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Abstract: This paper describes a method for scheduling large-scale hydrothermal power systems based on the shuffled 
complex evolution (SCE-UA) method. A multi-reservoir cascaded hydro-electric system with a non-linear relationship 
between water discharge rate, net head and power generation is considered. The water transport delay between connected 
reservoirs is also taken into account. SCE-UA is a successfully proven method in global optimization for many situations. 
Benefiting from its unique global optimization strategies into the inverse procedure greatly enhances the performance of 
SCE-UA method since it can not only effectively locate the promising areas in the solution space for a global minimum 
but also avoid its wandering near the global minimum in the final stage of search. The efficiency of the SCE-UA method 
is analyzed in terms of the mean performance and computational time, in comparison with the particle swarm 
optimization (PSO) algorithm. The simulation results reveal that SCE-UA effectively overcomes the premature 
phenomenon and improves the global convergence and optimization searching capability. It is a relatively consistent, 
effective and efficient optimization method in solving the large scale hydrothermal scheduling problem. 

Keywords: Hydrothermal scheduling, Multichain reservoirs, penalty function, practical constraints, SCE-UA algorithm, valve-
point effects. 

1. INTRODUCTION 

 The short-term hydro-thermal coordination problem 
(STHTC) is a crucial task in the economic operation of a 
power system. A good generation schedule reduces the 
production cost, increases the system reliability, and 
maximizes the energy capability of reservoirs by utilizing the 
limited water resource. The primary objective of the short 
term hydro thermal scheduling is to find the generation 
levels of the hydro and thermal units so as to minimize the 
fuel cost of thermal units. In classical optimization methods, 
the thermal input-output characteristics are approximated by 
a smooth differentiable or piecewise quadratic objective 
function. However, due to the valve-point effects, the real 
input-output characteristics contain higher order non-
linearity and discontinuity which results in a non-convex, 
non-smooth fuel cost function. 

 The STHTC is a nonlinear, high-dimensional, multi-
constraint, complex water-machine electrical coupling 
optimization problem, which is constrained by cascaded 
hydro plants, water time delay, nonlinear hydro production 
function, release targets, power transmission limits [1].  
Various optimization techniques have been applied to solve 
the STHTC problem. Applied optimization methods can be 
classical calculus-based algorithms such as linear and 
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nonlinear programming [2], interior point [3,4] and dynamic 
programming [5], Lagrange relaxation method [6,7]. The 
other methods are the artificial intelligence techniques 
including network flow method [8], heuristic methods, 
expert systems and artificial neural networks [9,10]. Orero 
and Irving present GA approach to STHTC of generators 
with prohibited operating zones and compared the results 
with lambda-iteration method and DP method [11]. Park et 
al. have developed PSO approach to solve economic 
dispatch problem and compared the results with improved 
evolutionary programming and modified Hopfield neural 
network [12]. Although these heuristic methods have been 
employed to solve the complex nonlinear, discrete STHTC 
problems, they do not always guarantee the globally optimal 
solution in finite time and is the difficulty of treating large-
scale systems. In order to reduce the dimension of the 
problem, aggregation of hydroelectric subsystem into an 
equivalent hydroplant is the common manipulation. 
Unfortunately, this practice is sometimes not adapted and 
unusable [13]. 

 As a result of the above limitation, the Shuffled Complex 
Evolution (SCE-UA) which is capable of dealing with global 
optimization problem characterized by the large number of 
local minima, without the need of calculating any gradient or 
partial derivative information, especially for addressing 
problems for which the objective functions are not 
differentiable, stochastic, or even discontinuous [14]. The 
SCE-UA method is becoming much more useful and has 
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recently been used to optimize complex mathematical 
problem of multiparameters, and multimodal objective 
functions. However, few attempts have been made to address 
the STHTC optimization problems. 

