safe state to a final

compromised state. The main features of the STAT language

such as transition guards and actions are also found in the

State Machine Language [12] which we will be using in our

work because of its open-source implementation. By the

time the article [11] was written, around 35 attack scenarios

were described using the STAT language, and the authors

claim that no limit in the expressiveness of the language was

found. Furthermore, recent work has been done to

automatically translate the large collection of rules written

for SNORT - a popular intrusion detection system - into

STATL scenarios. We believe the STAT approach could be

very well applicable to kernel traces for many reasons. First

the objective is quite similar; in both cases, patterns are

composed of a sequence of events that could be used to

describe either security threats or performance problems.

Secondly, the automata-based approach provides an easy

way to describe complex patterns from multiple simple ones,

through the creation of synthetic events.

 Ragel [13] is a popular state machine compiler used

mainly to generate lexical analyzers and to validate user

input. The generated code tries to match patterns to the input,

favoring longer patterns over shorter ones. The Ragel

language provides four types of transition actions. They

allow the FSM developer to execute a particular action

whenever the state machine transitions from one state to

another. However, none of the provided actions allow us to

explicitly assign different actions for different transitions,

from any state in the FSM.

2. FAULTY BEHAVIOR

 While the system will be easily extensible at a later time,

it was important to start by collecting a representative set of

problematic patterns touching on several fields such as

security, software testing and performance debugging. For

sake of brevity, a representative subset is described here.

2.1. Security

 The SYN flood attack is a denial of service attack that

consists in flooding a server with half-open TCP

connections. Signs of a SYN flood attack may be found in a

kernel trace if the relevant events were instrumented. It

would be very inefficient to manually look for patterns

caused by such an attack, thus the interest in automating the

lookup process.

 Escaping the chroot jail is another attack type that can be

caught on a system: a privileged process (euid=0) may want

to confine its access to a subtree of the filesystem by calling

the chroot() system call, immediately followed by the call

chdir(“/”) to setup the chroot jail. If a process ever tries to

open a file after the call to chroot(), without a chdir(“/”), then

this is considered to be a security vulnerability [14]. Indeed,

a malicious user can trick the program to open the system

file ../../../../../etc/shadow, for example.

 Even though they are rare, Linux viruses do exist and

they could be detected on a traced system. The approach we

propose is different from the ones used in anti-virus

software. An instrumented Linux kernel records all

interactions with the operating system. This interaction,

Operating System Level Trace Analysis for Automated Problem Identification The Open Cybernetics & Systemics Journal, 2011, Volume 5 47

consisting in a sequence of system calls, includes the

behavior of possible viruses, to search for when analyzing

traces generated from production systems. For example, in

[15], the virus Linux.RST.B was observed generating the

following actions: it executes a temporary file “.para.tmp”

which creates three other processes; it opens and lists the

current directory and modifies the binary files in /bin. By

analyzing a kernel trace, it should be possible to detect a

viral behavior automatically, while diagnosing at the same

time some other security and performance problems.

2.2. Software Testing

 Shared resources often require locks to be held before

accessing them, to avoid race conditions. In the Linux

kernel, locking is more complex than in user-space, due to

the different states the kernel could be in (preemption

enabled, disabled, servicing an irq, etc.). Validating each and

every lock acquire has already been implemented in lockdep,

the Linux kernel lock validator [16]. For instance, it makes

sure at run-time that any spinlock being acquired when

interrupts are enabled has never been acquired previously in

an interrupt handler. The reason is that the interrupt could

happen at any time, in particular when the spinlock is

already held, deadlocking therefore the corresponding CPU.

Activating this option requires recompiling the kernel and

adds a continuous overhead on the system. Instead, using a

kernel trace and a posteriori analysis, the same kind of

validations may be performed.

 Another detectable programming bug consists in

accessing a file descriptor after it was closed. This illustrates

a more general class of programming errors where the usage

specifications state that two particular events are logically

and temporally connected.

