
Send Orders for Reprints to reprints@benthamscience.ae

 The Open Cybernetics & Systemics Journal, 2015, 9, 2545-2553 2545

 1874-110X/15 2015 Bentham Open

Open Access
Concept Implicate Tree for Description Logics

Tingting Zou* and Ansheng Deng

Information Science and Technology College, Dalian Maritime University, Dalian, 116026, China

Abstract: Description logics is a class of knowledge representation languages with high expressive power, and the com-
putational complexities of the queries of these expressive description logics are defined as PSPACE-complete. Moreover,
knowledge compilation can be regarded as a new direction of research for dealing with the computational intractable rea-
soning problems. In fact, knowledge compilation based on description logic has been investigated in recent years. Howev-
er, when the compiled knowledge base is exponential as compared to original knowledge base, the queries are not. There-
fore, we proposed a new knowledge compilation method for description logic to solve the queries in linear time depending
on the size of the query. In this paper, we first introduced the concept implicate tree for the ALC concept. Then, we pre-
sent an algorithm, which can transform an ALC concept into an equivalent concept implicate tree, and proved that each
branch of the tree is an implicate of this concept. Finally, we proved that the queries are computable in linear time. The
proposed method has an important property that no matter how large the concept implicate tree is, any query can be re-
solved in linear time depending on the size of the query.

Keywords: ALC, Description logic, Knowledge compilation, PSAPCE-complete, Algorithm Build CIT, Tractable querying.

1. INTRODUCTION

Description logics (DL) is a class of knowledge represen-
tation languages, which can model an application domain of
interest by a structured and formally well-understood
method[1]. In fact, DLs can be used in various areas, for
example, Semantic Web [2, 3], Ontologies [4], and software
engineering [5]. Schmidt-Schauß and Smolka proposed de-
scription logic ALC, and proved that the queries of ALC
concepts were PSPACE-complete [6]. Subsequently, Donini
et al. stated that the queries of ALCN concepts were also
PSPACE-complete [7]. With the rapid development of DLs,
abundant DL systems have been presented, such as SHIN
[8], SHIQ [9], SHOIQ [10, 11], SROIQ [12] and so on.
However, the computational complexities of the queries of
these expressive description logics are intracte.

Knowledge compilation has emerged as a new direction
of research for dealing with the computational intractability
of general propositional reasoning [13]. In this approach,
reasoning process is split into two phases: off-line compila-
tion and on-line query-answering [14]. In the first phase, the
propositional knowledge base is compiled into some target
language, which is typically tractable. In the latter phase, the
query is actually answered by using the compiled knowledge
base of the first phase. The key of this approach is that
knowledge compilation needs to be done only once to be
accessible for different queries. Hence, the compiling time
can be amortized by many queries concerning the compiled
knowledge base [15]. There are many target languages for
knowledge compilation, such as prime implicate [16], DNNF

*Address correspondence to this author at the Information Science and
Technology College, Dalian Maritime University, Dalian, Liaoning,
116026, China; Tel/Fax: 041184723122; E-mail: zoutt@dlmu.edu.cn

[17], and so on. In fact, the queries for these target languages
are based on polynomial time or linear time dependent on the
size of the compiled knowledge base. Moreover, Murray and
Rosenthal introduced the reduced implicate tree that is a tar-
get language for knowledge compilation, and proved that a
query can be done in linear time considering the size of the
query [18-20].

As mentioned above, knowledge compilation is an effi-
cient method to deal with intractable problems. Therefore,
many researchers have conducted their studies on knowledge
compilation for description logics in recent years. Selman
and Kautz compiled a concept of DL FL into two approxi-
mate concepts of DL FL̶, being the first knowledge compi-
lation method for DL [21]. Subsequently, Furbach and
Obermajer introduced the linkless concept description for
ALC concepts, which can be regarded as a target language
for knowledge compilation, by presenting an algorithm that
transformed ALC concept to equivalent linkless concept
description, and proved that queries for such descriptions
were resolved in linear time based on the size of the descrip-
tions [22]. Later, they used this technique for precompiled
ALC concepts and TBoxes so that queries can be addressed
in linear time [23, 24]. Moreover, Bienvenu proposed the
prime implicate normal form for ALC concepts, and con-
cluded that the queries of such forms are based on polynomi-
al time [25]. Tingting Zou et al., proposed a novel
knowledge compilation method for description logic based
on the concept extension rule [26].