 In this paper, we implemented and tested STHTC 
problem based on the SCE-UA approach. The calculation 
efficiency and stability of the proposed method are tested on 
the hydro-thermal generation system with multi-chain hydro 
sub-system along with a number of thermal plants. The 
model considered takes into account non-linear cost function 
of thermal production, variations of water head in 
hydroelectric plants, non-linear function of hydroelectric 
output, a system of cascaded hydroelectric plants including 
dams with limited spillage capacity. A comparative analysis 
with Particle swarm optimization is also made in the present 
study to further evaluate the performance of the proposed 
approach. Results from both synthetic and actual field data 
demonstrate that SCE-UA algorithm applied to STHTC 
optimization problems should be considered robust, effective 
and efficient. 

2. PROBLEM FORMULATIONS 

2.1. Notion 

 To formulate the problem mathematically, the following 
notation used in this paper is first introduced: 

FT : total production cost function 

Fj (Psj
t ) : production cost for Psj

t  

Psj
t : power generation of thermal unit j at time interval t; 

Psj
min : minimum power generation of hydro plant j; 

Psj
max :maximum power generation of hydro plant j; 

N: number of thermal units 

T: number of time intervals 

M: number of hydro units 

Phi
t : power generation of hydro unit i at time interval t 

Phi
min : minimum power generation of hydro plant i; 

Phi
max :maximum power generation of hydro plant i; 

PD
t : system load demand at time interval t ; 

PL
t : system total losses at time interval t 

aj ,bj , cj , ej , f j : cost curve coefficients of jth thermal unit 

 C1,i …C6,i : power generation coefficients of the hydro unit i; 

Vhi
t :water volume of reservoir i at the end of time interval t; 

Vhi
min : minimum water volume of reservoir i; 

Vhi
max : maximum water volume of reservoir i; 

Vhi
ini : initial water volume of reservoir i; 

Vhi
fin : final water volume of reservoir i; 

qhi
t : water discharge for the hydro unit i during interval t; 

qhi
min : minimum water discharge of hydro plant i; 

qhi
max : maximum water discharge of hydro plant i; 

rhi
t : inflow rate into reservoir i during time interval t; 

shi
t : spillage rate of the reservoir i during interval t; 

2.2. Objective Function 

  The prime objective of the STHTC problem is to 
minimize the total thermal cost such that all the equality and 
inequality operation constraints are satisfied, the load 
demands PD

t  supplied from hydro and thermal plant in the 
intervals of generation scheduling can be met [15]. 

 min FT = Fj (Psj
t )

j=1

N

!
t=1

T

!   (1) 

 To obtain an accurate cost function model, the valve-
point effects are modeled in the fuel function as follow: 

Fj (Psj
t ) = aj + bjPsj

t + cj (Psj
t )2 + ej sin( f j (Psj

min ! Psj
t ))   (2) 

 Subject to the following constraints: 

1)  The output hydro power is expressed as a function of 
the water discharge rate and the reservoir storage 
[15]: 

 Phi
t = C1,i (Vhi

t )2 + C2,i (qhi
t )2 + C3,iVhi

t qhi
t + C4,iVhi

t + C5,iqhi
t + C6,i  (3) 

2)  Active power balance constraints : this constraint is 
based on the principle of equilibrium between the 
total generation from hydro and thermal plants and 
the total system demand plus the system losses [16]. 

  Phi
t

i=1

M

! + Psj
t

j=1

N

! " PD
t " PL

t = 0           (4) 

3)  Thermal and hydro plant power generation limits: the 
operating limit of plant has a lower and upper bound 
so that it lies in between these bounds. 

 Psj
min ! Psj

t ! Psj
max             (5) 

 Phi
min ! Phi

t ! Phi
max            (6) 

4)  Hydro plant discharge limits: the physical limitation 
of water discharge must lie in between its maximum 
and minimum operating limits. 

 qhi
min ! qhi

t ! qhi
max             (7) 

5)  Reservoir storage volumes limits : the operation 
volume of reservoir storage limit must lie in between 
the minimum and maximum capacity limits. 

