
Send Orders for Reprints to reprints@benthamscience.ae 

 The Open Cybernetics & Systemics Journal, 2015, 9, 243-252 243 

 1874-110X/15 2015 Bentham Open 

Open Access 

Graph Partition Based Decomposition Approach for Large-Scale Railway 
Locomotive Assignment 

Xin Zhang
1,*

, Wenting Mo
2
, Baohua Wang

2
, Fengjuan Wang

2
 and Peng Gao

2
 

1
Automation Department, Tsinghua University, Tsinghua University, Beijing, 100083, P.R. China; 

2
IBM Research - 

China, Building 19 Zhongguancun Software Park, Beijing, 100193, P.R. China 

Abstract: Locomotive assignment is a classic planning problem in railway industry. Different models and algorithms 

(e.g., network flow model, MIP model, adaptive dynamic programming) are proposed to solve this problem and have got 

remarkable progress. In practice, the locomotives are usually in the size of hundreds to even more than a thousand. So as-

signing individual locomotives to trains on railway network will result in too huge modeling space for the problem to be 

solved. Hence most existing research work takes a trade off to concern the types (or type combinations) of locomotives, 

which are usually in the size of tens at the most. This impedes the application value for being unable to consider the avail-

ability and maintenance requirement of individual locomotives. In this paper, a novel path-based MIP model is proposed 

for modeling the locomotive assignment problem. By adopting graph partition method on the space-time network, the 

original problem is decomposed into inter-connected multiple sub-problems. Then an iterative MIP solving algorithm is 

devised to find the near optimized solution for the original problem. The approach proposed in this paper has been vali-

dated in a railway bureau in China. The experiment shows that the approach has superior advantage in both scalability and 

performance with reasonable cost of objective value. 

Keywords: Decomposition, graph partition, locomotive assignment, MIP.  

1. INTRODUCTION 

Locomotive planning and scheduling are very important 
for railway operations. It’s critical to define an efficient lo-
comotive utilization schedule that can provide sufficient 
pulling power for transportation requirement and at the mean 
time avoid inefficient utilization of resources. Generally 
speaking, the locomotive planning and scheduling are a 
process to assign locomotives to trains according to trains’ 
pulling demand as well as locomotives’ availability. Since 
the locomotive assignment problem is tightly coupled with 
physical railway network topology concerning certain plan-
ning period, it arise as a combinatorial optimization problem 
which has attracted a lot of research interest in past decades. 
Beside the network nature, the problem usually accompany 
with locomotive utilization rules, e.g., at some section of the 
railway network, type A trains need to be joint pull by two 
model x locomotives and one model y locomotive. It’s very 
challenging to find optimum solution when there are hun-
dreds of locomotives to be assigned to hundreds of trains. 

Previous research work has proved that the locomotive 
scheduling optimization problem is a NP-hard problem [1]. 
Different models and algorithms (e.g., network flow model 
[2], mixed integer programming model (MIP) [3], adaptive 
dynamic programming [4]) are proposed to solve this prob-
lem and have got remarkable progress. Most of existing 
work considers the assignment on the locomotive type basis. 
 

They avoid concerning each individual locomotive either 
because it’s unnecessary for long-term plan or for simplify 
the problem to avoid variable explosion. While in practice, 
different locomotives, even if they are of the same type, may 
have totally different assignment consideration because of 
their individual status, including available time, maintenance 
requirement, fueling demand, etc. So it’s important to ad-
dress this problem for generating more effective locomotive 
plan for daily execution. To the best of our knowledge, there 
is only limited work [5] that has touched this problem on 
small problem size. Even a medium size locomotive assign-
ment problem can cause too many variables and constraints 
for any MIP solver to handle if concerning individual loco-
motives. 