In fact, the queries of these methods were also based on
the polynomial time or linear time depending on the size of
the compiled knowledge base. However, when the compiled
knowledge base was exponential in terms of the size of the
original knowledge base, the queries were not addressed
rapidly. This paper aims to further improve the reduced im-
plicate tree for propositional logic, to make it a much more

2546 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Zou and Deng

efficient description logic for target language. Therefore, we
proposed a new knowledge compilation method for the de-
scription logic based on the concept implicate tree, for which
the queries can be addressed in linear time based on the size
of the query regardless of the size of the compiled
knowledge base.

In this paper, we first introduced the concept implicate
tree for ALC concept, which is a target language for
knowledge compilation, and defined the concept represented
by concept implicate tree. Then, an algorithm was presented,
which can transform ALC concepts into the concept impli-
cate trees. Moreover, we proved that the concept represented
by this concept implicate tree was equivalent to the original
ALC concept, and each branch of the tree was an implicate
of the original concept. Furthermore, we explained that the
satisfiability-testing and tautology-testing were carried out
in linear time with respect to the concept implicate tree. Fi-
nally, we presented an algorithm determining the subsump-
tion of two concepts, and proved that subsumption-testing
was computable in linear time based on the size of the que-
ry. In a word, this method has an important property that no
matter how large the concept implicate tree is, any query can
be assessed in linear time depending on the size of the que-
ry.

The rest of this paper is organized as follows. In section
2, the concept implicate tree is defined. Section 3 presents
the process of transforming an ALC concept into an equiva-
lent concept implicate tree. In Section 4, it is proved that the
queries are computable in linear time. Section 5 summarizes
the main results.

2. CONCEPT IMPLICATE TREE

Let CA, RA and IA be the pairwise disjointing sets of
atomic concepts, abstract role names, and abstract individu-
als, respectively, and ⊔ operation be the concept disjunction,
with ⊓ operation being the concept conjunction.

Definition 1. Literal L, ALC concept C, and clausal con-
cept cl, are defined as follows:

L := |!| A |¬A |"R.L | #R.L，

C := L | C !C | C "C，

cl := L | cl ! cl ，

where

A!C

A
,

R! R

A
.

Definition 2. In literal L, A or A¬ is called the concept
literal, and A is known as the atomic concept variable, with
the form or known as the role concept literal and
also as the role concept variable.

For any concept C, VCon(C) denotes the set of all atomic
concept variables of C, and VRol(C) denotes the set of all role
concept variables of C. Moreover, (.)depth QR L denotes the
number of the form QR in .QR L , },{ !"#Q . For example,
if

C = (A

1
!¬A

2
!!R

1
.¬A

3
)" (A

1
! "R

1
.!R

2
. A

2
) ,

then,

C

A
={A

1
, A

2
, A

3
} ,

R

A
={R

1
, R

2
} ,

V

Con
(C) ={A

1
, A

2
} ,

V

Rol
(C) ={!R

1
.¬A

3
,"R

1
.!R

2
. A

2
} ,

depth(!R

1
.¬A

3
) =1 ,

depth(!R

1
."R

2
.A

2
) = 2 .

Let C1, and C2 be the ALC concepts, and B is the sub-
concept of C1. C1 [C2/ B] is used to refer to the new concept,
which is produced by substituting C2 for every occurrence of
B that is not in the scope of role restriction in C1. Especially,
if C2 is ⊤ or , B is an atomic concept variable A or role
concept variable .QR L , },{ !"#Q , then C1[⊤/B] denotes
that ⊤ is substituted for B, and for B¬ , but ⊤ or is not
substituted for .QR B or B¬ .