 Vhi
min ! Vhi

t ! Vhi
max             (8) 
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6)  Water dynamic balance equation : the storage 
reservoir volume limits are expressed with given 
initial and final volumes as [17]: 

 Vhi
t = Vhi

t!1 + rhi
t ! qhi

t ! shi
t"# $% + [qhm

t!&m ,i + shm
t!&m ,i ]

m=1

Nu

'       (9) 

7)  Ramp rate constraints: the ramp rate limits are 
caused by the fact that the thermal generating output 
cannot be adjusted instantaneously. The operating 
range of all on-line is restricted by their ramp rate 
limits [18]: 

  
Psj

t ! max Psj
min , P

sj

t"1 " #Psj
down( ), Psj

t $ Psj
t"1

Psj
t $ min(Psj

max , P
sj

t"1 + #Psj
up ), Psj

t ! Psj
t"1

%
&
'

('
     (10) 

3. SHUFFLED COMPLEX EVOLUTION (SCE-UA) 

 The SCE-UA method is a new global optimization 
strategy which is good at effectively and effectively solving 
a broad class of problem. The SCE-UA strategy not only 
combines the concepts of controlled random search, 
competitive evolution, but also complex shuffling which is a 
newly developed sense [19]. Such combinations ensure that 
all the information comes from the sample can be thoroughly 
and quickly exploited. Thus it could be reasonably expect 
that SCE-UA method should have much better global 
convergence on solving a wider range of problems. It means 
if a series of function evaluation was given, the SCE-UA 
method could exhibit a higher probability in finding the 
global optimum towards its objective. 

 The essence of the method can be summarized as follow: 

 1) Beginning with a group of points which were 
randomly selected from the feasible space. Such group is 
divided into several communities. In each community, it 
contains 2n+1points. Here n is the dimension of the problem. 
2) Each community is made to evolve using competitive 
complex evolution (CCE) techniques that uses the simplex 
geometric shape to direct search in an improvement 
direction. At periodic stages in the evolution, the entire 
population is shuffled and points are reassigned to 
communities to ensure information sharing. 3) As the search 
progresses, the entire population tends to converge toward 
the neighborhood of global optimum, provided the initial 
population size is sufficiently large [20]. 

 The essential principles and theories for the SCE-UA 
method could be concluded briefly as follow: Each 
community can be seen as a potential parent and such parent 
community was subjected to a process of reproduction; a sub 
complex which consists of more than two members selected 
form the whole complex can be used as a pair of parents. 
Here, we should ensure that the probability which was 
contributed to the offspring from the better parents must 
higher than that of worse ones in order to make sure that this 
evolution process is competitive. Therefore the employment 
of a triangular probability distribution can realize the 
competitive evolution. For each sub complex which is used 
for the generation of most of the offspring, Nelder and  
 

Mead’s procedure is introduced. This combination can 
improve the evolution into a profitable direction by making 
use of the information derived from each sub complex [20]. 
Moreover, in order to discharge the unpromising regions and 
make the evolution not to get trapped, offspring are located 
randomly under certain conditions. This is somewhat 
analogous to biological evolution in which mutation was 
produced in response to the outside stimuli. Such mutation 
may increase the information stored in samples. 
Consequently, the obtained new offspring replaces the worst 
region in the sub complex, rather than in the whole 
population. In order that, each parent has at least one chance 
to be devoted into the reproduction step before being 
replaced or discarded. Therefore, all information contained 
in the sample will be effectively collected [21]. 

4. SHUFFLED COMPLEX EVOLUTION ALGORITHM 
STEPS FOR HYDRO-THERMAL SCHEDULING 

 In this section, the procedures of proposed SCE-UA for 
solving short-term generation scheduling of hydro system is 
described in details. Penalty function is proposed to handle 
the equality, inequality constraints especially active power 
balance constraint and ramp rate constraints. The process of 
the SCE-UA algorithm can be summarized as follows [22]. 