In this paper, we focus on the locomotive assignment 
problem on a large-scale railway network with hundreds of 
locomotives and more than a thousand trains. More specifi-
cally, we aim to develop method for generating optimized 
solution which can take individual locomotives’ status into 
model consideration. We model the problem as a MIP model 
regarding locomotives’ candidate working paths as major 
decision variables. Motivated by the observation from the 
space-time network of the locomotive assignment problem, a 
decomposition approach is proposed by leveraging graph 
partition technology. Through that approach, a global opti-
mization problem is transformed into multiple inter-
connected sub problems. Then an iterative MIP solving algo-
rithm is devised to find the near optimized solution for the 
original problem. The approach proposed in this paper has 
been validated in a railway bureau in China. The experiment 
shows that the approach has superior advantage in both scal-
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ability and performance with reasonable cost of objective 
value. 

The remaining of this paper is as following. We first in-
troduce related work in the literature review section. In the 
approach section, we come up with a formal definition of 
path-based MIP model after introducing the locomotive as-
signment problem. Then a novel graph partition based de-
composition method and algorithm is presented and corre-
sponding iterative optimization algorithm is described. Base 
on the devised approach, we present the experiment results 
and summarize our work. 

2. LITERATURE REVIEW 

A network flow model was proposed to solve the simul-
taneous assignment problem for railway locomotives and 
cars [2]. They used benders' decomposition based method to 
separate the model. Instances with a weekly schedule from 
VIA Rail Canada were tested in the paper. Multiple types of 
locomotive were assigned to a fixed timetable [3]. Branch 
and cut method was developed to solve the integer pro-
gramming model. The model and algorithm was tested by 
actual data set from Canadian national railway company. 
Multi-depot locomotive assignment problem with time win-
dows was solved by hybrid genetic algorithm [5]. 15 com-
pletely random generated instance problems indicated that 
this algorithm was efficient and solved the problem in a 
polynomial time. Light travel was specifically handled when 
optimizing locomotives [6]. They proposed an integer pro-
gramming model to solve the problem. However, algorithm 
was not presented and the methodology may be more suit-
able for small area. The same problem as [3] was investi-
gated and a backtracking mechanism, which can be added to 
the branch and price approach, was also presented [7]. Test-
ing result showed the methodology may not be faster than 
[3] but could observe the solution process tendency. Fuzzy 
optimization was used to solve the same problem as [5, 8]. 
The trains should be served with appropriate locomotives in 
pre-specified hard/soft fuzzy time windows. However, there 
was no testing result to show the advantage of applying 
fuzzy theory. In summary modeling the locomotive assign-
ment problem regarding individual locomotives’ feasible 
working paths has not been fully addressed yet. 

3. APPROACH 

In this section, we firstly introduce the locomotive as-
signment problem in detail. Base on that, a formal MIP 
model taking locomotive feasible path as major variable is 
defined. After that, the approach that decomposes the global 
MIP problem into inter-connected sub MIP problems is illus-
trated. And the algorithm that iteratively solves the sub MIP 
problems according to information of the inter-connection 
matrix is depicted. 

3.1. Problem Description 

As former mentioned, the locomotive assignment prob-
lem is a process to assign locomotives to trains based on the 
consideration of railway network topology. The assignment 
needs to consider the matching between pulling demand and 
supply: At the demand size, each train is defined with its 
train type, departure yard, departure time, arrival yard, arri-

val time, and total weight, etc. At the supply size, each lo-
comotive has its type, initially available time and available 
yard, its pulling capacity, current fuel or energy level, and 
maintenance demand, etc. In the output of the locomotive 
assignment, when a locomotive is assigned to one or multi-
ple trains, it means the locomotive will pull (or deadhead on) 
those trains in sequence according to their time. In another 
way, we call this as the locomotive’s working path. To 
achieve operation efficiency, a good locomotive plan shall be 
able to pull more trains with fewer locomotives. This comes 
to be the major objective of the locomotive assignment prob-
lem. Besides, there are usually certain locomotive utilization 
rules need to be complied, e.g., at some section of the rail-
way network, type A trains need to be joint pull by two 
model x locomotives and one model y locomotive. In general 
whether a locomotive can be assigned to pull a train depends 
on the following three elements: 1) Availability: if the loco-
motive is available at the yard before the train departs. 2) 
Fuel amount: if the locomotive has enough fuel for pulling 
the train. 3) Locomotive type: if the locomotive is of a loco-
motive type allowed for pulling the train. When all the con-
ditions are satisfied, the locomotive becomes a candidate that 
can be assigned to the train, or in another way, the train is 
regarded a candidate in the locomotive’s feasible paths. 

