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Abstract: Eyeblink electromyogram (EMG) is a noninvasive and reliable tool for evaluating information processing at 

different levels of the central nervous system.The recently developed method of fragmentary decompositioncreates the 

model of a single trial eyeblink EMG as the series of consecutive, partly overlapping components, with the generic mass 

potential being the basis element. Here we express this model in terms of underlying cellular processes. To our 

knowledge, this is the first study where the dynamics of a mass potential at global scale is deduced from a stochastic 

particle model of the ion movements at microscopic scale. We consider generation of the eyeblink EMG as a stimulus-

induced creation of an extracellular dipole by the movements of ions at the microscopic scale. These processes are 

described in terms of an equivalent circuit which is composed of novel circuit elements named sourceoid, sinkoid, and 

dipoloid. The corresponding equations are formulated in terms of nonhomogeneous birth-and-death processes. The theory 

brings together the deterministic and stochastic factors underlying the genesis of eyeblink EMG with the minimum 

number of free parameters. No matter how complex are the particle systems, just a few global scale parameters 

accumulate essential aspects of microscale activities which appear as significant variables at the global scale. Numerical 

experiments revealed that the mass effect of multiple elementary dipoles is expected to settle down into a behavior that 

qualitatively remains unchanged at different levels of a volume conductor. We summarize these findings as the principle 

of the conservation of the mass potential distributions. 

Keywords: Fragmentary decomposition, generic mass potential, birth-and-death process, equivalent circuit, sourceoid, sinkoid 

and dipoloid. 

1. INTRODUCTION 

 The startle reflex is a brainstem response to a sudden 

stimulus, such as a sound, a flash of light, a tap to the 

forehead, a puff of air to the side of the face, or an electrical 

pulse to the forehead [1]. The most common measure of the 

eyeblink response in human studies is the EMG from surface 

electrodes placed on the skin overlaying the orbicularis oculi 

[2]. Eyeblink EMG is an indicator of motor unit action 

potentials that are caused by activity of the facial nerve 

(CN7) [3]. 

 As a noninvasive and reliable tool for evaluating 

information processing at different levels of the central 

nervous system, eyeblink EMG has been used in a wide 

variety of research and clinical applications in humans, to 

study basic stimulus processing [4-6], attentional factors [7, 

8], emotion [9], personality variables [10], and dysfunction 

in clinical populations [11]. 

 However, interpretation of EMG waveforms is largely 

empirical, and so an explicit mathematical model of their 

generation would be of great value. The major problem in 
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modeling of the cellular sources of surface EMG is how to 

deal appropriately with the functional complications posed 

by the multiplicity of underlying muscle cells. In this context 

the numerical simulations of single cells are not feasible, as 

the number of functional elements required is too high and 

the details of cellular machinery are too intricate. 

 In order to avoid the large number of microscale 

variables it is necessary to distinguish those aspects of 

cellular machinery that are significant on the global scale 

from those that are not. In the context of this problem, the 

model based signal processing method of fragmentary 

decomposition provides a means to decompose the eyeblink 

EMG into a series of consecutive, partly overlapping 

transient potentials, each of which may be associated with a 

specific cellular ensemble underlying generation of positive 

or negative deflections (peaks) in the EMG waveform [12-

14]. An appealing feature of this approach is its conceptual 

consent with current methods of eyeblink quantitative 

evaluation, which regard “peak” as synonymous with a 

functional component of the measured potential [2]. Almost 

without exception, EMG quantification is performed by 

different peak picking procedures that identify and measure 

the peak amplitude relative to either a point of onset or the 

mean of a baseline period [1]. A critical limitation of peak 

picking procedures is that reduction of EMG to peak 

amplitudes and latencies at isolated time points is unable to 
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characterize the waveform dynamics which may possess 

important functional and cognitive information. 

 By contrast, the technique of fragmentary decomposition 

regards a functional component of eyeblink EMG as being 

not just a peak in the waveform, but a whole deflection 

(positive or negative) described by the model termed as the 

generic mass potential (GMP). The parameters of GMPs are 

estimated by the time-frequency analysis of each peak in the 

time course of single trial EMG. A very satisfactory 

agreement of numerical solutions with empirical data 

suggests the GMP as an adequate component from which an 

eyeblink EMG is composed [13]. 

 Physically, the GMP may be regarded as a summary 

global scale effect of intermittent synchronization of specific 

ensembles of the muscle cells in a local conductance volume. 

Preliminary analysis suggests that modeling of this form of 

collective behaviour of muscle cells necessitates an account 

of statistical properties of relevant cellular processes [12, 

13]. 

 The study we present here was performed in an attempt 

to support the global scale model of an eyeblink EMG in 

terms of GMPs by the physically tractable models of 

relevant cellular machinery. The emphasis is on identifying 

the critical cellular processes underlying the genesis of the 

GMP and, accordingly, the functional waveforms. 

2. STATISTICAL THEORY OF AN ELEMENTARY 
DIPOLE 

2.1. Generic Mass Potential 

 A single-trial eyeblink EMG is a mass action potential, 

referred to in the following text as a mass potential that 

develops as a succession of positive and negative deflections 

(peaks) generally accepted as functionally meaningful 

components. 