4.1. Initialization 

 To initialize the process, it is defined p ≥ 1 and m ≥ n+1, 
where p represents the number of complexes, m is the 
number of points contained by certain complex, and n 
indicates the dimension for this problem. Compute the 
sample size s=pm. 

4.2. Generates a Sample 

 In the initialization process, a set of individuals is created 
at random. The structure of an individual for STHTC 
problem is composed of a set of power output of thermal 
plant and discharge decision variables for each hydro plant 
in over the scheduling horizon. Each individual’s position 
contains real numbers randomly generated. 

 Let  Xs = [Ps1, Ps2 ,!, Psj ,!, PsN ,qh1,qh2 ,!,qhi ,!,qhM ]  
be a trial matrix designating the sth individual of a 
population to be evolved 
and

 
Psj = Psj

1, Psj
2 ,!, Psj

t ,!, Psj
T!" #$ ,qhi = qhi

1 ,qhi
2 ,!,qhi

t ,!,qhi
T!" #$

. The elements Psj
t and qhi

t are the power output of the jth 
thermal unit and the discharge rate of the ith hydro plant at 
time t. The range of the elements Psj

t and qhi
t should satisfy 

the thermal generating capacity and the water discharge rate 
constraints in (5) and (7), respectively. 

 To meet exactly the restrictions on the initial and final 
reservoir storage in (8), the water discharge rate of the ith 
hydro plant qhi

d  in the dependent interval d is then calculated 
by 

qhi
d = Vhi

0 !Vhi
T + rhi

t + [qhm
t!"m ,i + shm

t!"m ,i ]! qhi
t ! shi

t

t=1

T

#
t=1
t$d

T

#
m=1

Nu

#
t=1

T

#
t=1

T

#   (11) 
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 Using these hydro discharges, the volumes at different 
intervals are determined. According to hydro plant 
generation characteristics, hydro plant generation power can 
be obtained using its hydro discharges and storage volumes. 
From the calculated hydro generation power, the thermal 
generation power is calculated using (12). The thermal 
generation Psdg

t of the dependent thermal generating unit dg 
can then be calculated using the following equation: 

Psdg

t = PD
t ! Psj

t

j=1
j"dg

Ns

# ! Phi
t

j=1

Nh

#   (12) 

4.3. Rank the Points 

 Sample s points to the ensemble of  x1,!, xs  in the 
feasible space. Compute the function value Fi  in equation 
(2) at each point xi . Due to the absence of prior information, 
a uniform sampling distribution was chosen. Sort the s points 
in order of increasing function value. Store them in an 
array D = xi , Fi , i = 1,!, s{ } , thus i= 1 indicates the point 
exhibits the smallest function value. 

4.4. Partition into Complexes 

 Ensemble D was divided into p complexes 1, , pA A! . 
Each complex contains m points. Thus the first complex 
contains every p(j-1)+1 ranked point, while the second 
complex contains every ranked point of p(j-1)+2 of D, where 
j=1,2,…, m. 

4.5. Evolve Each Sequence 

 Based on the algorithm of competitive complex evolution 
(CCE), each of the parallel sequence was evolved [19]. 

4.6. Shuffle the Complexes as Follows 

 Ensemble 1, , pA A!  was replaced into D, obtained 
{ }, 1, ,kD A k p= = ! . Sort the ensemble of D in the order of 

function value increasing. 

4.7. Check Convergence 

 The convergence criteria is one of following conditions: 
1) When the specified precision for target function cannot be 
further improved (eg. better than 0.01) after certain cycles. 2) 
the maximum iteration number. If the predefined maximum 
iteration number has been reached. If the convergence 
criteria are satisfied, stop; otherwise, return to section 4.4. 
The competitive complex evolution (CCE) algorithm is 
presented in following scheme [22]: 

 Step 1: Initialization of the process. 

 ! : The number of offspring which each subcomplex 
generates before it is put back into complex. It can be any 
number greater than or equal to one. As! is increased, the 
search biased in factor of local search becomes more 
strongly. 

