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Abstract: Performance bottlenecks, malicious activities, programming bugs and other kinds of problematic behavior 

could be accurately detected on production systems if the relevant events were being monitored. This could be achieved 

through kernel level tracing where every time a relevant event occurs, the information is analysed or saved in a trace file 

to be inspected during post-mortem analysis. While collecting the information from the kernel has a very low impact, the 

offline analysis is typically performed remotely with no overhead on the system whatsoever. 

This article presents an automata-based approach for analyzing traces generated by the kernel of an operating system. 

Some typical patterns of problematic behavior are identified and described using the State Machine Language. These 

patterns are fed into an offline analyzer which efficiently and simultaneously checks for their occurrences even in traces of 

several gigabytes. The analyzer achieves a linear performance with respect to the trace size. The remaining factors 

impacting its performance are also discussed. The main interest of the proposed approach is the efficiency obtained in 

monitoring such extensive and detailed execution traces for a very large number of simultaneous possible patterns of 

problematic behavior. 
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1. INTRODUCTION 

 By carefully examining execution traces of a computer 

system, experts can detect problematic behavior caused by 

software design defects, inefficiencies as well as malicious 

activities. Kernel tracing can often reveal the main source of 

such problems. Tracing consists in instrumenting the kernel 

code to precisely record its behavior at execution time. 

Typical kernel events traced include all system calls from 

processes, scheduling events, interrupts, I/O operations and 

may include locking operations. 

 It is now possible to achieve low overhead, low 

disturbance tracing of multi-core Linux systems with the 

Linux Trace Toolkit next generation (LTTng). It provides 

precise, low impact, highly reentrant tracing and is used for 

efficiently debugging large clusters [1] as well as narrowing 

time constraints problems in real-time embedded 

applications [2]. The information about the filesystem, inter-

process communication, system calls, memory management 

and networking is efficiently collected, precisely time 

stamped and saved at runtime. This information is used to 

debug the monitored system and a large class of problems 

may be detected, such as excessive disk swapping, excessive 

threads migration, frequent writes of small data chunks to 

disk, locking problems, security problems and many others. 

Once the execution trace is available, the objective is thus to 

automatically validate it against a pool of predefined 

problematic patterns. 
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 The novelty of the approach lies in the application of 

powerful patterns to detailed operating system level traces. 

The applications run unmodified, with a minimal overhead 

imposed by the operating system level tracing. A particular 

emphasis was placed on performance, given the detailed 

level of the traces (their size potentially in tens of gigabytes), 

the increasing number of parallel cores in systems, and the 

multiple patterns to be checked simultaneously. 

 Execution traces can either be analysed on the fly in 

memory or offline (on a different system or a posteriori on 

the same system). On the fly analysis may obviate the need 

to store on disk the execution trace and may be interesting 

from an overhead point of view if a small number of 

simplem patterns are searched for; in that case the pattern 

searching may be faster than storing the trace. For many 

applications, however, it is interesting to store the trace 

anyway. The stored trace may indeed be used to dig into an 

issue further when a problem is detected. Moreover, in many 

cases, it may be desirable to search for a large number of 

complex patterns without impacting much the performance 

of the studied system. For these reasons, an offline system 

was implemented. It should be noted, however, that the 

algorithms presented in this article work in a single pass and 

would thus be just as well applicable to on the fly analysis. 

 The most popular kernel trace analysis tools that help 

simplify the debugging task provide offline event filtering 

and trace visualization. These tools include LTTV [3], QNX 

Momentics [4] and Windriver Workbench [5]. Offline filters 

are used to highlight the events of interest satisfying a set of 

constraints. Visualizers, such as the Gantt chart of the 

control flow view (e.g. LTTV [3]), help the developer seek 

throughout the trace and determine visually any sort of 
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unexpected behavior. Even when these tools are used, 

validating the existence of a set of problematic patterns in 

one or several large traces remains a manual and time 

consuming task. This motivated the development of an 

automated approach to represent patterns of problematic 

behavior and to automatically and simultaneously check for 

their existence in one or several large traces. 