 Fig. (1) illustrates three single-trial EMGs recorded in 

different trials. It is clear that the general pattern of reaction, 

including the timing and amplitude of components, 

substantially varies between trials. Consequently, single trial 

EMGs recorded in different trials, u1(t),...,uk t( ),...,uK t( )  

(superscript k indexes a particular single trial), may be 

regarded as realizations of the non-stationary random process 

u(t). 

 The method of fragmentary decomposition [14] provides 

a means to express single trial EMG as the sequence of 

consecutive, partly overlapping components of the following 

form 

uk (t) = gi
k t( )

i=1

Nk

,  (1) 

where gi
k (t) is a GMP, and Nk is the number of GMPs 

identified at the kth trial. 

 The GMP is defined economically by the set of three 

parameters: i
k

(amplitude constant), i
k
(shape constant), and 

i
k

(onset time), in the form 

gi
k (t) =  i

k bud t i
k( ) / i

k ,  (2) 

where 

bud t( ) =  

1

2
e t 1( )2 2 e t+1( )2 2( ) at t 0

0 at t < 0

 (3) 

is a standard GMP. 

 

Fig. (1). Three examples of experimental startle eyeblink EMG 

responses elicited in different trials (redlines), and their model 

reconstructions (dotted black lines) estimated by the method of 

fragmentary decomposition. Description of the procedures may be 
found in the previous work [13]. 

 As illustrated in Fig. (2), this function has a steeply rising 

left flank and a slowly decreasing right flank. The peak value 

indicated by the vertical dotted line corresponds to t=1.2 at 

which bud(1.2) 0.356. 

 The number of GMPs in (1) and their parameters are 

specific for each trial. However, independently of the 

parameters of individual trials, all GMPs may be regarded as 

elements of the ensemble of self-similar functions. In this 

context the equation (2) serves as a similarity relationship, 

and the standard GMP is a basis element. 

 The self-similarity of eyeblink EMG functional 

components indicates universal mechanisms of underlying 

cellular sources. Our key objective is to reconcile the GMP 
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waveform with the underlying source machinery. A major 

difficulty is that creation of a quantitative model is a highly 

under-determined task. The traditional approach consists of 

the representation of significant elements of the system 

producing the mass potential by conventional circuit 

elements and the synthesis, on these grounds, of the global 

model. In this context, the electrical properties of muscle 

cells are usually simulated using cable equations as building 

blocks for formulation of the models of the volume 

conductor [15]. However, the transition from the global to 

the microscopic scale using these strictly deterministic 

notions has no unique solution because it is impossible to 

exactly delineate a distinctive pattern of the cellular and 

molecular phenomena involved. In the face of such 

uncertainty, numerous efforts to create models of the cellular 

machinery that gives rise to the mass potentials are 

supported by a remarkable variety of heuristic approaches 

that differ widely not only in physiological and anatomical 

details of the models, but also in the basic mathematical 

tools. The extent to which the models are in contradiction is 

unknown. 

 

Fig. (2). The standard GMP (curve a) is defined at t 0 as the sum of 

shifted positive (curve b) and negative (curve c) Gaussian 
functions. 

 In contrast to deterministic notions of the previous 

theories of mass potentials, our approach takes account of 

the variability of the cellular sources as a factor that may 

have a significant effect on the development of mass 

potentials. To support the stochasticity on a 

phenomenological basis, we refer to the finding of the 

normalization effect [12], the empirically based evidence 

that the summary activity of multiple synchronized current 

sources may reflect statistical regularities which are 

independent of the physical nature of the source machinery. 

In this context, we become involved in a joint consideration 

of deterministic and stochastic processes underlying the 

generation of mass potentials. The deterministic aspects of 

the theory are concerned essentially with the physical 

conditions underlying the creation of extracellular dipoles. 

We approach this problem using equivalent circuit concepts 

of the network theory of external performance. 

 

2.2. Physical Basis of GMP 

 Physically, we regard the GMP as a mass potential 

created by an extracellular dipole, the poles of which 

correspond to different spatial locations. In its most common 

form, the system in question is indicated schematically in the 

upper panel of Fig. (3), where the “black boxes” A and B are 

two terminal electrical networks. We consider these 

networks as the generators of the electromotive forces 

(EMFs) EA and EB at the poles of the dipole, respectively. 

 

Fig. (3). Schematic overview of the major steps the use of which 

reduces the sources of the EMFs EA and EB at the poles of the 

dipole to the equivalent circuit with A, B and RE  elements. 

 In this context, we deal with the external performance of 

monumentally complex systems of molecular and cellular 

elements, the machinery of which remains largely an 

enigma. Obviously, there is no means to delineate exactly 

the internal structure and function of the networks in 

question. Despite this, we may address the mass potential in 

a sufficiently general fashion using the concept of the 

equivalent circuit: no matter how complex the underlying 

machinery, from the viewpoint of any pair of surface 

electrodes the network behaves as if it consisted only of a 

source and an impedance [16]. Given two terminal networks 

A and B, we refer to the circuit equivalents in the form of 

Thevenin’s (voltage-source) equivalent circuits in the middle 

panel of Fig. (3). ZA and ZB are the equivalent impedances 

which are in series with the corresponding sources of 

equivalent EMFs A and B. 
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 To support the circuit equivalents with a physical basis, 

we associate the passive circuit elements ZA and ZB with a 

volume conductor created by the extracellular space, and 

active circuit elements A and Bwith the machinery of trans-

membrane ion pumps which use the energy derived from 

metabolic processes to move the ions (charged particles) 

through the cell membrane. 