 ! : The number of evolution steps taken by each 
complex before the complexes are shuffled. If ! is large, 
each complex will shrink into the small cluster and lost its 
global search effectiveness. If ! is small, the complexes will 
not conduct much independent exploration of the parameter 
space. 

 Step 2: Assignation. The point 1
kx  exhibits the highest 

probability 1
2

1m
! =

+ , while the point 
k
mx  with the lowest 

 
Scheme 1. the procedure of competitive complex evolution (CCE). 
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probability 
2

( 1)m m m
! =

+ . 

 Step 3: Parents selection. vi is the function value, which 
is associated with point ui. ui was stored in L. L is the 
location of Ak used to construct B. 

 Step 4: Generate offspring according to the following 
procedure: (a) Sort B and L so that the q points are arranged 
in order of increasing function value and compute the 
centroid g using the expression: 

 
1

1

1
1

q

j
j

g u
q

!

=

=
! "   (14) 

(b) compute the new point r=2g–ug. (c) If r is within the 
feasible space, compute the function value fr and go to step 
d; otherwise compute the smallest hypercube H that contains 
Ak, randomly generate the point z within H, compute fz, set 
r=z and fr= fz.(d) If fr < fq, replace uq by r, go to step f; 
otherwise compute c=(g+uq)/2 and fc. (e) If fc< fq, replace uq  
by c, go to step f; otherwise randomly generate a point z 
within H and compute fz. Replace uq by z. (f) Repeat steps a-
e α times, where α ≥ 1 is a user-specified parameter. 

 Step 5: Replacement of parents by offspring. 

 Step 6: Iteration 

5. SIMULATION RESULT 

5.1. Test System 

 In this section, the test system is studied to demonstrate 
the feasibility and effectiveness of the proposed SCE-UA 

method for solving STHTC. A 6-unit test system with fuel 
cost function takes into account the valve-point effects to 
demonstrate the performance of SCE-UA method. Normally, 
short term hydro thermal scheduling concerns with one day 
to week periods of operation with interval of various lengths. 
This paper focuses on short term hydro-thermal scheduling, 
in which day ahead scheduling is done for 24hours on 2hours 
time interval. The test system comprises of a multi-chain 
cascade of three hydro plants and three thermal plants. The 
configuration of the hydraulic sub-system is shown in Fig. 
(1). The hydro power generation coefficients, reservoir limits 
are given in Tables 1 and 2, respectively. The generation 
limits, cost coefficients of thermal units are given in Table 3. 

5.2. Optimal Estimation of the SCE-UA Parameters of 
STHTC Problem 

 Before proceeding to the simulated calculation, careful 
selection of parameter setting is important to produce a 
competent result. Selection of the parameters considerably 
affects the performance of the SCE-UA for STHTC problem. 
The SCE-UA method contains many probabilistic and 
deterministic components that are controlled by some 
algorithmic parameters. The complex size of m is chosen to 
be equal to 2n+1. Here n represents the dimension of the 
problem. !  indicates the number of offspring, which can be 
generated by each independently evolving complex. Such 
complex is between two consecutive shuffles which also has 
the same complex size (2n+1). Concerning about the 
subcomplex selected for generation, its size of was chosen to 
be n+1, which is the standard size for a simplex. Such 
definition was also specified by Nelder and Mead that 

Table 1. Hydroelectric Plant Coefficients 
 

 C1 C2 C3 C4 C5 C6 

Hydro 1 -0.0029 -0.31 0.03 1.34 14 -70 

Hydro 2 -0.0032 -0.3 0.04 1.14 23 -55 

Hydro 3 -0.003 -0.21 0.027 1.44 11.5 -80 

 
Table 2. Hydroelectric Plant Data 
 

 Vhi
min ( 104 m3 ) Vhi

max ( 104 m3 ) Vhi
ini  ( 104 m3 ) Vhi

fin  ( 104 m3 ) qhi
min ( 104 m3

s ) qhi
max ( 104 m3

s ) Phi
min (MW) Phi

max (MW) 