1.1. Related Work 

 Frequent pattern mining for kernel trace data [6] is a 

recent work aiming at the detection of recurring runtime 

execution patterns, such as inter-process communication 

patterns. The work finds the set of all temporally proximal 

events that occurred frequently in a trace. This helped 

identify the processes that are heavy consumers of system 

resources but still remain invisible to traditional tools such as 

top. This approach is interesting but doesn't allow validating 

the trace against a set of predefined patterns which may 

occur very rarely in the trace. 

 Systemtap [7] and DTrace [8] provide scripting 

languages resembling C that are used to enable probe points 

in the kernel (instrumentation sites) and to implement their 

associated handlers. These handlers could be used to perform 

run-time checking and to generate warnings when something 

bad happens. The script file is translated into C code and 

then compiled into a binary kernel module. These C-like 

scripting languages do not provide a simple way to describe 

complex patterns at a high level of abstraction. While this 

approach implements the basic instrumentation mechanism, 

it does not provide a framework to either perform pattern 

searching or to store the event data in an execution trace for 

later analysis. 

 In parallel computing, many tools exist that are able to 

automatically detect performance problems in MPI, OpenMP 

or hybrid applications. These tools include Paradyn [9] and 

EXPERT [10]. EXPERT instruments the application's source 

code so that a trace file in the EPILOG format is generated 

upon running the program. The performance patterns are 

supplied to the tool and are written as Python classes 

implementing a common interface, making them 

exchangeable from the perspective of the tool. These pattern 

classes register callback functions for every event of interest 

and are capable of accessing additional events by retrieving 

the updated state information or by following some event 

dependencies. In the system that we propose, the patterns 

coded using the State Machine Language can similarly 

access the updated system state maintained by the LTTng 

Viewer. 

 Using Finite State Machines to describe patterns is found 

in the field of network based Intrusion Detection, 

particularly in misuse detection systems or scenario-based 

systems. The State Transition Analysis Technique (STAT) 

[11], developed at University of Santa Barbara, is used to 

model computer penetrations with Finite State Machines 

(FSM) patterns called attack scenarios. Each scenario is 

composed of states and transitions. Transitions are triggered 

by the occurrence of particular events on the network and 

can take the system from an initial safe state to a final 

compromised state. The main features of the STAT language 

such as transition guards and actions are also found in the 

State Machine Language [12] which we will be using in our 

work because of its open-source implementation. By the 

time the article [11] was written, around 35 attack scenarios 

were described using the STAT language, and the authors 

claim that no limit in the expressiveness of the language was 

found. Furthermore, recent work has been done to 

automatically translate the large collection of rules written 

for SNORT - a popular intrusion detection system - into 

STATL scenarios. We believe the STAT approach could be 

very well applicable to kernel traces for many reasons. First 

the objective is quite similar; in both cases, patterns are 

composed of a sequence of events that could be used to 

describe either security threats or performance problems. 

Secondly, the automata-based approach provides an easy 

way to describe complex patterns from multiple simple ones, 

through the creation of synthetic events. 

 Ragel [13] is a popular state machine compiler used 

mainly to generate lexical analyzers and to validate user 

input. The generated code tries to match patterns to the input, 

favoring longer patterns over shorter ones. The Ragel 

language provides four types of transition actions. They 

allow the FSM developer to execute a particular action 

whenever the state machine transitions from one state to 

another. However, none of the provided actions allow us to 

explicitly assign different actions for different transitions, 

from any state in the FSM. 

2. FAULTY BEHAVIOR 

 While the system will be easily extensible at a later time, 

it was important to start by collecting a representative set of 

problematic patterns touching on several fields such as 

security, software testing and performance debugging. For 

sake of brevity, a representative subset is described here. 

2.1. Security 

 The SYN flood attack is a denial of service attack that 

consists in flooding a server with half-open TCP 

connections. Signs of a SYN flood attack may be found in a 

kernel trace if the relevant events were instrumented. It 

would be very inefficient to manually look for patterns 

caused by such an attack, thus the interest in automating the 

lookup process. 

 Escaping the chroot jail is another attack type that can be 

caught on a system: a privileged process (euid=0) may want 

to confine its access to a subtree of the filesystem by calling 

the chroot() system call, immediately followed by the call 

chdir(“/”) to setup the chroot jail. If a process ever tries to 

open a file after the call to chroot(), without a chdir(“/”), then 

this is considered to be a security vulnerability [14]. Indeed, 

a malicious user can trick the program to open the system 

file ../../../../../etc/shadow, for example. 