2.3. Performance Debugging

 Some inefficiencies in software could be detected from

I/O events. For instance, frequent writes of small data

chunks to disk would impact the overall system performance

and are to be avoided. Similarly, reading the data that was

just written to disk, or reading twice the same data, or even

overwriting the data that was just written, are all signs of

inefficiencies that are visible in a kernel trace.

 Multimedia applications, and more generally soft real-

time applications, are characterized by implicit temporal

constraints that must be met to provide the desired QoS [17].

Assuming that tracing the kernel scheduler has a negligible

impact on the system, we can verify that temporal constraints

are satisfied for one or multiple real-time applications, and

whenever they are not, we can show what the system was

doing at that time.

3. AUTOMATA-BASED APPROACH

 We first describe in 3.1 the state machine language and

we show how it was used to model the three following

scenarios: chroot jail escape, locking validation and real-time

constraints checking.

3.1. SM Language

 Describing the various patterns using the SM Language

[12] is straightforward. Even though many existing

languages are capable of expressing the different scenarios

described in section 2, a state-transition language was

selected for the following reasons:

1. Simplicity and expressiveness: the language is easy

to use and provides enough features to express new,

yet to be defined, scenarios [11].

2. Domain independent: the language may be tailored

to support a wide range of patterns that relate to

different fields. In the Intrusion Detection field, state-

transition language is widely used to model attack

signatures [11, 18]. In model checking and Software

Security, it is equally used for scenario-oriented

modeling to examine security properties [19, 20] or to

verify and validate software use cases [21].

3. Synthetic events: the state-transition approach lets us

easily generate synthetic events from lower level

primary events [11]. Consider for instance the SYN

flood attack detection. We first model a half-open

TCP connection using the state machine shown in

Fig. (1). When the server receives a connection

request, the system moves to state S1. The server

sends the acknowledgment and a timer is started. If

the client sends back the acknowledgment, the system

returns to state S0. Otherwise, when the timeout

occurs, the system moves to S2 and a synthetic event

is generated called “halfopentcp”. Frequent

occurrences of this synthetic event would probably

mean that an attack is taking place. Synthetic events

are very useful when describing even more complex

patterns.

Fig. (1). Detecting half-open TCP connections.

 The State Machine Language supports the declaration of

a state and the transitions originating from it. Each transition

has a name, an optional argument list, an optional transition

guard, a destination state and a transition action. The guard is

a boolean expression written in the target language source

code and copied verbatim into the generated output. As such,

the guard can do much more than simply associate the

transition with an event type, it can contain arbitrarily

complex logic like testing properties of the event or of the

system state. If the expression is evaluated to true, then the

transition is triggered and the transition action is executed.

The destination state could be defined in another state

machine declared in another file for simplicity. The

transition actions are functions implemented in the target

48 The Open Cybernetics & Systemics Journal, 2011, Volume 5 Matni and Dagenais

language and could have a regular argument list. Similarly,

every state can have on-entry actions as well as on-exit

actions than could be useful to start/stop a timer or update

some internal data structures.

3.2. Escaping a Chroot Jail

 An automaton showing the sequence of system calls that

may result in a security violation is shown in Fig. (2). The

vulnerability is explained in 2.1. A call to chroot() brings the

system to state S1 and saves the process id. Furthermore, a

new FSM is forked in case a new chroot() call is issued by

another process. The FSM fork is initiated by the transition

action fork_fsm(). Any process issuing a successive call to

chdir(“/”), brings back the corresponding FSM to state S0,

whereas a call to open() brings it to S2 and generates a

warning. The machine transitions to a fourth Exit state, not

shown here, and it happens whenever the exit() call is issued

by the process.

Fig. (2). Escaping the chroot jail.