Previous work mostly models the problem taking the 
number of locomotives (of certain type) assigning to a train 
as major decision variable. This approach on the one hand 
has the benefit for controlling the problem size, on the other 
hand has its weakness in considering the difference of indi-
vidual locomotives. While in practice, different locomotives 
can have dramatically different feasible paths only for the 
difference in available time and fuel level. Maintenance re-
quirement is another factor that can also impact this issue: if 
a locomotive plans to be maintained at depot A starting from 
Time X, then it shall be deliberately assigned to a train 
which arrives at yard around A before Time X. There are 
more other factors, such as some locomotive switching rule 
or turn around policy at a yard which requires the model be 
more flexible to take these factors into consideration. 

So motivated by this requirement, we proposed a path-
based MIP model. It regards the full set of all locomotives’ 
feasible paths as the major decision variables. In this way, 
individual locomotives’ characters and requirement, as well 
as some complex in-yard operation rules can be handled in 
the path set generation process. In the following we will 
formally define the path-based MIP model and further articu-
late the solving method and algorithm. The procedure of 
generating candidate paths can be an effective depth-first 
exhausted search, which will not be covered in detail. 

3.2. Mathematical Model 

Set notations: 

L: All locomotives 

TA: All trains 

 
F

a
: Set of feasible locomotive type on train a 

 
P

l
: Feasible path set of locomotive l 

Constant notations: 
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C

lp
: Cost of path p of locomotive l 

 
RP

la
: The horse power locomotive l can contribute on 

train a 

  
lpa

=
1, if path p of locomotive l includes train a

0, otherwise
 

w
1
, w

2
: Predefined weights of objectives 

M: A big number 

Decision variables: 

  

y
lp
=

1, path p of locomotive l is selected

0, otherwise
  l L  

  

x
la
=

1, locomotive l contributes power on train a

0, otherwise
 

a TA  

z
a
=
0, train a is satisfied

1, otherwise
  a TA  

Constraints: 

1. Each locomotive chooses exclusively one path from its 

candidate path set. 

y
lp

p P
l

=1   l L  

2. A train is regarded as being satisfied if it is assigned 

enough horse power. 

 

U
a

RP
la

x
la

l F
a

M z
a

 

3. A locomotive either pull a train or deadhead on a train. 

 

x
la lpa

y
lp

p P
l

 
  

l L, a TA  

The objective of the path-based MIP model is to maxi-
mize the satisfied pulling demand (number of satisfied 
trains) with least total locomotive utilization cost:  

  

max imize w
1

(1 z
a

a TA

) w
2

C
lp

y
lp

l L

 

Note that in real application the locomotive utilization 

cost can be a mixture of many elements, such as locomotive 

cost, fuel cost, waiting cost, etc. Here without lost of model 

generality, we simplify the objective to the number of loco-

motive required, i.e., 
  
C

lp
=1  if

 
p

l
contains one or more trains 

(otherwise 
  
C

lp
= 0

 
since   l  doesn’t work if it chooses 

 
p

l
). 

Light travel is a term of locomotive movement from one 
yard to another without pulling a train. Light travel shall be 
avoided unless a train has no locomotive to be assigned 
without the light travel. This model does not cover the light 
travel arrangement. One can resort to a post step to supply 
unsatisfied trains with locomotives through light travel after 

solving the MIP model. However this is out of the scope of 
this paper and will not be discussed in this paper. 