 Even though they are rare, Linux viruses do exist and 

they could be detected on a traced system. The approach we 

propose is different from the ones used in anti-virus 

software. An instrumented Linux kernel records all 

interactions with the operating system. This interaction, 
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consisting in a sequence of system calls, includes the 

behavior of possible viruses, to search for when analyzing 

traces generated from production systems. For example, in 

[15], the virus Linux.RST.B was observed generating the 

following actions: it executes a temporary file “.para.tmp” 

which creates three other processes; it opens and lists the 

current directory and modifies the binary files in /bin. By 

analyzing a kernel trace, it should be possible to detect a 

viral behavior automatically, while diagnosing at the same 

time some other security and performance problems. 

2.2. Software Testing 

 Shared resources often require locks to be held before 

accessing them, to avoid race conditions. In the Linux 

kernel, locking is more complex than in user-space, due to 

the different states the kernel could be in (preemption 

enabled, disabled, servicing an irq, etc.). Validating each and 

every lock acquire has already been implemented in lockdep, 

the Linux kernel lock validator [16]. For instance, it makes 

sure at run-time that any spinlock being acquired when 

interrupts are enabled has never been acquired previously in 

an interrupt handler. The reason is that the interrupt could 

happen at any time, in particular when the spinlock is 

already held, deadlocking therefore the corresponding CPU. 

Activating this option requires recompiling the kernel and 

adds a continuous overhead on the system. Instead, using a 

kernel trace and a posteriori analysis, the same kind of 

validations may be performed. 

 Another detectable programming bug consists in 

accessing a file descriptor after it was closed. This illustrates 

a more general class of programming errors where the usage 

specifications state that two particular events are logically 

and temporally connected. 

2.3. Performance Debugging 

 Some inefficiencies in software could be detected from 

I/O events. For instance, frequent writes of small data 

chunks to disk would impact the overall system performance 

and are to be avoided. Similarly, reading the data that was 

just written to disk, or reading twice the same data, or even 

overwriting the data that was just written, are all signs of 

inefficiencies that are visible in a kernel trace. 

 Multimedia applications, and more generally soft real-

time applications, are characterized by implicit temporal 

constraints that must be met to provide the desired QoS [17]. 

Assuming that tracing the kernel scheduler has a negligible 

impact on the system, we can verify that temporal constraints 

are satisfied for one or multiple real-time applications, and 

whenever they are not, we can show what the system was 

doing at that time. 

3. AUTOMATA-BASED APPROACH 

 We first describe in 3.1 the state machine language and 

we show how it was used to model the three following 

scenarios: chroot jail escape, locking validation and real-time 

constraints checking. 

 

 

3.1. SM Language 

 Describing the various patterns using the SM Language 

[12] is straightforward. Even though many existing 

languages are capable of expressing the different scenarios 

described in section 2, a state-transition language was 

selected for the following reasons: 

1. Simplicity and expressiveness: the language is easy 

to use and provides enough features to express new, 

yet to be defined, scenarios [11]. 

2. Domain independent: the language may be tailored 

to support a wide range of patterns that relate to 

different fields. In the Intrusion Detection field, state-

transition language is widely used to model attack 

signatures [11, 18]. In model checking and Software 

Security, it is equally used for scenario-oriented 

modeling to examine security properties [19, 20] or to 

verify and validate software use cases [21]. 

3. Synthetic events: the state-transition approach lets us 

easily generate synthetic events from lower level 

primary events [11]. Consider for instance the SYN 

flood attack detection. We first model a half-open 

TCP connection using the state machine shown in 

Fig. (1). When the server receives a connection 

request, the system moves to state S1. The server 

sends the acknowledgment and a timer is started. If 

the client sends back the acknowledgment, the system 

returns to state S0. Otherwise, when the timeout 

occurs, the system moves to S2 and a synthetic event 

is generated called “halfopentcp”. Frequent 

occurrences of this synthetic event would probably 

mean that an attack is taking place. Synthetic events 

are very useful when describing even more complex 

patterns. 

 

Fig. (1). Detecting half-open TCP connections. 