Definition 3. Reduction rules are defined as follows:

C[B / B!!] ,

C[! / B!!] ,

C[B / B!!] ,

C[! / B!!] ,

C[! / B!¬B] ,

C[! / B!¬B] ,

C[! /"R.!] ,

C[! /!R.!] .

Definition 4. Let be the set of
atomic concept variables of ALC concept C, and

V

Rol
(C) ={QR

i
.L

j
| Q!{",#},1$ i$ p,1$ j$ q}

be the set of role concept variables of ALC concept C. A
partial ordering relation on sets VCon(C) and VRol(C) is
defined as follows:

(1)

A!QR.L iff

A!V

Con
(C) ,

QR.L!V

Rol
(C) ;

(2)

A

i
! A

j
 iff i<j;

(3)

QR

i
.L

j
!QR

r
.L

s
iff

depth(QR

i
.L

j
) < depth(QR

r
.L

s
) ;

(4)

QR

i
.L!QR

r
.L iff i<r;

(5)

QR.L

j
!QR.L

s
 iff j<s;

(6)

!R.L! "R.L .

In this paper, we assumed that VCon(C) and VRole(C) satis-
fy this partial ordering relation, that is to say, VCon(C) and
VRole(C) are the ordered sets. For simplicity, we write VCon(C)
as VCon, and VRole(C) as VRole.

Definition 5. Let C be an ALC concept, and cl be a
clausal concept. Then cl is an implicate of C if and only if

. Moreover, cl is a prime implicate of C if and only if
, and there does not exist an implicate of C such

that

C! c !l ! cl and

cl ! c !l .

Definition 6. Concept implicate tree (CIT) T for ALC
concept C is a tree defined as follows:

(1) If C is tautology, then T contains only one root node
labelled as⊤;

Concept Implicate Tree for Description Logics The Open Cybernetics & Systemics Journal, 2015, Volume 9 2547

(2) If C is unsatisfiable, then T contains only one root
node labeled as ;

(3) Otherwise, root node of T is labelled as , and for
any implicate

cl = L

1
! L

2
!!! L

m
 of C, root node has a

child node labelled as L1, which is the root of a subtree con-
taining a branch with labels corresponding to

L

2
!!! L

m
.

(4) T is reduced by using the rules in Definition 3, until
no rule can be applied.

According to definition 6, it can be observed that each
branch of CIT T is an implicate of C.

Definition 7. Let T be the concept implicate tree for ALC
concept C. Then concept CT that is represented by the tree T
is defined as follows:

(1) If T has only one node, then CT is the label of this node.

(2) Otherwise, CT is the concept disjunction of two con-
cepts; one concept is the label of the root, and the other
is the concept conjunction of labels of all branches of
this root.

Example 1: ALC concept

C = (A
1
! A

2
! !R

2
.¬A

4
)" (A

1
! !R

1
."R

2
. A

5
)

" (¬A
1
!¬A

2
! !R

1
."R

2
. A

5
)

.

where, 1 2() { , }
C
V C A A= ,

V

R
(C) ={!R

2
.¬A

4
,!R

1
."R

2
. A

5
} .

Then, the concept implicate tree T of C is shown as fol-
lows, and each branch of T is an implicate of C. For example,

A

1
! A

2
! !R

2
.¬A

4
,

A

1
! A

2
!!R

2
. A

4
! "R

1
.!R

2
.A

5
,

and

¬A

1
!¬A

2
! !R

1
."R

2
. A

5
,

are all implicates of C.