 We show in Table 1 a self explanatory code snippet of

the language describing state S1 from Fig. (2). From state

S1, two transitions are possible, chdir() and open(). If the

encountered event is a call to chdir, then the transition guard

(between square brackets) is evaluated. In this case, if the

functions same_pid() and check_new_dir() return true, then

the transition is triggered and the system moves back to state

S0. It is also possible to have a transition action (between

braces). In our example, the call to the function warning()

occurs only if the corresponding transition guard is evaluated

to true.

Table 1. SM Code Snippet

S1{

chdir(pid: int, newdir: char *)

 [same_pid(pid) && check_new_dir(newdir)]

 S0

open(pid: int)

 [same_pid(pid)]

 S2

 { warning(pid); destroy_fsm(); }

}

3.3. Locking Validation

 We generate in Fig. (3) an automaton that will validate a

subset of the kernel locking rules. The event irq_entry()

brings the system to state Irq_Handling and event irq_exit()

brings it back to its normal state. Any lock could either be

acquired from the normal state (S0 or Holding_Lock) or the

Irq_Handling state. If a lock being acquired when interrupts

are enabled has been previously acquired from the Irq_Handling

state, the system transitions to state Potential_Deadlock. The

reason is that once this lock is taken and before it gets

released, if the code is interrupted by the same handler which

tries to acquire the same lock, then a deadlock occurs.

Similarly, if a lock previously taken when irqs were on, is

now being acquired from an irq handler, then the system

should also transition to the state Potential_Deadlock.

 Suppose the system is in state Holding_Lock on a

particular processor, where a lock is being held on behalf of

a certain process. If this process gets scheduled out, then

there is another potential deadlock due to the fact that some

other process may require the same lock.

 Nested locks, taken on behalf of the same process could

deadlock the system if they are not taken in the right order.

When the system is in the state Holding_Lock, the arrival of

a new event lock_acquire would trigger the corresponding

transition. This results in a call to a function that generates

trees of lock dependencies implemented in a hashing table.

At the end of the analysis, if a cycle is found, then there is a

potential deadlock and the involved locks are shown. The

return address, which is a traced event argument, can help

identify the code section responsible for holding the lock.

 During our experiments, an interesting case was found in

function copy_pte_range(), in mm/memory.c in the Linux

kernel, which generated a cycle in our analysis. The

suspicious code sequence that caused the problem is

abstracted in Table 2. The function receives pointers to two

mm_struct structures and always locks the destination

page_table_lock spinlock, followed by the source lock. If

another CPU is doing the copy but with the reversed

parameters, then the locks would be taken in the opposite

order and a deadlock can occur. After further investigation,

we noticed that a call to this function is initiated by a call to

copy_process() in fork.c which is called when forking a

process. This function calls dup_mm() which allocates

memory for a new mm_struct becoming the dst_mm shown

in Table 2. Since no other processor could be using the

newly initialized structure as being the src_mm in function

copy_pte_range(), there is no potential deadlock. However,

this shows how our approach was useful to identify

suspicious code sequences.

Table 2. Suspicious Code Sequence

static int copy_pte_range(struct mm_struct *dst_mm,

 struct mm_struct *src_mm, ...)

{

 ...

 spinlock_t *src_ptl, *dst_ptl;

 ...

 spin_lock(dst_ptl);

 ...

 spin_lock_nested(src_ptl, ...);

 ...

}

3.4. Real-Time Constraints Checking

Operating System Level Trace Analysis for Automated Problem Identification The Open Cybernetics & Systemics Journal, 2011, Volume 5 49

 To support soft real-time applications, the kernel should

respect the application's temporal constraints and therefore a

predictable schedule is desired [17]. Such applications may

require periodic scheduling where the period is derived from

the frame rate of an audio/video stream, for example. We

show in Fig. (4) a detailed state machine that enables us to

check if the application's execution period has been

respected throughout the life of the trace. Whenever it's not,

we show the list of events that hindered the application's

scheduling.