With a rough test of the path-based MIP model, one can 

find its search space can be extraordinary huge: Assume in a 

medium size network with 2 or 3 hundreds of trains. In aver-

age each time there are 4 possible routes for each locomo-

tive. And on each route there are 8 trains can be chosen to 

pull. And each locomotive pulls 2.5 trains per day. Then, the 

average number of feasible paths for a locomotive is 

 
(4 8)2.5 5800 . When the number of locomotives reaches 

several hundred, the decision variables of the model can ex-

ceed several millions. A combinatory optimization problem 

of this size is a disaster for deterministic MIP algorithms like 

Branch and Cut [9]. Thus, we proposed a graph partition 

based decomposition approach that will be introduced in the 

next subsection.  

3.3. Graph Partition Based Decomposition Method and 

Algorithm (GPDMA) 

It’s a common understanding that when the scale of vari-
ables and constraints reaches multiple millions, it’s hard for 
any commercial MIP solver to handle, even though accelera-
tion techniques such as column generation [10] or Bender’s 
decomposition [2] are considered. In order to reducing the 
problem size of the path-based MIP model, we trace the path 
explosion issue back to the network structure. It can be ob-
served that the number of locomotives’ feasible paths may 
increases exponentially along with the size of space-time 
network. Hence if we can decompose the network into mul-
tiple sub-networks with minimal connectivity lost, the origi-
nal problem can be approximated as multiple inter-connected 
sub-problems. Each sub-problem can be solved in reasonable 
time using existing MIP solver. And through coordinating 
the solving process among the sub-problems taking their 
inter-connectivity into consideration, the near optimum re-
sult of the original problem can be generated. 

In the following, the graph partition based decomposition 
method and algorithm will be introduced in detail. The 

method has the following steps: firstly construct the space-

time network based on the network topology and train legs. 
Then formulate a graph model representing the connectivity 

among nodes in the Time-Space network by populating the 

locomotive information along the arcs of the network. 
Thirdly leverage graph partition method to split the graph 

into multiple sub-graphs with minimum cutting cost. After 

that, trace the cutting back to the space-time network and 
derive multiple sub space-time networks and the inter-

connectivity matrix. For each sub space-time network, one 

MIP model instance can be generated. Lastly, resort to an 
iterative optimization algorithm to find the optimize solution 

for the problem. 

3.4. Space-Time Network Construction 

Space-time network is widely used for modelling net-

work flow problems (e.g., [2]). In this paper, we leverage the 

space-time network representation as the base for searching 
locomotive working paths. A sample space-time network is 

shown in Fig. (1). Formally we define it as:  
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G

N
= (N

N
, A

N
)                 (1.1) 

A space-time network 
 
G

N  
is composed by a set of nodes 

 
N

N
 and a set of arcs 

 
A

N
. There are four types of nodes 

 
N

N
: train node n

T
N
T

, standing for the departure or arri-

val of a train leg at a yard on a predefined time; start node 

n
S

N
S

, which is on the plan’s start time at each yard; end 

node n
E

N
E

, which is on the plan’s end time at each yard; 

loco node 
 
n

L
N

L
, indicating that some locomotives are 

firstly available at the time and yard the node represents. 

Normally, a locomotive can get available at any node, and 

flows through the network to an end node. Arcs 
 
A

N  
have 

two types: train arc 
 
a

T
A

T  
connecting two train nodes and 

representing a train leg; waiting arc 
 
a

W
A

W  
connecting 

two temporally adjacent nodes at the same yard. The loco-

motive flow on the space-time network needs to cover train 

arcs 
 
A

T  
as much as possible in a cost effective way (indicat-

ing by the total number of assigned locomotives).  