Moreover, the concept CT is

C
T

= (A
1
! ((A

2
! (!R

2
.¬A

4
" ("R

2
. A

4
! !R

1
."R

2
. A

5
)

" !R
1
."R

2
. A

5
))" (¬A

2
! ((!R

2
.¬A

4
! !R

1
."R

2
. A

5
)

" ("R
2
. A

4
! !R

1
."R

2
. A

5
)" !R

1
."R

2
. A

5
))

" (!R
2
.¬A

4
! !R

1
."R

2
. A

5
)" ("R

2
. A

4
! !R

1
."R

2
. A

5
)

" !R
1
."R

2
. A

5
))" (¬A

1
! (¬A

2
! ((!R

2
.¬A

4
! !R

1
."R

2
. A

5
)

" ("R
2
. A

4
! !R

1
."R

2
. A

5
)" !R

1
."R

2
. A

5
)))

" (¬A
2
! (¬A

2
! ((!R

2
.¬A

4
! !R

1
."R

2
. A

5
)

" ("R
2
. A

4
! !R

1
."R

2
. A

5
)" !R

1
."R

2
. A

5
))

3. TRANSFORMATION

In this section, we introduced a method to transform an
ALC concept into an equivalent concept implicate tree, and
proved that each branch of the tree is an implicate of this
concept. Let Cimp(C) be the sets of implicates of concept C.

Theorem 1. Let C be the ALC concept, VCon be the
atomic concept variables of C, VRol be a role concept varia-
bles of C, and clausal concept cl be an implicate of C. If
there exists an atomic concept variable A (or a role concept
variable .QR L ,

Q!{",#}), such that

A!V

Con
(C) and

A!V

Con
(cl) (or

QR.L!V

Rol
(C) ,

QR.L!V

Rol
(cl)), then

cl !Cimp(C[" / A])#Cimp(C[! / A])

(or

cl !Cimp(C[" /QR.L])#Cimp(C[! /QR.L])).

Proof. (1) We first proved that

cl !Cimp(C[! / A]) . Let

I =<!

I
,•

I
> be a model of concept

C[! / A] , therefore,

(C[! / A])I

!" .Following this , we extended I to

!I =<"

!I
,•
!I
> by setting I I !

" =" , I I
A
!
=" , then

C
!I
= (C[! / A])I

"# . Therefore, I ! became the model of
C. Because clausal concept cl was an implicate of C, there-
fore, I I

C cl
! !
" . Since

A!V

Con
(cl) , then cl

!I
= cl

I . Hence,

(C[! / A])I

= C
!I
" cl

!I
= cl

I . Thus,

C[! / A]! cl . Accord-

ing to the Definition 5,

cl !Cimp(C[! / A]) . The proof for

C[! /QR.L] is similar.

(2)Following this , we proved that

cl !CImp(C[" / A]) .

Let ,
I I

I =<! " > be the model of concept [/]C A! , there-

fore ,

(C[! / A])I

"# . Now, we extended I to

!I =<"

!I
,•
!I
> by setting !

I
=!

"I , I
A
!

=", then

C
!I
= (C[" / A])I

#$. Therefore,

!I =<"

I
,•
!I
> is the

model of concept C. Because clausal concept cl was an im-
plicate of concept C, therefore,

C
!I
" cl

!I . Since

A!V

Con
(cl) , then I I

cl cl
!

= . Hence,

(C[! / A])I

= C
"I
cl

"I
= cl

I . Thus,

C[! / A]! cl . Accord-

ing to the Definition 5, CImp([/])cl C A! " . The proof for

C[! /QR.L] is similar.

2548 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Zou and Deng

Above all,

cl !Cimp(C[" / A])#Cimp(C[! / A]) or

cl !Cimp(C[" /QR.L])#Cimp(C[! /QR.L]) .

Theorem 2. Let C1 and C2 be the ALC concepts. Then,

Cimp(C

1
!C

2
) = Cimp(C

1
)!Cimp(C

2
) .

Proof.

(!) Assuming that a clausal concept

cl !Cimp(C

1
!C

2
) , we proved that

cl !Cimp(C

1
)"Cimp(C

2
) . (1) To see that

cl !Cimp(C

1
) .

Let

I =<!

I
,•

I
> be the model of C1, then I is also a model

of

C

1
!C

2
. Since

cl !Cimp(C

1
!C

2
) , then

(C

1
!C

2
)I

= C
1

I
!C

2

I
" cl

I . Therefore,

C

1

I
! cl

I ,

C

1
! cl .