 From state Sleeping, the transition schedule_in() brings

the FSM to the Running state and saves the event time

stamp; it also computes the difference between every two

consecutive schedule_in() events. If the result is greater than

a user specified threshold, a warning is generated. The event

time stamp displayed by the warning() call, can then be used

to reach and scrutinize the preceding events once the trace is

opened using the Linux Trace Toolkit Viewer (LTTV). From

the Running state, the event schedule_out() brings the FSM

back to the Sleeping state. The time stamp of this event is

also used to compute the assigned time slice for the

application so that the transition could also trigger a warning

when the time slice is less than expected.

4. IMPLEMENTATION

 We used the Linux Trace Toolkit LTTng, a low-impact,

open-source kernel tracer, to instrument the kernel events

required by the patterns description. We used the SMC

compiler to generate C code for the state machines written in

the SM language. The compiler is an open-source java

program that supports code generation in 14 different

languages.

 For every event required by a given pattern, the analyzer

registers callback functions with the trace reader and

visualizer program LTTV. The program reads the trace

sequentially in one pass. When a registered event is

encountered, the analyzer calls the corresponding transition

for every related state machine. There, if the transition guard

is evaluated to true, the transition action is executed before

entering the destination state and returning control to the

analyzer.

Fig. (3). Locking validation.

50 The Open Cybernetics & Systemics Journal, 2011, Volume 5 Matni and Dagenais

 In some cases, when a transition is triggered, a new FSM

of the same type needs to be forked. This is referred to as a

non-consuming transition type in STATL terminology (see

example in 3.2). Whenever required, a transition action can

request a fork from the analyzer, generating therefore a new

instance of the FSM.

Fig. (4). Real-time constraints checking.

 In other cases, such as the locking validation pattern, one

finite state machine per CPU is enough. There, the analyzer

determines on which CPU the event occurred, and only calls

the transition of the FSM for that particular CPU.

 The FSM approach offers great flexibility to model,

update and optimize one or several patterns. When we

instrumented the events of interest for the locking validation

pattern, we noticed that the irq entry and exit events are not

needed because the information could be determined from

the lock_acquire() event. At this point, we simply eliminated

the Irq_Handling state from our FSM.

5. PERFORMANCE

 The performance of the proposed trace analysis

procedure should depend on the number of events in a trace

(i.e. trace size) and the number of possible transitions to

evaluate in simultaneous active finite state machines (the

number of coexisting finite state machines and the frequency

of relevant events that may trigger a transition). We

instrumented the Linux kernel version 2.6.26 using LTTng

and the tests were performed on a Pentium 4 with 512 MB of

RAM. For the tests, several paremeters were varied

independently in order to evaluate their effect on

performance.

 In the first test, three different patterns were searched in

traces of varying size (500MB, 1GB, 1.5GB, 2GB). Table 3

presents the execution time of our analyzer to look up 3

different patterns: real-time constraints, file descriptors and

the chroot patterns. These results show that the execution

time is linear with respect to the trace size. The number of

coexisting finite state machines depends on the pattern in

question. For instance, checking the file descriptors usage

required one FSM per process accessing one file descriptor,

whereas the chroot pattern needs one FSM per process, the

locking validation pattern needs one FSM per CPU, and the

real-time checking requires just one FSM for the Movie

Player (mplayer) process.

 Interestingly, the execution time for searching each

pattern does not vary much and even checking for all three

patterns simultaneously is only slightly longer. This is

explained by the fact that reading through the whole trace, to

find relevant events, already takes a significant amount of

time. Then, depending on the patterns searched, additional

execution time is required to run relevant events through the

simultaneous FSMs.

 Thus, if the time to read through the 500MB trace is C

and the time to search in FSMs is respectively for patterns

real-time, RT, file descriptors, FD, and chroot, CH, we can

isolate each component using the results for searching each

pattern and then for searching simultaneously for all

patterns. Given, from the first column of Table 3, that

C + RT = 55s,C + FD = 57s,C + CH = 55,C + RT + FD + CH = 67 ,

we can deduce that C = 50s,RT = 5s,FD = 7s,CH = 5s .