Hydro 1 80 150 88 120 5 25 0 500 

Hydro 2 60 130 70 80 6 25 0 500 

Hydro 3 30 120 60 110 10 40 0 500 

 
Table 3. Cost Curve Coefficients and Limits of Thermal Generations 
 

 aj  bj  cj  ej  f j  Psj
min (MW) Psj

max (MW) 

Hydro 1 100 2.45 0.0012 160 0.0038 20 175 

Hydro 2 120 2.32 0.0010 180 0.0027 40 300 

Hydro 3 150 2.1 0.0015 200 0.0035 50 500 
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employed in the CRS procedure reported in previous study 
[20]. The parameter ! was set to 1 in order to match the 
CRS procedure. In this method, p, the number of complexes 
was selected and endowed to the primary variable. 

 To successfully implement the SCE-UA, the values of 
key parameter p have to be determined first. In order to find 
optimal values of p to solve the STHTC problem considered 
in this paper, experiments are conducted using the proposed 
method by increasing p from 10 to 20 in steps of 1. For each 
value for this parameters p, 20 independent trials have been 
made to bring out the optimal values p for the proposed 
SCE-UA to solve STHTC problem. The results of case, for 
worst, average and best total fuel costs obtained by SCE-UA 
for each parameters p are shown in Table 4. Based on the 
results from Table 4, the proposed SCE-UA method provides 
the best results when p=17. 

5.3. Computation Results 

 Based on the statistics outcome of experiments shown in 
Table 4, parameters chosen in this paper are as follows: the 
number of complexes p=17; maximum number of function 
evaluations allowed during optimization maxn=1e5; 
maximum number of evolution loops before convergence 

kstop=10, the percentage change allowed in kstop loops 
before convergence percento=0.01. 

 In order to check solution quality, we inspected the 
variation in total fuel cost from 20 trials using the proposed 
SCE-UA and PSO methods. The hydrothermal generation 
scheduling and the optimal hydro discharge with minimum 
cost obtained by the SCE-UA and PSO method are reported 
in Tables 5 and 6 respectively. In Table 5, the last column 
provides sum of power generation for all generators in order 
to check whether the total load balance constrains are 
satisfied or not. The solution for SCE-UA method is optimal 
and also satisfies the total load balance constraints 
completely for short-term hydro generation scheduling, 
while PSO algorithm is not satisfied. Fig. (2) is peak-shaved 
load curve scenario with SCE-UA and PSO methods.  
Fig. (3) is the hydro power generation obtained by SCE-UA. 
From Fig. (2), it is clearly seen that each thermal plant load 
generates variation in a small range with trial numbers using 
the SCE-UA method, thus verifying that the proposed SCE-
UA has better quality of solution to ensure the operation of 
thermal plants continuously and reducing the number of 
switch machine. As seen in the simulation results of the test 
system, the schedule of thermal plants obtained by SCE-UA 
method is suitable to operate at base load plants, leaving 

 
Fig. (1). The configuration of hydro sub-system. 

Table 4.  SCE-UA Parameter Tuning Results 
 

                      P 
Cost($) 

10 11 12 13 14 15 16 17 18 19 20 

Max 15063.28 15177.36 15103.85 15328.44 14924.72 15174.42 14927.38 14879.35 15407.39 15182.54 15358.86 

Ave 14901.83 14973.66 14973.82 15125.60 14767.41 14889.54 14798.04 14744.97 15139.14 14862.64 14945.65 

Min 14876.38 14910.32 14894.82 19837.59 14689.50 14818.48 14707.71 14672.94 14937.86 14788.94 14855.75 
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hydro-plants to operate at peak load plants. It reduces the 
production cost, increases the system reliability, and 
maximizes the energy capability of reservoirs by utilizing the 
limited water resource. 