 With regard to the passive elements, our approach refers 

to the following two assumptions, which constitute a widely 

accepted basis of the theories of field potentials [17]. First, 

extracellular space is electrically isolated from intracellular 

space by the cellular membrane, which has high resistance 

compared with the resistance of the extracellular and 

intracellular space. Second, within the range of frequencies 

of physiological interest, capacitive, inductive, magnetic, and 

propagative properties of the extracellular medium can be 

neglected. 

 The first assumption defines the volume conductor as a 

specific system the electrical parameters of which may be 

treated separately from the parameters of the cell membrane 

and cytoplasm. The second assumption means that quasi-

static conditions apply to the volume conductor created by 

the extracellular space, i.e. the volume conductor is purely 

resistive. Consequently, at a given instant in time, the 

voltage-current relationships correspond to those found 

under static conditions. This allows us to consider ZA and ZB 

as ideal fixed resistors, the resistance values of which are 

constant across time. We denote these entities by RA and RB, 

respectively. 

 By exactly the same reasoning as above, we may regard 

the volume conductor through which the current flows 

between the poles of the dipole as a resistor with the time 

invariant resistance value RAB. On these grounds we present 

the major elements generating the mass potential in the form 

of the equivalent circuit depicted in the lower panel of Fig. 

(3), where RE = RA + RB + RAB . Here, the equivalent 

resistance RE is a time invariant parameter. Therefore, to 

treat the mass potential as a function of time, we must 

consider both EMFs as the functions of time, A(t) and B(t), 

respectively. 

 Physically, RE is a circuit equivalent of the volume 

conductor, the two points of which serve for recording of the 

mass potential in question. Taking one of the points as the 

ground of the system, the mass potential is indicated in the 

lower panel of Fig. (3) as the voltage V(t), the potential 

difference between the points of recordings. 

 In terms of EMFs, V t( ) = k A t( ) B t( )( ), where k is a 

dimensionless coefficient the value of which may range from 

0 to 1. 

 Our goal in the next sections is to construct microscale 

models of particle systems, the external performances of 

which are consistent with the global scale circuit model of a 

mass potential considered above. 

 

 

2.3. Stochastic Ion Compartment 

 The cellular processes which create different charges at 

the spatial locations corresponding to the poles of the dipole 

are associated with the movements of ions, both positively 

and negatively charged particles, which cross the cell 

membrane in both directions.It is realistic to regard a thin 

layer distributed over the entire exterior membrane surface 

as the container of ions that were released from the cell and 

have the possibility to cross the membrane in the opposite 

direction, i.e. to return to the interior of the cell.Let us divide 

this layer into small volume elements of equal size, each 

termed a stochastic ion compartment (SIC). Such 

compartment normally contains both positively charged ions 

(cations) and negatively charged ions (anions). 

 Let integer-valued random variables N+(t) and N-(t) 

measure at time t the numbers of cations and anions, 

respectively. From the point of view of a distant point in the 

extracellular medium, the SIC can be envisaged as having a 

positive charge if N+(t)>N-(t), or a negative charge if 

N+(t)<N-(t). The net charge of the SIC is proportional to the 

X(t)= N+(t)-N-(t). Let the constant  be the value of the 

voltage produced at the extracellular point of interest by an 

elementary charge. Then, the summary EMF produced by 

the SIC may be expressed in the form t( ) = X t( ) . 

Therefore, the estimation of the EMF dynamics is reduced to 

the study of the particle population described by X(t). 

 Given the complex nature of molecular mechanisms 

underlying the time evolution of X(t), we need to avoid 

detailed description of the internal processes responsible for 

changes in the population size.We address this problem 

using the theoretical framework of stochastic models of the 

quanta turnover developed in the context of the theory of 

chemically mediated synaptic transmission [18, 19]. The 

theory describes the time evolution of the quanta 

(neurotransmitter particle) population in terms of the 

postulated probabilities of elementary trans-membrane 

particle transfers occurring in a small interval of time. Using 

this approach, we regard SIC as a container of X(t) identical 

particles that leave or enter the compartment according to a 

probabilistic mechanism. After the manner of [20], we 

describe the particle population in terms of the birth-and-

death process (BDP). In this context, the BDP is a 

continuous time Markov process the state of which at time t 

is defined by the number of particles X(t). 

 Conceptually, a Markov process is the probabilistic 

model of a physical process, where the future development 

depends on the present state, but not on the manner in which 

the present state has emerged from the past [21]. This 

property considerably simplifies the mathematical analysis 

of stochastic processes, but the theory remains pertinent to 

various applications, particularly the modeling of the 

performance of different kinds of ion channels [22]. This and 

relevant studies of membrane channels address such 

problems as the probabilities of opening and closing of 

various types of ion channels, and the distributions and  
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variance of the timing of the corresponding events. A central 

assumption is that transition of ion channel from one state to 

another is a constant, independent of time [23]. 

 Our preference for particular classes of Markov processes 

defined as BDPprovides a new approach to the treatment of 

ion transport mechanisms which extends the modelling 

capabilities in two aspects. First, instead of distinct entities 

such as a single ion channel, we deal with ensembles of ions, 

the particle populations with specific functional abilities to 

create extracellular EMFs. Second, the physical processes 

underlying the time evolution of particle populations can be 

treated in terms of the transition probabilities that are 

permitted to vary in time (nonhomogeneous BDP). 