It is straightforward to construct a space-time network in 
the following steps: Firstly put yards in vertical and plan 
period as horizon. For each yard, create one start node at the 
plan begin time and one end node at the plan end time. For 

each train leg, create two train nodes at the train’s departure 
and arrival yards and time, and connect them with a train arc. 
For each locomotive, put its number in the node representing 
its first available place. If no proper node exists, add a loco-
node according to the locomotive available information. In 
the end, at each yard, chain up all the nodes on the yard ac-
cording to their time sequence by waiting arcs.  

One shall notice that in the space-time network the num-
ber of locomotives is not balanced for each node on its in-
come arcs and outcome arcs. More specifically, those nodes 
with locomotive initially available will have more outcome 
locomotives than income locomotives, and some other nodes 
where locomotives sink in will have more income locomo-
tives. And also, since there is no predefined source node and 
sink node indicating the two poles of the network, one can 
not resort to the maximum flow algorithm for partition the 
network. 

3.5. Graph Model Formulation 

We formulate a graph to model the connectivity of the 
space-time network. The graph model can be generated by 
inferring the locomotive flow on the space-time network. 
The key equation is as following:  

  
l
i,w

n
+ l

i,t

n
+ l

av

n
= l

o,t

n
+ l

o,w

n
               (1.2) 

n N
N
N
E

 

 

Fig. (1). A Sample space-time network. 
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For any node  n  except end nodes in 
 
N

E
, its number of 

income locomotives, including income from waiting arc 
  
l
i,w

n
 

and from train arc l
i,t

n
, plus the number of locomotives ini-

tially available on node n
 
l
av

n , shall equal to the number of 

outcome locomotives on node n , which is the sum of out-

come locomotives on train arc l
o,t

n
 and on waiting arc l

o,w

n
.  

The graph model is formally defined as:  

G = (V ,E)
                

 (1.3) 

Each node in space-time network G
N

 is directly mapped 

a vertex in graph 
 
G . And each arc in 

 
G

N
can mapped to an 

edge in 
 
G  with the following algorithm to infer the weight 

of the edge. 

Algorithm 1: Graph model generation(GraphGen) algorithm. 

function GraphGen (
  
N

N
, A

N
, L

T
, L

AV
) 

/* L
T

 is the list of required locomotive number on each 

train arc; L
AV

is the list of initially available locomotive 

number on each node. */ 

  
V ,V

d
, E  

for each 
 
n

i
N

N
 do 

new a vertex 
 
v

i
, initial its attributes (initial available 

 
w

av

vi
, in-wait w

i,w

vi

, out-wait w
o,w

vi

, in-train w
i,t

vi

, out-train w
o,t

vi

) 

as: 
  
w

av

vi
l
av

ni
; w

i,w

vi
0; w

o,w

vi
0; w

i,t

vi
0; w

o,t

vi
0  

  
V V v

i{ }  

if (
 
n

i
N

E
) then 

  
V

d
V

d
v

i{ }  

for each 
 
a

j
A

N
do 

new an edge 
 
e

j
 connecting mapped vertexes ( vs ,  ve ) 

if (
 
a

j
A

T
) then 

  
w

ej
l
aj

; w
o,t

vs w
o,t

vs
+ w

ej
; w

i,t

ve w
i,t

ve
+ w

ej
 

else 

  
w

ej
NA; w

o,w

vs
NA; w

i,w

ve
NA  

E E e
j{ }  

while (
 
V

d
) 

find a 
 
v

d
 in 

 
V

d
 that 

  
w

i,w

vd
NA  

get 
 
v

d
’s out waiting edge 

 
e

d
, and the other vertex 

 
v

e
 of 

 
e

d
 

  
w

o,w

vd
w

i,w

vd
+ w

i,t

vd
+ w

av

vd
w

o,t

vd
; w

ed
w

o,w

vd
; w

i,w

ve
w

o,w

vd

 
V

d
V

d
v

d{ }  

The space-time network is acyclic since each arc has an 

earlier time in its start node than in its end node. And also 

each node has at most one out waiting arc (a waiting arc has 
the node as its start node). So the GraphGen algorithm is 

deterministic.  