Thus

cl !Cimp(C

1
) . (2) To see that

cl !CImp(C

2
) . Let

I =<!

I
,•

I
> be the model of concept C2, then I is also a

model of

C

1
!C

2
. Since

cl !Cimp(C

1
!C

2
) , then

(C

1
!C

2
)I

= C
1

I
!C

2

I
" cl

I . therefore,

C

2

I
! cl

I ,
2
C cl! .

Thus

cl !Cimp(C

2
) . Therefore,

cl !Cimp(C

1
)"Cimp(C

2
) ,

and

Cimp(C

1
!C

2
)!Cimp(C

1
)"Cimp(C

2
) .

(!) Assuming that

cl !Cimp(C

1
)"Cimp(C

2
) , we

proved that

cl !Cimp(C

1
!C

2
) . Let

I =<!

I
,•

I
> be the

model of

C

1
!C

2
, then I is a model of C1 or C2. There are

three cases:

(1) I is a model of C1, but not a model of C2. Since

cl !Cimp(C

1
) , then

C

1

I
! cl

I . Therefore,

(C

1
!C

2
)I

= C
1

I
!C

2

I
= C

1

I
!"= C

1

I
cl

I .

(2) I is a model of C2, but not a model of C1. Since

cl !Cimp(C

2
) , then

2

I I
C cl! .Therefore,

(C

1
!C

2
)I

= C
1

I
!C

2

I
="!C

2

I
= C

2

I
cl

I .

(3) I is a model of C1, and also is a model of C2. Since

cl !Cimp(C

1
)"Cimp(C

2
) , then

C

1

I
! cl

I ,

C

2

I
! cl

I . There-

fore,

(C

1
!C

2
)I

= C
1

I
!C

2

I
" cl

I . Therefore,

cl!Cimp(C

1
!C

2
) , and

Cimp(C

1
)!Cimp(C

2
)"Cimp(C

1
!C

2
) .

Above all,

Cimp(C

1
!C

2
) = Cimp(C

1
)!Cimp(C

2
) .

Theorem 3. Let cl be a clausal concept without the con-
cept variable E (E=A or E= .QR L), and C be any ALC con-
cept. Then cl is an implicate of C if cl is an implicate of

C[! / E]!C[! / E] .

Proof. According to Theorem 1 and Theorem 2, it is ob-
vious that this conclusion is correct.

According to Theorem 3, the set of implicates of C con-
sists of three parts: (1) The first part is the set of implicates

concept variables E, E=A or E= .QR L ; (2) The second part is

the set of implicate concept variable ¬E, E=A or E= .QR L

.QR L ; (3) the third part is the set of implicates of

C[! / E]!C[! / E] , which neither contains concept variable
E nor the concept variable ¬E, E=A or E= .QR L .

Therefore, a concept implicate tree T can be regarded as a
ternary tree, with each node having three subtrees except the
leaf node. The first subtree is T1, the second subtree is T2,
and the third subtree is T3. Let N be a node labelling

i
E , and

T1, T2, T3 be the three subtrees of node N. Then the root node
of T1 is labelled as

1i
E
+

, and T1 contains the sets of impli-
cates occurring

1i
E
+

. Moreover, the root node of T2 is la-

belled as

¬E

i+1
, and T2 contains the sets of implicates occur-

ring

¬E

i+1
. Furthermore, the root node of T3 is labelled as !

, and T3 contains the set of implicates not occurring

E

i+1
 and

¬E

i+1
, which are the intersection of T1 and T2 irrespective of

E

i+1
 and

¬E

i+1
.

Therefore, a method was proposed to build a concept im-
plicate tree of a given concept. First, the structure of a node
of the tree was defined as shown in Fig. (1), then the algo-
rithms Simplify and BuildCIT were presented as shown in
Figs. (2) and (3). Algorithm BuildCIT has four input pa-
rameters,

Structure CITnode(label: string,
leaf: boolean,

first: ↑CITnode,

second: ↑CITnode,

third: ↑CITnode);

Fig. (1). Structure CITnode.