 Since inter-state transitions are governed by probabilistic 

mechanisms, the future of BDP is not uniquely determined. 

A major condition is that during a sufficiently small element 

of time, , the probability of the change of the X(t) by more 

than one particle is negligibly small: 

Pr[X t +( ) = X t( ) + k] = o( ) if k >1,  (4) 

where Pr denotes probability and k is an integer. 

 Therefore, the particle system changes only through 

transitions from states to their nearest neighbours. An 

increase of the population size by a unit represents 

birth,X t +( ) = X t( ) +1 , whereas a decrease by a unit 

represents death,X t +( ) = X t( ) 1 . The probabilities of 

these events for nonhomogeneous BDP are [21]: 

Pr X t +( ) = X t( ) +1 = t( )X t( ) + o( ) birth( )  (5) 

Pr X t +( ) = X t( ) 1 = μ t( )X t( ) + o( ) death( )  (6) 

where t( ) and μ t( ) are the birth and death rates, 

respectively. We use these general relationships as a 

framework for the probabilistic treatment of dipole creation. 

A major step in this regard is to specify the birth and death 

rates in physical terms. 

2.4. Sourceoid and Sinkoid 

 According to the theory of field potentials, it is well 

accepted to consider an extracellular dipole as a source and a 

sink of electrical charge. These components of the dipole 

must have different spatial locations. Therefore, distinct 

systems of the source creation may be involved. To support 

our theory by this physical basis, we introduce the two novel 

circuit elements named sourceoid and sinkoid. The circuit 

representations of these elements are given in the upper 

panel of Fig. (4) (the sourceoid is shown at left). The arrows 

B and D indicate the birth and death processes, respectively. 

 Both elements are voltage-controlled voltage sources that 

produce the EMFs A(t) and B(t), respectively. Using the 

probabilistic notions considered above, we describe these 

EMFs in terms of BDPs XA(t) and XB(t) which develop in 

SICs at different spatial locations indexed by subscripts “A” 

and “B”. The assumption is that 

A t( ) = XA t( ) and B t( ) = XB t( ).  

 

Fig. (4). Circuit representations of the novel circuit elements: 
soursoid, sinkoid and dipoloid. 

 We regard performance of the sourceoid and sinkoid in 

the absence of controlling voltage as the resting conditions. 

Stimulus application forces simultaneous transition of the 

sourceoid and sinkoid from the resting to the transient 

conditions. As a marker of the time instant at which the 

stimulus is applied, the controlling voltage is described in the 

form of VC (t) = t( ) , where (t) is the Dirac delta 

function and  is the time of the stimulus application. 

Without loss of generality, we assume that =0. Therefore, 

the system is switched from the resting to transient 

conditions at t=0. 

 We define the rates of birth and death that govern the 

corresponding time evolution of XA(t) and XB(t) by the 

following rules. 

 Sourceoid: a non-homogenous BDP with the constant 

birth rate 

A = 1 T  (7) 

and the time dependent death rate 

μA t( ) =
1 T at t < 0

t T2 at t 0
 (8) 

where T is a time constant. 

 Sinkoid: a non-homogenous BDP with the time 

dependent birth rate 
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B t( ) =
1 T at t < 0

0 at t 0
 (9) 

and the time dependent death rate 

μB t( ) =
1 T at t < 0

t + T( ) T2 at t 0
 (10) 

 General solutions of the equations governing non-

homogenous BDP X(t) with the birth and death rates 

regarded as arbitrary functions of time t( ) and μ t( )  have 

been developed by Kendall [24]. Given t=0 as the reference 

point, the mean as a function of time (expected trajectory) 

has the form 

m(t) = E{X(t)} = e (t ) ,  (11) 

where 

(t) = [μ x( )- (x)]dx,
0

t

 (12) 

and  is an initial size of the particle population. 

 We use these equations as a point of departure to obtain 

the transient solutions on the basis of the introduced birth 

and death rules (7)-(10). 

 Solution of (12) for XA(t) using the birth and death rates 

defined at t 0 by (7) and (8) gives A t( ) = t 2 2Tt( ) 2T 2
 

(the subscript indicates the circuit element in question). After 

replacement of (t) in (11) by this formula, we obtain the 

mean trajectory of XA (t)  at t 0 in the form 

mA(t) = e A t( )
= e e

t -T( )2

2T2 .  (13) 

 An initial value, mA(0)= , develops under the resting 

conditions when the particle population behaves as a simple 

BDP with equal birth and death rates. Thus, 

mA(t) = at t < 0 . 

 Solution of (12) for sinkoid using the rate of the death 

from (10) for t 0 gives B t( ) = t 2 + 2Tt( ) 2T 2
. Inserting this 

formula into (11) instead of (t) gives the mean of XB(t) at 

t 0 in the form 

mB(t) = e B t( )
= e e

t+T( )2

2T2 .  (14) 

 At t<0 (resting conditions) mB(t) = .  

2.5. Dipoloid 

 A dipole is produced by coherent performance of the 

sourceoid and sinkoid, which means that one and the same 

controlling voltage VC(t) is applied to both elements. The 

corresponding circuit composed from sourceoid and sinkoid 

is depicted in the lower panel of Fig. (4). We term this circuit 

the dipoloid. 