As each loop in the GraphGen algorithm scans each node 
or arc at most once, so the computation complexity of 
GraphGen algorithm is O(n). 

Fig. (2) shows a sample of weighted graph in the space-

time network representation. The sample reveals some clue 
for decomposition: there exist some cliques in the graph 

which are intensively connected internally and weakly linked 

with other parts of the graph. 

3.6. Graph Partition 

The motivation here is to decompose the original space-

time network into multiple inter-connected sub-networks. By 
that means the task to find the optimum solution of a global 

MIP problem, which is usually infeasible with the increase 

of problem size, is transformed into the task to collabora-
tively optimize multiple smaller size MIP problems. Intui-

tively, decomposing a connected network will certainly 

cause some information lost. So it’s critical to minimize the 
total weight of arcs that are cut for disconnecting the net-

work. With minimized lost of connectivity, we can expect 

that the optimization result in the transformed space is able 
to approximate the original problem quite well. 

In this paper, we resort to graph partition method to de-

compose the network with minimum lost of information. 
Graph partition methods are widely used in machine learn-

ing, pattern recognition, as well as data mining field [11-13]. 

There are many variations of graph partition methods, 
mostly on undirected graphs [14-16], and a few on directed 

graphs [17]. Here we adopt the normalized cut [18] approach 

on Laplace matrix which is both computational efficient and 
can balance the size of parts in the mean time to minimize 

the cutting edges.  

To apply normalized cut, a matrix W is derived from 
graph model G representing the connectivity between each 
pair of vertex, where 

,

, ( , )

0,

e i j

i j

w e e v v e E
W

otherwise

=
=

 

Since  W  is an asymmetric matrix, it can be transformed 

into a symmetric one  M W +W
T

. Then the Laplace ma-

trix can be constructed  L D M , where  D  is the diago-

nal matrix with 
 
D

ii
M

ijj
 [19]. The normalized Laplace 

matrix is 
  
L

n
D

1/2
LD

1/2 . By solving the Eigen values and  
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Fig. (2). A Sample of weighted graph. 

corresponding Eigen vectors of
n
L , the algebraic connec-

tivity of a graph is disclosed. By sorting the Eigen values in 

ascendant order 0 =
1 2 3 n

and picking Eigen 

values start from 
2

, the sign of element in corresponding 

Eigen vector indicates which group a vertex shall belongs.  

By normalized cut, the vertex set of a graph is partitioned 
into several groups of vertexes. Normalized cut takes O(n

3
) 

operations to compute all Eigen values and Eigen vectors, 
where n is the number of vertexes in the graph. The algo-
rithm is quite efficient in handle input with thousands of ver-
texes. 

Fig. (3) shows the partition result of the sample formerly 
introduced. 

It’s very important to determine the proper number of 
groups to be cut into. Though it’s more efficient in solving 
the optimization problems in smaller size, it’s more risky to 
bias from the original problem for the sake of lost too much 
connectivity information. The GraphPartition algorithm con-
taining the cut strategy is as following:  

Algorithm 2: Graph partition (GraphPartition) algorithm. 

function GraphPartition (G,Threshold ) 

Compute the normalized Laplace matrix L
n

 from  G  

Compute Eigen values and vectors 
  i

,
i

i (1...n)  for 

L
n

. 

 
V{ }  

  x 2  

while ( ) 

Partition each vertex group in into two sub-groups ac-

cording to 
 x

, get 
  
V

1
...V

K
.  

 

for each 
 
V

k
do 

Test the sum of variables and constraints  m  by searching 

locomotive feasible paths on the sub-network mapped by 
 
V

k
 

if  m Threshold then 

  
V

k{ }  

else 

if 
  x+1

0.01
x+1 x

*1.1  then 

  
V

k{ }  

x x +1  
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The input Threshold is the estimated capacity of the MIP 

solver to be used, denoting by the sum of variables and con-

straints that the MIP solver can safely handle. So the Graph-

Partition algorithm continue to cut a sub-network when its 

size is too big to be handled by the MIP solver or there is 

little lost of connectivity (indicating by the value of ). The 

computation complexity of GraphPartition algorithm is also 

O(n
3
). 