 The State Machine Language supports the declaration of 

a state and the transitions originating from it. Each transition 

has a name, an optional argument list, an optional transition 

guard, a destination state and a transition action. The guard is 

a boolean expression written in the target language source 

code and copied verbatim into the generated output. As such, 

the guard can do much more than simply associate the 

transition with an event type, it can contain arbitrarily 

complex logic like testing properties of the event or of the 

system state. If the expression is evaluated to true, then the 

transition is triggered and the transition action is executed. 

The destination state could be defined in another state 

machine declared in another file for simplicity. The 

transition actions are functions implemented in the target  
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language and could have a regular argument list. Similarly, 

every state can have on-entry actions as well as on-exit 

actions than could be useful to start/stop a timer or update 

some internal data structures. 

3.2. Escaping a Chroot Jail 

 An automaton showing the sequence of system calls that 

may result in a security violation is shown in Fig. (2). The 

vulnerability is explained in 2.1. A call to chroot() brings the 

system to state S1 and saves the process id. Furthermore, a 

new FSM is forked in case a new chroot() call is issued by 

another process. The FSM fork is initiated by the transition 

action fork_fsm(). Any process issuing a successive call to 

chdir(“/”), brings back the corresponding FSM to state S0, 

whereas a call to open() brings it to S2 and generates a 

warning. The machine transitions to a fourth Exit state, not 

shown here, and it happens whenever the exit() call is issued 

by the process. 

 

Fig. (2). Escaping the chroot jail. 

 We show in Table 1 a self explanatory code snippet of 

the language describing state S1 from Fig. (2). From state 

S1, two transitions are possible, chdir() and open(). If the 

encountered event is a call to chdir, then the transition guard 

(between square brackets) is evaluated. In this case, if the 

functions same_pid() and check_new_dir() return true, then 

the transition is triggered and the system moves back to state 

S0. It is also possible to have a transition action (between 

braces). In our example, the call to the function warning() 

occurs only if the corresponding transition guard is evaluated 

to true. 

Table 1. SM Code Snippet 

 

S1{ 

chdir(pid: int, newdir: char *) 

    [same_pid(pid) && check_new_dir(newdir)] 

    S0 

 

open(pid: int) 

    [same_pid(pid)] 

    S2 

    { warning(pid); destroy_fsm(); } 

} 

 

3.3. Locking Validation 

 We generate in Fig. (3) an automaton that will validate a 

subset of the kernel locking rules. The event irq_entry() 

brings the system to state Irq_Handling and event irq_exit() 

brings it back to its normal state. Any lock could either be 

acquired from the normal state (S0 or Holding_Lock) or the 

Irq_Handling state. If a lock being acquired when interrupts 

are enabled has been previously acquired from the Irq_Handling 

state, the system transitions to state Potential_Deadlock. The 

reason is that once this lock is taken and before it gets 

released, if the code is interrupted by the same handler which 

tries to acquire the same lock, then a deadlock occurs. 

Similarly, if a lock previously taken when irqs were on, is 

now being acquired from an irq handler, then the system 

should also transition to the state Potential_Deadlock. 

 Suppose the system is in state Holding_Lock on a 

particular processor, where a lock is being held on behalf of 

a certain process. If this process gets scheduled out, then 

there is another potential deadlock due to the fact that some 

other process may require the same lock. 

 Nested locks, taken on behalf of the same process could 

deadlock the system if they are not taken in the right order. 

When the system is in the state Holding_Lock, the arrival of 

a new event lock_acquire would trigger the corresponding 

transition. This results in a call to a function that generates 

trees of lock dependencies implemented in a hashing table. 

At the end of the analysis, if a cycle is found, then there is a 

potential deadlock and the involved locks are shown. The 

return address, which is a traced event argument, can help 

identify the code section responsible for holding the lock. 