 

 The resistance between the poles of the dipole is 

represented in the circuitry of the dipoloid by the resistor RE. 

We regard the corresponding EMF D t( ) = A t( ) B t( ) as 

the output function of the dipoloid. Accordingly, the integer-

valued random variableXD (t) = XA (t) XB(t) serves for 

description of the dipoloid’s performance. The mean of this 

process follows from (13) and (14): 

mD t( ) =
e e

(t T )2

2T2 e
(t+T )2

2T2 at t 0,

0 at t < 0.

 (15) 

 The corresponding EMF produced by the dipoloid is 

D t( ) = XD t( ). The mean of this function is compatible 

with the GMP. The standard GMP (3) is produced by a 

dipoloid with T=1 and =
1

2 e
. We regard this element 

as a generic dipoloid which gives rise to different sets of 

self-similar dipoloids. 

2.6. Numerical Simulations 

 In a manner analogous to [20], we now use numerical 

simulations to estimate the time evolution of particle 

population in various trials. The number of particles X(t) is 

computed step by step for consecutive 

points ti = i i = M ,..,0,..,N 1( ) , where  is a small 

element of time the size of which should comply with (4). 

Accordingly, we deal with discrete samples xi = X(ti ) . The 

time t0=0 is an instant from which the resting conditions are 

changed to the transient conditions. 

 According to the condition (4), the permitted size of the 

particle population at time ti+1 is: xi+1 = xi +1 (birth), xi = xi  

(unchanged size) or xi+1 = xi 1 (death). We denote the 

corresponding birth and death probabilities 

by pb i( ) and pd i( ) , respectively. 

 It is clear from (7)-(10) that under the resting conditions 

the particle populations in both sourceoid and sinkoid behave 

as simple BDPs with constant rates of birth and death 

= μ = 1 / T . With reference to (5) and (6), the 

corresponding birth and death probabilities are: 

pb (i) = pd i( ) = xi T .  (16) 

 Transient performance of the sourceoid develops as a 

nonhomogeneous BDP. Substituting the birth rate from (7) 

into (5), and the death rate from (8) into (6), we obtain the 

following probabilities of particle transitions in ti , ti+1[ ]  

interval: 

pb (i) = xi T , pd i( ) = xi
2i T 2 .  (17) 

 With regard to the transient performance of sinkoid, we 

deal with a nonhomogeneous death process. Given absence  

 

 



Dynamics of the Eyeblink EMG at Global and Microscopic Scales The Open Cybernetics & Systemics Journal, 2013, Volume 7    17 

of the birth processes, by substituting the death rate from 

(10) into (6), we obtain the following probabilities: 

pb (i) = 0, pd i( ) = xi i +T( ) T 2 .  (18) 

 

Fig. (5). Result of a numerical simulation that illustrates dynamics 

of particle populations under the resting and transient conditions. 

The y-axis units are the numbers of particles. 

 The calculations were organized as the succession of 

standard steps dealing with the time intervals 

ti , ti+1[ ] i = M ,..,0,..,N 1( ) . Given the step beginning 

from ti, the xi serves as the initial condition. The value xi+1 

which X(t) takes at the end of the interval was computed 

using Monte Carlo simulations. 

 The procedure for each step was as follows: 

1. Estimate relevant probabilities pb i( ) and pd i( ) from 

(16)-(18). 

2. Pick out random real numbers Rb and Rd using a 

random number generator to produce real numbers in 

the range from 0 to 1. 

3. Estimate the size of the particle population at the end 

of the interval. 

 xi+1 = xi + b d,  

 where b and d are binary numbers defined as follows: 

 b = 1 if Rb < pb i( )  and is zero otherwise, 

 d = 1 if Rd < pd i( )  and is zero otherwise. 

 Numerical experiments have been supported by a 

specially designed computer program written in the object 

Pascal language of Embarcadero Delphi 2010. 

 Typical results of numerical simulations of single trial 

samples of XA (t),XB(t) and XD (t)  on the interval from -10 

to 40 ms are exemplified by Fig. (5). An important point is 

the choice of the value  under which the probabilities pb(i) 

and pd(i) are low enough to be consistent with condition (4). 

Based on a number of numerical experiments with different 

parameters, the value =0.002 ms was chosen. 

Consequently, ti = i 0.002  (ms) where i takes values from -

5,000 to 20,000. For the sake of illustration the time constant 

was set to be T=10 ms, a value compatible with the time 

scale of the signals under consideration. 

 In the time interval from -10 ms to 0 the particle 

populations were simulated as simple BDPs with the birth 

and death probabilities from (16). As an initial condition it 

was supposed that the sizes of both XA(t) and XB (t) at t=-10 

ms are equal to N0=100. The transition from the resting to 

transient condition was simulated as the change of the 

resting state probabilities (16) to the transient state 

probabilities from (17) and (18). This change occurs in a 

“smooth” fashion without alteration of the basic condition 

(4). This means that XA 0( ) and XB 0( ) , developed under the 

resting conditions, serve as the initial conditions for the 

transient regimes. 