3.7. Network Model Re-generation 

Given 
   
V

k
k 1…K( )  are the sub-groups of vertexes 

generated through normalized cut, the network will be re-

constructed by a set of sub-networks 
 
G

N

k
= N

N

k
A

N

k( )  and a 

graph model 
 
G

c
 representing the inter-connectivity among 

sub-networks. For each 
 
V

k
, its corresponding sub-network 

 
G

N

k  can be built in the following steps: 1. map back from 

vertexes V
k

 to nodes 
  
N

k

' ; 2. create arc set 

  

A
N

k
a a ' s startnode N

k

'{ } ; 3. create node set 

  
N

N

k
N

k

'
n n = e.endnode,e A

N

k{ } . Note that the sub-

networks are a partition of arcs and they can have overlapped 

nodes. So from the path-based MIP model point of view, the 

network decomposition is at the cost of localizing the loco-

motive path searching if it covers the overlapped nodes. 

That’s exactly the reason for minimizing the total weight of 

edges that are cut during the graph partition. 

The inter-connection graph 
 
G

C
can be built in the follow-

ing steps: 1. define the vertex set by 
   
V

C
v

C1
, ,v

CK{ }
 

  
V

C
{v

C1
,...v

CK
}where each vertex corresponding to a sub-

network; 2. define the weight between vertexes 
 
W

Cij
W

a
 

where 
  
a.startnode N

N

i

 
and 

  
a ' s startnode N

N

i ; 3. fix the 

edge set 
  
E

C
e

ij
,W

eij
W

cij
W

cij
> 0{ } .  

3.8. Iterative Optimization Algorithm 

In this sub-section, an iterative optimization algorithm 

will be developed based on 
 
G

N

k , 
 
G

C  
and 

 
W

C
. 

 
W

C  
is the 

weight matrix of 
 
G

C
. At the lower layer, each 

 
G

N

k  is mod-

eled as a MIP problem and is solved separately. At the 

higher layer, 
 
G

C
conveys the dependency information among 

those sub-problems. Therefore we leverage 
 
G

C
 and 

 
W

C  
to 

control the sequence and collaboration among those sub-

problems. We regard 
 
W

Cij
as the number of locomotives that 

 

Fig. (3). A partition of space-time network. 
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G
N

i  inputs to G
N

j . So before G
N

i  has been solved, 
 
W

Cij
 is 

uncertain to 
 
G

N

j . Definitely one shall start from sub-problem 

which has less number of uncertain locomotives. So the or-

der of optimization process can be determined by estimating 

the dynamic matrix of W
C

. In each step when a sub-problem 

has been solved and the locomotives on its outcome arcs has 

been determined, the W
C

will be updated accordingly. One 

may notice that 
 
G

C
could be a cyclic graph. So there shall 

enable multiple rounds of iterations till the locomotive un-

certainty among sub-problems would not be improved any 

more. The detail algorithm is shown in Algorithm 3. 

Algorithm 3: Iterative optimization (IterOptim) algorithm. 

function IterOptim (
  
G

C
,W

C
,G

N

k
k (1...K ) ) 

do 

C {1...K}  

do 

find a k  that 
  
min

k i
W

Cik
k C  

search locomotive feasible paths on 
 
G

N

k
 

build MIP model instance for G
N

k
 

solve the MIP model of 
 
G

N

k
 

C C {k}  

update the values in the  k -th row of matrix 
 
W

C
, for each 

outward arc from 
 
G

N

k
 to 

  
G

N

k '
, if its locomotives are fixed in 

solving the MIP, then 
  
W

Ckk '
W

Ckk '
l  where  l  is the num-

ber of fixed locomotives. 

while ( C ) 

while (
  i j

W
Cij

= 0  or 
 i j

W
Cij

has no more im-

provement between two iterations) 

4. NUMERICAL EXPERIMENT 

The graph partition based optimization model and algo-
rithm described in this paper has been implemented in Java 
code using IBM iLog CPLEX as the MIP solver. The soft-
ware has been validated with a railway bureau in China us-
ing the production data. In the following, we will introduce 
the experiments in detail, including the experiment dataset, 
experiment environment and settings, as well as experiment 
result.  