 During our experiments, an interesting case was found in 

function copy_pte_range(), in mm/memory.c in the Linux 

kernel, which generated a cycle in our analysis. The 

suspicious code sequence that caused the problem is 

abstracted in Table 2. The function receives pointers to two 

mm_struct structures and always locks the destination 

page_table_lock spinlock, followed by the source lock. If 

another CPU is doing the copy but with the reversed 

parameters, then the locks would be taken in the opposite 

order and a deadlock can occur. After further investigation, 

we noticed that a call to this function is initiated by a call to 

copy_process() in fork.c which is called when forking a 

process. This function calls dup_mm() which allocates 

memory for a new mm_struct becoming the dst_mm shown 

in Table 2. Since no other processor could be using the 

newly initialized structure as being the src_mm in function 

copy_pte_range(), there is no potential deadlock. However, 

this shows how our approach was useful to identify 

suspicious code sequences. 

Table 2. Suspicious Code Sequence 

 

static int copy_pte_range(struct mm_struct *dst_mm, 

  struct mm_struct *src_mm, ...) 

{ 

    ... 

    spinlock_t *src_ptl, *dst_ptl; 

    ... 

    spin_lock(dst_ptl); 

    ... 

    spin_lock_nested(src_ptl, ...); 

    ... 

} 

 

3.4. Real-Time Constraints Checking 
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 To support soft real-time applications, the kernel should 

respect the application's temporal constraints and therefore a 

predictable schedule is desired [17]. Such applications may 

require periodic scheduling where the period is derived from 

the frame rate of an audio/video stream, for example. We 

show in Fig. (4) a detailed state machine that enables us to 

check if the application's execution period has been 

respected throughout the life of the trace. Whenever it's not, 

we show the list of events that hindered the application's 

scheduling. 

 From state Sleeping, the transition schedule_in() brings 

the FSM to the Running state and saves the event time 

stamp; it also computes the difference between every two 

consecutive schedule_in() events. If the result is greater than 

a user specified threshold, a warning is generated. The event 

time stamp displayed by the warning() call, can then be used 

to reach and scrutinize the preceding events once the trace is 

opened using the Linux Trace Toolkit Viewer (LTTV). From 

the Running state, the event schedule_out() brings the FSM 

back to the Sleeping state. The time stamp of this event is 

also used to compute the assigned time slice for the 

application so that the transition could also trigger a warning 

when the time slice is less than expected. 

4. IMPLEMENTATION 

 We used the Linux Trace Toolkit LTTng, a low-impact, 

open-source kernel tracer, to instrument the kernel events 

required by the patterns description. We used the SMC 

compiler to generate C code for the state machines written in 

the SM language. The compiler is an open-source java 

program that supports code generation in 14 different 

languages. 

 For every event required by a given pattern, the analyzer 

registers callback functions with the trace reader and 

visualizer program LTTV. The program reads the trace 

sequentially in one pass. When a registered event is 

encountered, the analyzer calls the corresponding transition 

for every related state machine. There, if the transition guard 

is evaluated to true, the transition action is executed before 

entering the destination state and returning control to the 

analyzer. 

 

Fig. (3). Locking validation. 
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 In some cases, when a transition is triggered, a new FSM 

of the same type needs to be forked. This is referred to as a 

non-consuming transition type in STATL terminology (see 

example in 3.2). Whenever required, a transition action can 

request a fork from the analyzer, generating therefore a new 

instance of the FSM. 

 

Fig. (4). Real-time constraints checking. 

 In other cases, such as the locking validation pattern, one 

finite state machine per CPU is enough. There, the analyzer 

determines on which CPU the event occurred, and only calls 

the transition of the FSM for that particular CPU. 

 The FSM approach offers great flexibility to model, 

update and optimize one or several patterns. When we 

instrumented the events of interest for the locking validation 

pattern, we noticed that the irq entry and exit events are not 

needed because the information could be determined from 

the lock_acquire() event. At this point, we simply eliminated 

the Irq_Handling state from our FSM. 

5. PERFORMANCE 

 The performance of the proposed trace analysis 

procedure should depend on the number of events in a trace 

(i.e. trace size) and the number of possible transitions to 

evaluate in simultaneous active finite state machines (the 

number of coexisting finite state machines and the frequency 

of relevant events that may trigger a transition). We 

instrumented the Linux kernel version 2.6.26 using LTTng 

and the tests were performed on a Pentium 4 with 512 MB of 

RAM. For the tests, several paremeters were varied 

independently in order to evaluate their effect on 

performance. 