Algorithm Simplify
Input: concept C
Output: simplified concept of C.
1. Applying the following rules until no rule can be applied:

C = C[! / F !!] ,

C = C[F / F !!] ,

C = C[F / F !!] ,

C = C[! / F !!] ,

C = C[! / F !¬F] ,

C = C[! / F !¬F] ,

C = C[! /"R.!] ,

C = C[! /!R.!] .

2. Return C.

Fig. (2). Algorithm simplify.

Where, ALC is a concept C, with the set of atomic con-
cept variables VCon, the set of role concept variables VRol,
node N, one output parameter, and the concept implicate tree
T. Initially, VCon=VCon(C), VRol=VRol(C), N=nil. For every
node, the algorithm BuildCIT first built the first subtree and
the second subtree, followed by the third subtree based on

Concept Implicate Tree for Description Logics The Open Cybernetics & Systemics Journal, 2015, Volume 9 2549

computing the intersection of the first two subtrees which is
illustrated in Fig. (4).

Example 2. For the concept C in example 1, the algo-
rithm BuildCIT(C, VCon, VRol, nil) built a tree T as follows:

First, a new CITnode N ! was built, which is root node of
tree T, and .N label! =" , returning to BuildCIT(C, VCon,
VRol, N !).

For BuildCIT(C, VCon, VRol, N !):

1) Let N N != ;

2) An atomic concept variable A was selected1;

3)

C

1
= Simplify(C[! / E]) = (A

2
! "R

2
.¬A

4
)" "R

1
.#R

2
.A

5

C

2
= Simplify(C[! / E]) = ¬A

2
! !R

1
."R

2
.A

5
;

4) A new CIT node N1 of tree T was built with N1.label=
A1, N.first= N1, call BuildCIT(C1,{A2},VRol,N1);

Algorithm BuildCIT
Input: concept C, VCon, VRol, node N;
Output: concept implicate tree T;
1. If C =! or C =! , then

 build a new CITnode N ! of tree T, and .N label C! = ,
returen T.

2. If N=nil, then

build a new CITnode N ! , which is root node of tree T,
and .N label! =" , return BuildCIT(C, VCon, VRol, N !).

3. If

V

Con
=! , then

select the first role concept variable

E = QR

j
.L

i
!V

Rol
;

Else, select the first atomic concept variable

E = A!V

Con
.

4. Let

C

1
= Simplify(C[! / E]) ,

C

2
= Simplify(C[! / E]) .

5. If
1
C =! , then

build a new CITnode N1 of tree T, and N1.label=E,
N1.leaf=True, N.first= N1.

6. If
2
C =! , then

 build a new CITnode N2 of tree T, and N2.label= ¬E,
N2.leaf=True,
N.second= N2.

7. If

C

1
=! , then N.first=nil, N.third=nil;

Else
build a new CITnode N1 of tree T, and N1.label=E,
N.first= N1,

if

V

Con
!" , then

call BuildCIT(C1,VCon-{E},VRol,N1);
 else

call BuildCIT(C1,VCon,VRol-{E},N1).

8. If

C

2
=! , then N.second=nil, N.third=nil;

Else
build a new CITnode N2 of tree T, and N2.label= ¬E,
N.second= N2,

if

V

Con
!" , then

call BuildCIT(C2,VCon-{E},VRol,N2);
 else

 call BuildCIT(C2,VCon,VRol-{E},N2).
9. If(N1.leaf and N2.leaf), then

delete node N1, N2, and N.leaf=True, return T.
10. If (N.first≠nil and N.second≠nil), then

build a new CITnode N3 of tree T, and N.third=N3,
call BuildThird(N.first, N.second, N3),

and
3
.N label =! .

11. Return T.

Fig. (3). Algorithm BuildCIT.

Algorithm BuildThird
Input: CIT nodes N1,N2,N3;
Output: tree T.
1. N3.label= N1.label.
2. If N1.leaf==true and N2.leaf==true,

then N3.leaf=true, return T.
3. If N1.leaf==true,

then N3.first= N2.first, N3.second= N2.second,
N3.third= N2.third, return T.