 To define the limits to which statistical solutions 

converge, the averages of single trial samples were 

computed. The red lines in Fig. (5) A-C show the averages 

of ten samples obtained in independent trials. These 

statistical averages are compared with theoretical solutions 

provided by analytical formulas (13)-(15). The agreement of 

numerical and theoretical solutions is very satisfactory and 

may be regarded as a strong support of computational 

aspects of our theory. 

2.7. Nonlinear Dynamics of GMP 

 Conventional circuit theoretical approach uses the time 

domain description of a dynamic circuit element in the form 

of an impulse function, i.e. the circuit response to the 

application of a delta impulse. Conceptually, the impulse 

function is a deterministic transient. Accordingly, we 

associate impulse functions of novel circuit elements with 

deterministic trends, the means or expected trajectories of 

stochastic processes A (t), B(t) and D (t) after application of 

controlling voltage, i.e. at t  0. In this context, we refer to 

(12)-(14), and define impulse functions of sourceoid, sinkoid 

and dipoloidas gA(t) = mA t( ), gB(t) = mB t( )  and  

gD(t) = mD t( ) , respectively. 
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 Given the impulse function in the form of a deterministic 

solution (15), we present the description of underlying 

dynamic system in terms of the following system of 

nonlinear differential equations: 

 

gA(t) =
t T

T2
gA t( ),  (19) 

 

gB(t) =
t + T

T2
gB t( ),  (20) 

gD t( ) = gA t( ) gB t( ),  (21) 

where gA t( ), gB t( ) and gD t( ) denote the derivatives of the 

corresponding impulse functions. 

 The form of these equations allows us to qualify the 

system as a nonautonomous system; that is, a system driven 

by time-varying signals. 

3. MASS EFFECT OF MULTIPLE ELEMENTARY 
DIPOLES 

3.1. Simulations of Mass Action Effects 

 The role of deterministic trends in statistical samples 

increases with the increase in the number of particles 

involved. Single trials shown in Fig. (5) develop from initial 

populations of 100 particles. A tenfold increase of N0 to 

1000 significantly reduces variability and brings single trial 

samples to a closer agreement with expected trajectories. On 

purely theoretical grounds we may regard the bell-shaped 

waveform (15) as the limit to which the transients converge 

with an infinite increase in the size of the population. 

 The important point that we wish to stress is that model 

parameters must be consistent with the physics of the 

underlying processes. A free parameter that allows us to 

keep the values of probabilities at low levels is the sampling 

interval . Physically, the value of this parameter should be 

compatible with the time interval that is necessary for an ion 

channel to change its state; this event allows an ion to move 

through the membrane. Since such a transition usually takes 

a fraction of a millisecond, the value =0.002 ms used in the 

simulations above may be regarded as a sensible estimate. 

However, the corresponding size of the particle population 

(100-200 units) is small compared with an actual number of 

ions participating in the trans-membrane transport processes. 

Even in the case of a single cell, the number of excitable 

channels is estimated to be large (on the order of tens of 

thousands of ion channels). To keep the birth and death 

probabilities at reasonably low levels in the case of such 

large particle populations, we need to reduce  to physically 

unrealistic values. 

 To approach the problem in a physically acceptable way, 

we divide the whole particle population into sub-populations 

with equal initial sizes and time constants. Under these 

conditions, we actually deal with the same realizations of 

relevant stochastic process as those reproduced in numerical 

experiments. Indeed, note that the red lines in Fig. (5) are the 

averages of 10 independent samples of stochastic processes 

produced by a single particle population. We could just as 

well interpret these results as the averages of single trial 

samples produced by 10 independent populations with equal 

parameters. 

 

Fig. (6). Result of numerical simulations of 50 particle populations 

with different  (initial size of particle population) and T (time 

constant) parameters. The histograms show the distributions of 

these parameters. The blue curves show the time evolution of 

individual populations. The average of these traces is shown by the 

red line. The black line is the theoretical solution suggested by the 
principle of the conservation of the mass potential distributions. 

 Typical results, illustrated by Fig. (6), deal with the 

model composed of 50 sub-systems with different 

parameters. The minimum and maximum values of 

parameters were 7.6 and 12.5 ms (mean 9.83 ms) for the 

time constants, and 77 and 123(mean 102) for the initial size 

of the population at t=0. The parameter distributions between 

these extremes are illustrated by the histograms. 

 Being supported by exactly the same simulation 

technique as above, Fig. (6) refers to the single trial samples 

of XD (t) . Given the parameter values indicated by the 

histograms, each of the 50 systems under analysis is 

presented by a single sample. The red line is the average of 

these traces. The black line is the expected theoretical 

solution g(t) = 0 bud t T( ),  where 0 and T,  are the means 

of 0
k and Tk  parameters; 0 = 102, T = 9.83 ms.  

 This and similar numerical experiments show that 

differences in the sizes of particle populations and time 

constant T do not affect the form of statistical solutions from 

the microphysical scale to the global level. 

3.2. Postulated Effects of the Mass Action 

 The essential outcome of numerical simulations is that 

the mass effect of multiple elementary dipoles, all produced 

in the same way by synchronously activated dipoloids with 

different parameters, is expected to settle down into a 
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behavior that essentially remains unchanged with regard to 

the general rules (7)-(10), that govern the performance of the 

dipoloid. This result may be viewed from various angles, and 

here we shall consider it as the heuristic basis for the 

following hypotheses. 