 
Fig. (2). Peak-shaved load curve scenario. 

 
Fig. (3). Hydro power generation with SCE-UA. 

 In order to check solution quality, we inspected the 
variation in total thermal plant cost and its standard and 
standard deviation from 20 trials. Table 7 provides 

Table 5. Hydrothermal Generation Schedule by SCE-UA and PSO 
 

SCE-UA (MW) PSO (MW)  

Hour Ph1  Ph2  Ph3  Ps1  Ps2  Ps3  Ph1  Ph2  Ph3  Ps1  Ps2  Ps3  PD  

1 135.06 241.32 129.85 49.82 106.89 87.07 109.12 352.57 151.39 42.01 226.47 113.11 750 

2 126.93 222.11 84.98 47.54 120.63 97.85 202.96 343.68 122.85 124.22 167.98 85.95 700 

3 152.59 324.98 80.07 66.75 121.67 103.83 110.59 172.53 82.57 145.44 207.75 167.30 850 

4 185.72 322.45 115.77 82.00 134.23 109.82 145.21 297.08 45.37 142.58 81.52 323.44 950 

5 183.54 416.84 121.13 94.77 152.10 121.56 226.87 157.70 60.07 131.98 102.48 327.04 1090 

6 191.43 374.33 142.66 98.66 160.59 132.35 214.93 453.89 95.21 123.57 184.22 94.82 1100 

7 191.27 386.01 161.45 84.55 155.01 131.62 150.12 365.22 46.22 104.59 184.65 234.86 1110 

8 182.43 282.40 183.58 82.00 155.08 124.46 139.57 327.52 78.74 77.10 111.32 236.06 1010 

9 171.58 352.58 217.44 65.82 137.18 105.38 201.48 314.34 96.36 45.60 235.14 203.28 1050 

10 203.06 354.84 236.37 70.13 119.72 85.89 142.32 285.47 142.68 110.08 118.31 272.02 1070 

11 154.72 229.93 247.40 72.55 110.21 95.16 203.93 426.42 152.13 172.66 209.82 79.02 910 

12 147.61 195.17 232.56 68.38 108.97 97.25 129.85 202.14 192.15 49.55 154.38 82.36 850 

 

Table 6. Hourly Plant Discharge ( !104 m3 ) Using SCE-UA and PSO 
 

Method Hour 1 2 3 4 5 6 7 8 9 10 11 12 

SCE-UA qh1
t  8.16 7.41 9.55 13.02 12.41 12.72 12.21 10.95 9.69 12.95 8.15 7.44 

SCE-UA qh2
t  10.53 9.29 14.91 14.66 21.30 18.03 19.03 12.24 15.89 15.78 8.92 7.151 

SCE-UA qh3
t  15.28 10.07 10.00 18.21 16.98 21.17 21.54 22.23 24.87 25.64 22.67 17.70 

PSO qh1
t  5.83 17.10 6.31 8.86 24.46 22.96 10.44 8.83 17.09 9.35 19.93 9.34 

PSO qh2
t  17.62 17.36 7.32 13.67 6 23.66 17.16 14.59 13.33 11.38 20.20 7.55 

PSO qh3
t  21.93 25.99 26.6 21.38 21.60 19.68 38.48 20.14 15.54 39.14 16.98 28.19 
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comparison of the minimum, maximum, average total fuel 
cost obtained from the proposed SCE-UA method with of 
PSO. From Table 7, the SCE-UA presents a better total fuel 
cost, and a lesser CPU time. In the paper, penalty function 
has been adopted to tackle and optimize the constraints of 
STHTC problem. If the calculation results do not meet the 
constraints, penalty function value should be greater than 
zero. Inversely, when the calculated results satisfy the 
constraints well, obtained value of the penalty function 
should be equal to zero. From Table 8, the penalty function 
value obtained by SCE-UA equal to zero. PSO method 
cannot satisfy the water dynamic balance limit, thermal & 
hydro power generation limits and even water dynamic 
balance limit, thus, results obtained by PSO is greater than 
zero. The bigger value for penalty function obtain means the 
calculated results are far unable to meet the constraints. 