4. If N2.leaf==true,
then N3.first= N1.first, N3.second= N1.second,
N3.third= N1.third, return T.

5. If N1.first=nil or N2.first=nil, then N3.first=nil;
Else
build a new CITnode N31 of tree T,

 N3.first= N31,
call BuildThird(N1.first, N2.first, N31).

6. If N1.second=nil or N2.second =nil,
then N3.second =nil;
Else
build a new CITnode N32 of tree T,
N3.second = N32,
call BuildThird(N1.second, N2.second, N32).

7. If N1.third =nil or N2.third =nil,
then N3.third =nil;

Else
build a new CITnode N33 of tree T,

 N3.third = N33,
call BuildThird(N1.third, N2.third, N33).

8. Return T.

Fig. (4). Algorithm BuildThird.

2550 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Zou and Deng

5) A new CIT node N2 of tree T was built with N2.label= ¬
A1, N.second= N2, call BuildCIT(C2, {A2},VRol,N2);

6) A new CITnode N3 of tree T was built with N.third=N3,
call BuildThird(N1, N2, N3), 3

.N label =! ;

7) Returning to T.

In this algorithm, three algorithms are addressed,

BuildCIT(C1,{A2},VRol,N1), BuildCIT(C2, {A2},VRol,N2),
and BuildThird(N1, N2, N3). The algorithms BuildCIT(C1,
{A2},VRol,N1) and BuildCIT(C2, {A2},VRol,N2) iterate the
process of algorithm BuildCIT(C, VCon, VRol, N !), and build
the first and second subtrees of node N ! . Algorithm Build-
Third(N1, N2, N3) builds the third subtree of node N ! . Final-
ly, algorithm BuildCIT(C, VCon, VRol, N !) returns the con-
cept implicate tree T of C as shown below.

Theorem 4. Let C be an ALC concept that contains only
one concept variable E, T be a tree of C built by the algo-
rithm BuildCIT, and CT be a concept represented by the T,
then CT is logically equivalent to C, and is one of the con-
cepts among! , ⊤, E, or ¬E.

Proof. The concept C must be one of the following four
concepts: ! , ⊤, E, or ¬E. If C =! or C =! , then the algo-
rithm BuildCIT builds tree T, which contains only one node
labelling! or ⊤. Thus,

T
C =! or

C

T
=! , and CT is logical-

ly equivalent to C. If C=E, then the algorithm BuildCIT
builds tree T, which contains a root node labelling ! and the
first sub-node labelling E. Thus,

C

T
=!! E = E , and CT is

logically equivalent to C. If C= ¬E, then the algorithm
BuildCIT builds tree T, which contains a root node labelling
! and the second sub-node labelling ¬E. Thus,

C

T
=!!¬E = ¬E , and CT is logically equivalent to C.

Therefore, CT is logically equivalent to C, and is one of the
concepts among! , ⊤, E, or ¬E.

Theorem 5. Let C be an ALC concept, VCon be an atomic
concept variable set of C, VRol be a role concept variable set
of C, T be a tree of C built by the algorithm BuildCIT, and
CT be a concept represented by the T, then CT is logically
equivalent to C, and each branch of T is an implicate of C.

Proof. (1) First the logic equivalence was verified by in-
duction on the number m of concept variables in C, let

V =V

Con
!V

Rol
={E

1
,…, E

m
} ,

E

k
= A

k
!V

Con
 or

E

l
= QR

j
.L

i
!V

Rol
,

1! k < l!m ,

Q!{",#} .

<1> Base case: Let m=1, according to theorem 4, then CT
is logically equivalent to C.

<2> Inductive hypothesis: It was assuming that the theo-
rem was true for all concepts with almost all m concept var-
iables.