 Principle of the conservation of the mass potential 

distributions (CMPD). Let dipoloid with Ti and i parameters 

be characterized at a certain extracellular location by 

EMF D
i (t) . At the same location, the cumulative effect of 

the EMFs D
1 (t),..., D

i t( ),..., D
N t( ) from N synchronously 

activated distinct dipoloids is equal to the EMF of a single 

dipoloid with the following parameters: 

TE =
1

N
Ti

i=1

N

, E =
1

N i
i=1

N

 

 This principle differs drastically from conventional 

deterministic treatment of mass potentials in that, whereas 

previous theories assume that the global scale activity is an 

algebraic sum of the outputs of elementary cellular 

generators, the above principle denies this possibility, the 

prime factors being the spreads of the probability 

distributions of elementary sources. 

 According to the deterministic framework, the surface 

EMG is produced by linear summation of the membrane 

potentials of the contributing muscle fibres [25]. Suppose 

that the number of parameters in the cable model chosen for 

a fiber simulation is M. Therefore, for simulations of J 

fibers, the global model must include J cable equations, and 

contain JM free parameters. In this context, the extension of 

the range and number of microscale biophysical and 

biochemical parameters leads to an enormous increase in the 

number of model elements. This is a highly under-

determined task. Actually, the large number of details and 

free parameters contained in the model can often obscure 

rather than illuminate the essentials of the underlying 

physical processes. 

 By contrast to the deterministic approaches, our theory 

deals with the summary effect of simultaneously developing 

stochastic processes with a common statistical distribution 

following from the defined rules (7)-(10) of the birth and 

death processes. Probabilistically, the effects of the 

superposition of stochastic processes relate to a general 

problem of the limiting behavior of random events. With 

regard to random variables, the central limit theorem states 

that any process of random sampling tends to produce a 

normal distribution of sample values, even if the whole 

population from which the samples are drawn does not have 

a normal distribution. This approach deals with time 

invariant statistical distributions. 

 Consideration of mass potentials in our theory in terms of 

random processes introduces time as an additional variable, 

which suggests that the statistical distributions may be time 

dependent. Physically, the time dependency of the statistical 

distributions appears as the result of stimulus application. 

The corresponding expected trends converge on the transient 

solution (1) that was suggested in the previous studies as a 

global model of eye blink EMG. 

3.3. A Tentative Multiscale Model of Eyeblink EMG 
Generation 

 Eye blink EMG belongs to the category of oscillatory 

electrophysiological signals. Besides different types of 

electromyograms, the models of such processes have been 

widely researched with regard to the electrical activity of the 

brain [26]. The fundamental question is whether an 

oscillatory waveform is generated by a single generator, like 

a harmonic oscillator in physical systems, or a number of 

relatively independent generators. 

 Our theory suggests that mass potential is a composite of 

consecutive monopolar waveforms which may be regarded 

as an ensemble of self-similar functions with the standard 

GMP (3) being a basic element. This rejects the existence of 

specialized oscillatory systems, and allows us to consider the 

eyeblink EMG as a mass electrical potential produced by the 

sequence of serially activated cellular networks. 

 A universal model of single trial EMG has the form of 

equation (1). The probabilistic basis of our theory views this 

mass potential as the realization of a stochastic process 

governed by the introduced equations of non-homogenous 

BDPs. Though the details of cellular processes to which 

these results are relevant are not yet clear, the theory 

provides the means to distinguish those aspects of microscale 

activities that are significant on the large scale from those 

that are not. 

 To approach this problem we should take full advantage 

of the principle of the conservation of the mass potential 

distributions which takes into account the source variability 

and its relationship to the functional organization of relevant 

structures. In this regard, an essential aspect of the geometric 

cell arrangements is that muscle fibers are organized as 

muscle units (MUs). In a normal muscle, each MU consists 

of hundreds of muscle fibers and each muscle consists of 

multiple MUs. Depending on the type of muscle the actual 

number of MUs varies, and is typically in the order of 50-

250. 

 

Fig. (7). The functional elements that produce dipoloids at the three 

stages of the development of surface EMG: muscle fiber, muscle 
unit, and the volume conductor. 

 The diagram in Fig. (7) provides a schematic summary of 

the three levels of abstraction of EMG generation. The 

functional element of the first level is the muscle fiber which 

is shown schematically at far left. In principle, due to the 

spatially distributed mechanisms of ion transport, the fiber 
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may produce multiple dipoles. However, the principle of 

CMPD allows us to regard a muscle fiber as an elementary 

dipole, i.e. the summary of multiple ionic mechanisms in the 

form of an equivalent dipoloid. 

 The next diagram shows muscle fibers aggregated into a 

muscle unit. A crucial role of the principle of CMPD at this 

level of abstraction is that its application to relevant muscle 

fibers reduces their summary effect to a single dipole. 

Accordingly, the parameters of multiple fibers are 

transformed into the equivalent parameters of a single 

dipoloid which serves as a model of the MU. 

 The third diagram shows a chain of distinct MUs the 

summary potential of which is recorded at a certain point in 

the extracellular space. We propose that the process 

underlying the model (1) consists of the stimulus-induced 

activation of different MUs in successive instants in time. 