This railway bureau operates a railway network which 
has its lines more than 6700 kilometers long and has more 
than 400 yards. The number of daily trains is around 1000. 
And there are more than 800 locomotives available and more 
than 600 of them need to be planned for daily operation.  

The experiment dataset information is listed in Table 1. 

The experiments are performed on a PC server with 2 In-

tel CPUs (2.93GHz) and 4G RAM with windows system 

installed. The IBM iLog CPLEX version is 12.3. According 

to our test, the safe problem size is 2,000,000 of variables 

and constraints. So we set the Threshold of GraphPartition 

algorithm to 2,000,000. There are two predefined weights of 

objectives in the MIP model (
  
w

1
,
  
w

2
). In real world, satisfy-

ing a train is always more important than occupying one lo-

comotive. So we set 
  
w

1
as 2 and 

  
w

2
as 1. 

The baseline that our algorithm compares with is the 
global path-based MIP model without decomposition (denote 
as gpMIP algorithm). We implement it in the same language 
and run it in the same environment. Considering gpMIP al-
gorithm may not be able to output any result when the prob-
lem size get to middle or large size, we adjust the gpMIP 
algorithm to trim the size of locomotive path when it gets too 
big. We denote the adjusted algorithm as gpMIP-trim algo-
rithm. 

The experiment result is shown in Tables 2 and 3.  

From Table 2, we can see that the GPDMA takes less 
running time than both gpMIP and gpMIP-trim on most ex-
periment data sets. On the small size data sets (DS1_Small 
and DS2_Small), GPDMA requires similar running time as 
gpMIP and gpMIP-trim. While with the increasing of prob-
lem size, GPDMA shows its superior running efficiency than 
gpMIP. The result demonstrates GPDMA’s advantage in 

Table 1. Experiment Dataset. 

DataSet Experiment Data Number of Trains Number of Candidate Locomotives 

DS1_Small 69 60 

DS1_Medium 250 217 Data Set 1 

DS1_Large 808 601 

DS2_Small 105 100 

DS2_Medium 406 386 Data Set 2 

DS2_Large 876 601 
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scalability as its runtime time increases much smoother 
along with the problem size comparing to goMIP. Though 
gpMIP-trim also enables some acceleration by trimming the 
problem size, the result in the following table shows the per-
formance is impacted.  

Table 3 displays the performance result of each algorithm 
on every datasets. For each dataset that gpMIP achieve opti-
mum, GPDMA approaches the result of gpMIP within 10% 
difference. On the medium data sets and large data sets 
where the gpMIP fail to find the optimum, GPDMA has su-
perior performance than gpMIP-trim.  

In summary, comparing with other method which does 
not leverage the structure information of the problem, 
GPDMA achieves higher efficiency and scalability with rea-
sonable expense on performance. 

5. CONCLUSION 

In this paper, the locomotive assignment problem is in-
vestigated. We come up with a path-based MIP model to 
meet the fine-granularity planning requirement. By leverag-
ing the network feature of this problem, we propose a 
method to decompose the global MIP model to accelerate the 
problem solving process. Experiment result shows that the 
partition process could reduce the total running time dra-
matically with encouraging optimization performance. The 
proposed approach has superior advantage in its scalability. 
It is an interesting topic to extend the model and framework 

to support light travel arrangement. We will explore further 
in our future research. 
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