 We could have expected that the file descriptor pattern,

requiring one FSM per process accessing one file descriptor,

would be significantly more costly than the real-time

constraint, requiring a single FSM. However, the execution

time is similar due to the fact that event sched_schedule()

(relevant for the real-time pattern) was occurring much more

frequently than events read() and write() (relevant for the file

descriptor pattern).

Table 3. Performance Results

Trace Size 500 MB 1 GB 1.5 GB 2 GB

rt_checking 55s 117s 168s 252s

fd_checking 57s 119s 166s 266s

chroot_checking 55s 108s 166s 266s

all 67s 123s 184s 279s

 Table 4 presents the performance of the analyzer when

validating the file descriptor pattern against traces of

different sizes, and compares it with the analyzer's

performance without invoking the FSMs, but only

registering empty callback functions for the 6 events of

interest. This is useful to isolate the time required to check

the patterns from the time needed simply to get the relevant

events from the trace. In addition, two interesting metrics are

provided with this test, the number of relevant events and the

number of simultaneously active FSMs.

 The traces used for this test were generated using two

different loads. The first 4 traces were generated while

running dbench as a server for 1 client. Dbench is a widely

used file oriented benchmark. It recreates the file operations

required on a typical file server to serve desktop clients. The

last trace was generated while the GNU C Compiler, gcc

v.4.2.0, was compiling itself. The relevant events for the file

descriptor pattern are the following system calls: close(),

open(), read(), write() and dup(), as well as the

process_exit() kernel event. The slowdown for each test is

computed by comparing the execution time between the two

configurations of the analyzer (empty callbacks on relevant

events versus checking the patterns using the relevant

events).

 The analysis time for the same trace length differs

significantly between the two tests, dbench vs gcc. Indeed,

Operating System Level Trace Analysis for Automated Problem Identification The Open Cybernetics & Systemics Journal, 2011, Volume 5 51

the slowdown was much higher for the gcc trace, even

though it contained fewer relevant events than the other

traces of similar size. The computed slowdown suggests a

direct correlation with the maximum number of coexisting

finite state machines handled by the analyzer. For instance,

the gcc compilation generated much more (around 50 times)

coexisting FSMs than running one dbench client, due to the

numerous processes (accessing different file descriptors)

generated by the compilation makefile. This resulted in a

larger impact on the analyzer's performance.

 In the third test, the trace size was fixed to 500 MB and

the number of dbench clients varied from 1 to 20. The

number of clients is directly proportional to the maximum

number of coexisting FSMs during the analysis. The results

in Fig. (5) show the slowdown percentage with respect to the

maximum number of coexisting FSMs in the analyzer, for

traces of the same size. The slowdown is directly

proportional to the maximum number of FSMs handled by

the analyzer. This is expected because the analyzer invokes

sequentially all the FSMs in the list for every relevant event,

whether the event is needed at the FSM's current state or not.

Fig. (5). Fixing trace size to 500MB, varying the number of dbench
clients.

 In a separate test, the performance of the pattern checker,

the code generated from the State Machine Language

description, was evaluated using the locking validation

pattern. The locking validation pattern is indeed most

demanding because of its complexity and very high

frequency of locking and unlocking events. A hand-written

locking validation pattern checker was written in C. It stores

the locking state and updates it at each locking and

unlocking event. Its algorithmic complexity is expected to be

the same as the checker generated from a higher level SML

description. However, being hand-written and statically

linked as a dedicated application, it avoids some of the

indirection caused by the more generic pattern checking

machinery.

 Interestingly, the performance of the generated FSM

checker was only 4.5% slower than the dedicated hand-

written version for the locking validation pattern, a worst-

case most demanding pattern. It was expected that a hand-

written checker would be faster, especially for the locking

validation pattern. However, the small difference is, in our

opinion, easily offset by the gain provided by the ability to

model patterns at a higher level.