 In the first test, three different patterns were searched in 

traces of varying size (500MB, 1GB, 1.5GB, 2GB). Table 3 

presents the execution time of our analyzer to look up 3 

different patterns: real-time constraints, file descriptors and 

the chroot patterns. These results show that the execution 

time is linear with respect to the trace size. The number of 

coexisting finite state machines depends on the pattern in 

question. For instance, checking the file descriptors usage 

required one FSM per process accessing one file descriptor, 

whereas the chroot pattern needs one FSM per process, the 

locking validation pattern needs one FSM per CPU, and the 

real-time checking requires just one FSM for the Movie 

Player (mplayer) process. 

 Interestingly, the execution time for searching each 

pattern does not vary much and even checking for all three 

patterns simultaneously is only slightly longer. This is 

explained by the fact that reading through the whole trace, to 

find relevant events, already takes a significant amount of 

time. Then, depending on the patterns searched, additional 

execution time is required to run relevant events through the 

simultaneous FSMs. 

 Thus, if the time to read through the 500MB trace is C 

and the time to search in FSMs is respectively for patterns 

real-time, RT, file descriptors, FD, and chroot, CH, we can 

isolate each component using the results for searching each 

pattern and then for searching simultaneously for all 

patterns. Given, from the first column of Table 3, that 

C + RT = 55s,C + FD = 57s,C + CH = 55,C + RT + FD + CH = 67 , 

we can deduce that C = 50s,RT = 5s,FD = 7s,CH = 5s . 

 We could have expected that the file descriptor pattern, 

requiring one FSM per process accessing one file descriptor, 

would be significantly more costly than the real-time 

constraint, requiring a single FSM. However, the execution 

time is similar due to the fact that event sched_schedule() 

(relevant for the real-time pattern) was occurring much more 

frequently than events read() and write() (relevant for the file 

descriptor pattern). 

Table 3. Performance Results 

 

Trace Size 500 MB 1 GB 1.5 GB 2 GB 

rt_checking 55s 117s 168s 252s 

fd_checking 57s 119s 166s 266s 

chroot_checking 55s 108s 166s 266s 

all 67s 123s 184s 279s 

 

 Table 4 presents the performance of the analyzer when 

validating the file descriptor pattern against traces of 

different sizes, and compares it with the analyzer's 

performance without invoking the FSMs, but only 

registering empty callback functions for the 6 events of 

interest. This is useful to isolate the time required to check 

the patterns from the time needed simply to get the relevant 

events from the trace. In addition, two interesting metrics are 

provided with this test, the number of relevant events and the 

number of simultaneously active FSMs. 

 The traces used for this test were generated using two 

different loads. The first 4 traces were generated while 

running dbench as a server for 1 client. Dbench is a widely 

used file oriented benchmark. It recreates the file operations 

required on a typical file server to serve desktop clients. The 

last trace was generated while the GNU C Compiler, gcc 

v.4.2.0, was compiling itself. The relevant events for the file 

descriptor pattern are the following system calls: close(), 

open(), read(), write() and dup(), as well as the 

process_exit() kernel event. The slowdown for each test is 

computed by comparing the execution time between the two 

configurations of the analyzer (empty callbacks on relevant 

events versus checking the patterns using the relevant 

events). 

 The analysis time for the same trace length differs 

significantly between the two tests, dbench vs gcc. Indeed, 
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the slowdown was much higher for the gcc trace, even 

though it contained fewer relevant events than the other 

traces of similar size. The computed slowdown suggests a 

direct correlation with the maximum number of coexisting 

finite state machines handled by the analyzer. For instance, 

the gcc compilation generated much more (around 50 times) 

coexisting FSMs than running one dbench client, due to the 

numerous processes (accessing different file descriptors) 

generated by the compilation makefile. This resulted in a 

larger impact on the analyzer's performance. 

 In the third test, the trace size was fixed to 500 MB and 

the number of dbench clients varied from 1 to 20. The 

number of clients is directly proportional to the maximum 

number of coexisting FSMs during the analysis. The results 

in Fig. (5) show the slowdown percentage with respect to the 

maximum number of coexisting FSMs in the analyzer, for 

traces of the same size. The slowdown is directly 

proportional to the maximum number of FSMs handled by 

the analyzer. This is expected because the analyzer invokes 

sequentially all the FSMs in the list for every relevant event, 

whether the event is needed at the FSM's current state or not. 