 Fig. (4) is the trajectories of reservoir storage volumes 
for STHTC obtained by SCE-UA. Fig. (5) shows the 
distribution of the best total thermal plant cost of each trial 
from running 20 times using the proposed SCE-UA and PSO 
methods. From Fig. (5), the convergence and the variation 
obtained by SCE-UA is tolerable. Average cost of 20 trials is 
very near the middle position that lies between their 
maximum and minimum values. The total fuel cost generates 
variation in a small range with trial number using the 
proposed SCE-UA method. It verifies that the proposed 
SCE-UA method enhances the efficiency of solving and 
reduces the probability of being trapped in local 
optimization. 

 In the meantime, we examine the variation in the total 
fuel cost of test system with evolutionary generation 
numbers, which illustrate the improvement achieved in the 
convergence property of the SCE-UA method compared 
with PSO. Figs. (6, 7) show the convergence process 
obtained by SCE-UA and PSO method. For the PSO method, 
there is a sharp decline in the total thermal plant cost at the 
beginning evolutionary stages until generation 40 while it 
declines slowly during later stages and the corresponding 
value is far away from the optimal solution. The thermal 
plant cost obtained by SCE-UA method decline much slowly 
than PSO in the entire evolutionary process. It leads to 
thermal cost smaller than PSO and can find the optimal  
 

 
Fig. (4). Reservoir storage volumes obtained by SCE-UA. 

 
Fig. (5). Distribution of the best cost of each trial. 

solution in the given maximum evolutionary iterative 
numbers and there is a large reduction in computation time. 
It shows that the convergence property of SCE-UA method 
is better than that of PSO for solving STHTC problem. 

6. CONCLUSIONS 

 This paper has investigated the consistency with which 
global optimization algorithm is able to find the optimal  
 

Table 7. Results (20 Runs) Obtained by Optimization Method 
 

Algorithm Min.cost ($) Max.cost ($) Mean.coat ($) CPU Time (min) 

SCE-UA 14358.46 14971.60 14722.56 2 

PSO 18549.19 21991.67 20322.36 16 

 
Table 8. Results Obtained by Objective Constraints 
 

Method Thermal & Hydro  
Power Generation 

Hydro Plant  
Discharge Limits 

Reservoir Storage  
Volumes 

Water Dynamic  
Balance 

Ramp  
Rate 

SCE-UA 0 0 0 0 0 

PSO 373 0 0 8.94×1010 371.357 
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Fig. (6). Convergence process obtained by PSO. 

 
Fig. (7). Convergence process obtained by SCE-UA. 

parameter values during calculating the hypothermal 
scheduling model. In the synthetic data study, SCE-UA 
effectively overcomes the premature phenomenon and 
improves the global convergence and global optimization 
searching capability, while the PSO method cannot exactly 
locate the global optimum. The simulation results of the case 
studies reveal that the SCE-UA algorithm can guide the 
search effectively under the help of obtained response 
surface information by using conclusive strategies. The 
selection of random elements in certain complicated complex 
makes such algorithm more flexible and generable. This 
strategy of systematic complex evolution ensures that the 
search is relatively targeted and very robust due to the 
guidance by the objective function. In order to handle 
constraints effectively, the penalty function is proposed to 
handle ramp rate constraint, reservoir volume constraints and 
active power balance constraints. 

 We have shown that the SCE-UA algorithm is a 
relatively consistent, effective and efficient optimization 
method to solve the short-term hydrothermal scheduling 
problem, which could reduce the total fuel cost, increases the 
system reliability and maximizes the energy capability of 
reservoirs by utilizing the limited water resource. Hence, an 
effective method is provided to solve the optimal daily 
generation scheduling of hydrothermal systems and it can be 

extended for applications in large–scale hydrothermal power 
systems. 
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