6. CONCLUSION

 We presented an automata-based approach to describe

some generic patterns of problematic behavior that might

occur on production systems. The generated finite state

machines can be easily maintained, expanded or even be

used as synthetic events to model more complex scenarios.

We implemented an analyzer that validates the existence of

such patterns simultaneously in large traces and in one pass.

 The main contribution of this work was to design,

implement and demonstrate a working system capable of

obtaining a low overhead detailed execution trace of a

production server, and efficiently check the resulting trace

for numerous patterns in near real-time. This is possible

because of the extremely efficient algorithms used both for

the low overhead tracing and for the pattern detection. The

proposed architecture and pattern language are efficient and

simple to use, and have been demonstrated with a number of

real and highly representative patterns.

 The analyzer's performance depends greatly on the nature

of the patterns being validated. When dealing with a large

number of FSM instances of the same pattern, the analysis

time is directly proportional to the number of coexisting

FSMs and the number of relevant events. By carefully

selecting which events to trace, it may be possible to

optimise the execution time. For instance, the first version of

Table 4. Slowdown of the Analyzer Due to FSM Invocation with Respect to its Performance with Empty Callbacks

 Trace Size Relevant Events (Millions) Coexisting FSMs Ex. Time Invoking FSMs Ex. Time Empty Callbacks Slowdown

500 MB 2.4 75 51s 50s 6.00%

1 GB 4.8 72 92s 86s 6.98%

1.5 GB 6.9 104 143s 114s 25.44%

2.3 GB 11.1 72 215s 189s 13.75%

3 GB 14.1 104 285s 250s 14.00%

DBench

1 client

4.5 GB 18.5 83 369s 338s 8.87%

GCC 2.5 GB 5.7 5241 853s 227s 275.77%

52 The Open Cybernetics & Systemics Journal, 2011, Volume 5 Matni and Dagenais

the locking validation pattern required the events

enable_irq() and disable_irq() to deduce in which context a

given lock was acquired. It turned out that this information is

available at the site where the lock is being acquired. This

reduced the number of events to trace, resulting in a smaller

trace and a faster analysis.

 Another factor impacting the performance of the analyzer

is the following; consider the locking validation pattern in

Fig. (3). Even when the current FSM state is S0, every

encountered sched_schedule() event would result in calling

the corresponding transition which is irrelevant in state S0.

This will call a default transition which maintains the current

state and returns control to the analyzer. Instead, the analyzer

could have skipped this step since, from the current state,

there is no transition sensitive to the event sched_schedule().

This could be achieved by dynamically adjusting the

definition of relevant event depending on the current state

for a FSM; the analyzer would compute beforehand the list

of events leading to state transitions for each state.

 The proposed approach is highly parallelizable. It could

be used for online near real-time pattern matching of an

extensive set of patterns, for monitoring very sensitive

servers (e.g. high security applications, extensive test

procedures). Further explorations would be useful to support

the definition and use of synthetic events. This will allow

synthesizing more complex scenarios from multiple simple

ones.

ACKNOWLEDGEMENT

 The financial support of NSERC is gratefully

acknowledged.

REFERENCES

[1] M. Bligh, M. Desnoyers, and R. Schultz, “Linux Kernel Debugging

on Google-sized clusters,” In: Proceedings of the 2007 Linux
Symposium, Ontario: Canada, June 2007, pp. 29-40.

[2] M. Desnoyers and M. Dagenais, “Low disturbance embedded
system tracing with Linux Trace Toolkit next generation,” In:

Proceedings of the 2006 Consumer Electronics Linux Forum,
California: USA, pp. 1-9, April 2006.

[3] M. Desnoyers and M. Dagenais, “The Linux Trace Toolkit, next
generation.” [http://lttng.org] Retrieved on: 2009-03-10.