 

Fig. (5). Fixing trace size to 500MB, varying the number of dbench 
clients. 

 In a separate test, the performance of the pattern checker, 

the code generated from the State Machine Language 

description, was evaluated using the locking validation 

pattern. The locking validation pattern is indeed most 

demanding because of its complexity and very high 

frequency of locking and unlocking events. A hand-written 

locking validation pattern checker was written in C. It stores 

the locking state and updates it at each locking and 

unlocking event. Its algorithmic complexity is expected to be 

the same as the checker generated from a higher level SML 

description. However, being hand-written and statically 

linked as a dedicated application, it avoids some of the 

indirection caused by the more generic pattern checking 

machinery. 

 Interestingly, the performance of the generated FSM 

checker was only 4.5% slower than the dedicated hand-

written version for the locking validation pattern, a worst-

case most demanding pattern. It was expected that a hand-

written checker would be faster, especially for the locking 

validation pattern. However, the small difference is, in our 

opinion, easily offset by the gain provided by the ability to 

model patterns at a higher level. 

6. CONCLUSION 

 We presented an automata-based approach to describe 

some generic patterns of problematic behavior that might 

occur on production systems. The generated finite state 

machines can be easily maintained, expanded or even be 

used as synthetic events to model more complex scenarios. 

We implemented an analyzer that validates the existence of 

such patterns simultaneously in large traces and in one pass. 

 The main contribution of this work was to design, 

implement and demonstrate a working system capable of 

obtaining a low overhead detailed execution trace of a 

production server, and efficiently check the resulting trace 

for numerous patterns in near real-time. This is possible 

because of the extremely efficient algorithms used both for 

the low overhead tracing and for the pattern detection. The 

proposed architecture and pattern language are efficient and 

simple to use, and have been demonstrated with a number of 

real and highly representative patterns. 

 The analyzer's performance depends greatly on the nature 

of the patterns being validated. When dealing with a large 

number of FSM instances of the same pattern, the analysis 

time is directly proportional to the number of coexisting 

FSMs and the number of relevant events. By carefully 

selecting which events to trace, it may be possible to 

optimise the execution time. For instance, the first version of 

Table 4. Slowdown of the Analyzer Due to FSM Invocation with Respect to its Performance with Empty Callbacks 

 

 Trace Size Relevant Events (Millions) Coexisting FSMs Ex. Time Invoking FSMs Ex. Time Empty Callbacks Slowdown 

500 MB 2.4 75 51s 50s 6.00% 

1 GB 4.8 72 92s 86s 6.98% 

1.5 GB 6.9 104 143s 114s 25.44% 

2.3 GB 11.1 72 215s 189s 13.75% 

3 GB 14.1 104 285s 250s 14.00% 

DBench 

1 client 

4.5 GB 18.5 83 369s 338s 8.87% 

GCC 2.5 GB 5.7 5241 853s 227s 275.77% 
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the locking validation pattern required the events 

enable_irq() and disable_irq() to deduce in which context a 

given lock was acquired. It turned out that this information is 

available at the site where the lock is being acquired. This 

reduced the number of events to trace, resulting in a smaller 

trace and a faster analysis. 

 Another factor impacting the performance of the analyzer 

is the following; consider the locking validation pattern in 

Fig. (3). Even when the current FSM state is S0, every 

encountered sched_schedule() event would result in calling 

the corresponding transition which is irrelevant in state S0. 

This will call a default transition which maintains the current 

state and returns control to the analyzer. Instead, the analyzer 

could have skipped this step since, from the current state, 

there is no transition sensitive to the event sched_schedule(). 

This could be achieved by dynamically adjusting the 

definition of relevant event depending on the current state 

for a FSM; the analyzer would compute beforehand the list 

of events leading to state transitions for each state. 

 The proposed approach is highly parallelizable. It could 

be used for online near real-time pattern matching of an 

extensive set of patterns, for monitoring very sensitive 

servers (e.g. high security applications, extensive test 

procedures). Further explorations would be useful to support 

the definition and use of synthetic events. This will allow 

synthesizing more complex scenarios from multiple simple 

ones. 
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