The essential logic is that each GMP is produced by MU, 

and demands a large degree of synchronization of MFs that 

compose MU. In terms of the equations (1) and (2), the 

process of synchronization of the fibers composing the 

ithMU starts at the time instant i
k

(kth trial) beginning from 

which the MU generates transient extracellular current. This 

current, together with that generated by other MUs, sets up a 

field of extracellular current flow. Since the extracellular 

space performs as a purely resistive volume conductor, the 

corresponding transient voltage develops as the sum of the 

MU voltages, i.e. has the form of the model (1). 

 The reference to the synchronized activity of muscle 

fibers does not imply that at particular MU the activity of 

one fiber is a replica of the other. The differences in 

synchronization scenarios among the MFs mean that the 

summed activity of MU is governed by both deterministic 

and probabilistic factors, an ample account of which is 

provided by the equations of the dipoloid and the principle of 

CMPD. The adequacy of these concepts is directly supported 

by the results of experimental identification of the GMP as 

an adequate building block of an eyeblink EMG [12-14]. A 

satisfactory degree of agreement of theoretical and 

experimental data are illustrated in Fig. (1) by typical 

modeling results. The dotted lines show graphs of the model 

eyeblink EMGs identified in terms of the equation (1) using 

the technique of high resolution fragmentary decomposition. 

 Given the eyeblink EMG in Fig. (1) A, the curve in the 

upper panel of Fig. (8) shows the fragment of the 

corresponding EMG and the model in the time interval from 

65 to 90 ms. The waveform deflections indicated by the 

numbers from 1 to 5 correspond in the model to the five 

consecutive GMPs. These elements of the fragmentary 

decomposition are shown in the lower panel of the figure. 

 We wish to draw attention to the fact that appearance of 

specific forms of stochasticity in the behavior of dynamic 

systems is often qualified as deterministic chaos. This 

approach has supported quantitative analysis of different 

aspects of the ion transport phenomena [27, 28]. 

 The phenomenological framework of deterministic chaos 

is supported by the theory of non-linear systems. In this 

regard, the nonlinear dynamics of GMP described by 

equations (19)-(21) are consistent with the notion that 

equations of deterministic chaos must be non-linear to 

generate chaotic solutions, but apart from that can be 

remarkably simple and have a small number of parameters. 

 

Fig. (8). Typical temporal dynamics of identified GMPs is 
illustrated using the fragment of the eyeblink EMG from Fig. (1A). 

 Another distinctive feature of the chaos is a short-term 

predictability. By reference to Fig. (1)with different samples 

of eye blink EMG, we feel that various deflections of this 

non-stationary signal may appear randomly. In terms of 

equation (1) this means that onset times i
k

of different 

GMPs may be regarded as random variables that belong to 

some range of physically meaningful values of onset times. 

Therefore, we have no means to predict the exact time of 

GMP appearance. However, suppose that real time 

monitoring of the signal indicates the point of the GMP 

initiation. For example, such judgment may be made on the 

basis of the measurements of the waveform in the time 

interval from i
k to i

k
+ , where  is the time interval 

during which the waveform reaches the absolute maximum. 

On the basis of this information it is possible to evaluate 

i
k , i

k and i
k

parameters and make short term predictions of 

expected signal trajectory after reaching the peak. 

 This relevance of our theory to deterministic chaos 

suggests the possibility of enriching the methods employed 

by a number of recently developed mathematical tools of 

nonlinear dynamics analysis, for example to implement the 

formalism of fractal and self-similar geometrical objects. We 

hope to present a comprehensive consideration of these 

issues in a separate publication. 

4. CONCLUSIONS 

 As we demonstrate in this paper, a wide range of 

monolithic deflections identified in the time course of 

eyeblink EMG may be qualified as self-similar processes 
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that resemble a geometric form of a standard GMP. Rather 

than a continuous process, the EMG develops as a series of 

consecutive, partly overlapping self-similar GMPs, each of 

which is produced through intermittent synchronization of 

specific ensembles of muscle cells in a local conductance 

volume. 

 Previous theories of different types of EMG signals have 

been supported by deterministic models. To our knowledge, 

the description in our theory of the particle movements in 

terms of non-homogenous BDPs for the first time puts the 

randomness and determinism in the generation of 

extracellular dipoles on a common theoretical framework, 

supported by the introduction of specific circuit elements 

termed the sourceoid, sinkoid, and dipoloid. These novel 

models of the cellular sources of electricity not only predict 

how the extracellular potential evolves over time, but also do 

this with the minimum number of degrees of freedom. No 

matter how complex are the systems of ion transport 

producing the GMP, from the viewpoint of the global scale, 

a single set of just three parameters, , , , accumulates 

all essential aspects of the dynamics of the potential. Being 

generalized by the statement of the principle of the 

conservation of the mass potential distributions, this 

paradigm may be associated with the presence of the 

Gaussian distribution in the GMP equation. The normal 

(Gaussian) distribution is well known as the most important 

probability distribution in the field of probability and 

statistics because, in accordance with the central limit 

theorem, any process of random sampling tends to produce a 

normal distribution of sample values, even if the population 

from which the samples are drawn does not have a normal 

distribution. A single Gaussian distribution is not suitable to 

account of the temporal changes in the system from which 

the samples come. In the context of non-homogenous BDPs, 

a specific combination of two Gaussian distributions 

describes how the mean size of the particle population 

evolves over time. It is difficult to escape the conclusion that 

a standard GMP may be regarded as a time dependent 

statistical distribution relevant to a specific class of 

physiological processes. 
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