[4] QNX, QNX Momentics,” [http://www.qnx.com] Retrieved on:

2009-03-12.
[5] WindRiver, WindRiver Workbench,” [http://www.windriver.com/

products/workbench] Retrieved on: 2009-03-12.
[6] C. LaRosa, L. Xiong, and K. Mandelberg, “Frequent Pattern

Mining for Kernel Trace Data,” In: Proceedings of the 2008 ACM
symposium on Applied computing, pp. 880-885, 2008.

[7] F. C. Eigler, “Problem Solving With Systemtap,” In: Proceedings
of the Ottawa Linux Symposium, pp. 261-268, 2006.

[8] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal, “Dynamic
Instrumentation of Production Systems,” In: Proceedings of the

USENIX Annual Technical Conference, Boston: USA, pp. 15-28,
June 2004.

[9] B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth, B. Irving, K.
Karavanic, K. Kunchithapadam, and T. Newhall, “The paradyn

parallel performance measurement tool,” Computer, vol. 28, no. 11,
pp. 37-46, 1995.

[10] F. Wolf, B. Mohr, J. Dongarra, and S. Moore, “Efficient Pattern
Search in Large Traces Through Successive Renement,” In: Euro-

Par 2004 Parallel Processing, Springer, pp. 47-54, 2004.
[11] S. T. Eckmann, G. Vigna, and R. A. Kemmerer, “STATL: An

attack language for state-based intrusion detection,” Journal of
Comput. Security, vol. 10, no. 1-2, pp. 71-103, 2002.

[12] C. Rapp, “The State Machine Compiler.” [http://smc.sourceforge.
net] Retrieved on: 2009-01-22.

[13] A. Thurston, “Ragel State Machine Compiler.” [http://www.compl
ang.org/ragel] Retrieved on: 2009-03-07.

[14] H. Chen, D. Dean, and D. Wagner, “Model Checking One Million
Lines of C Code,” In: Proceedings of the 11th Annual Network and

Distributed System Security Symposium, pp. 171-185, 2004.
[15] M. Desnoyers and M. Dagenais, “Tracing for Hardware, Driver,

and Binary Reverse Engineering in Linux,” CodeBreakers J., vol.
4, no. 1, 2007.

[16] J. Corbet, “The kernel lock validator.” [http://lwn.net/Articles/
185666] Retrieved on: 2009-03-10.

[17] L. Abeni, A. Goel, C. Krasic, J. Snow, and J. Walpole, “A
Measurement-Based Analysis of the Real-Time Performance of

Linux,” In: Proceedings of the Eighth IEEE Real-Time and
Embedded Technology and Applications Symposium, IEEE, pp.

133-142, 2002.
[18] G. Vigna, S. T. Eckmann, and R. A. Kemmerer, “The STAT Tool

Suite,” In: DARPA Information Survivability Conference &
Exposition, pp. 1046-1055, 2000.

[19] H. Chen and D. Wagner, “MOPS: an Infrastucture for Examining
Security Properties of Software,” In: Proceedings of the 9th ACM

Conference on Computer and Communications Security, ACM, pp.
235-244, 2002.

[20] M. Christodorescu and S. Jha, “Static Analysis of Executables to
Detect Malicious Patterns,” In: Proceedings of the 12th USENIX

Security Symposium, (USENIX Association), pp. 169-186, 2003.
[21] M. Barnett, W. Grieskamp, Y. Gurevich, W. Schulte, N. Tillmann,

and M. Veanes, “Scenario-oriented Modeling in AsmL and its
Intstrumentation for Testing,” In: Proceedings 2nd Int. Workshop on

Scenarios and State Machines (SCESM03), pp. 8-14, 2003.

Received: February 2, 2011 Revised: March 29, 2011 Accepted: March 30, 2011

© Matni and Dagenais; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-

nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