<3> Induction: It was assumed that C had m+1 concept
variables. Let Ei be any concept variable of V,

E

i
!V

Con
or

E

i
!V

Rol
,

1! i!m , now assuming that E1 is an atomic con-

cept variable form VCon, then, it must be proved that:

C!C
T

= (E
1
!C

BuildCIT(C["/ E
1
],V

Con
#{E

1
},V

Rol
,N

1
)
)

" (¬E
1
!C

BuildCIT(C[!/ E
1
],V

Con
#{E

1
},V

Rol
,N

2
)
)

" (C
BuildCIT(C["/ E

1
],V

Con
#{E

1
},V

Rol
,N

1
)$BuildCIT(C[!/ E

1
],V

Con
#{E

1
},V

Rol
,N

2
)
)

According to the inductive hypothesis, we obtain,

C[! / E

1
]"C

BuildCIT(C[!/ E
1
],V

Con
#{E

1
},V

Rol
,N

1
)
,

C[! / E

1
]!C

BuildCIT(C[!/ E
1
],V

Con
"{E

1
},V

Rol
,N

1
)
,

C[! / E
1
]!C[! / E

1
]

"C
BuildCIT(C[!/ E

1
],V

Con
#{E

1
},V

Rol
,N

1
)$BuildCIT(C[!/ E

1
],V

Con
#{E

1
},V

Rol
,N

2
)

.

So,

C
T

= (E
1
!C[! / E

1
])" (¬E

1
!C[! / E

1
])

" (C[! / E
1
]!C[! / E

1
])

.

Let

I =<!

I
,•

I
> be any model of concept C, so

 C
I
!" , and there exists an individual a such that

 a!C
I .Following are the two cases of the individual a.

Case 1, supposing

a! E

1

I , hence,

a! (C[! / E

1
])I , and

a! (C[" / E

1
]!C[! / E

1
])I .Therefore,

a! (C

T
)I . Thus,

()I I

T
C C! , and

C!C

T
.

Case 2, supposing

a! E

1

I , hence

a! (¬E

1
)I ,

a! (C[" / E

1
])I , and

a! (C[" / E

1
]!C[! / E

1
])I .therefore,

a! (C

T
)I . Thus,

C

I
! (C

T
)I , and

C!C

T
.

Therefore,

C!C

T
suggesting that

C

T
!C is similar.

Hence,
T

C C! , that is to say, CT is logically equivalent to C.

(2) It was shown that each branch of T is an implicate of
C. According to the distributive laws of description logic that
is similar to the distributive laws of proposition logic, CT is
logically equivalent to the concept conjunction of the labels
of its branches. Moreover, due to the interpretation of concept
conjunction, each branch of T is an implicate of C.

Concept Implicate Tree for Description Logics The Open Cybernetics & Systemics Journal, 2015, Volume 9 2551

Theorem 6. Let C be the ALC concept, VCon be an atom-
ic concept variable set of C, and VRol be a role concept varia-
ble set of C. Then algorithm BuildCIT is valid and complete.

Proof. (1) First, the validity of the algorithm was proved.
The algorithm BuildCIT built a tree T, and according to the-
orem 5, each branch of T was an implicate of C, thereby
making T a concept implicate tree of C. Thus, the algorithm
BuildCIT was proved to be valid.

(2) Now, the complete algorithm is explained below. For
any concept C, the algorithm BuildCIT can build a corre-
sponding tree T, and there does not exist a concept without
the corresponding tree. Thus, the algorithm BuildCIT is
complete.

4. TRACTABLE QUERYING

In this section, for any concept represented by a concept
implicate tree, the queries are computable in the linear time
depending on the size of the query.

Let C be any ALC concept and T be a concept implicate
tree of C. There are three queries for ALC concepts, satisfia-
bility-testing, tautology-testing, and subsumption-testing.

Considering the satisfiability-testing, if T contains only
one node that is labelled as! , then C is characterized with
unsatisfiability, otherwise with satisfiability. With regard to
the tautology-testing, if T contains only one node that is la-
belled as ⊤, then C has tautology, otherwise C has no tautol-
ogy. Obviously, these two queries can be addressed in the
linear time.

In order to test subsumption between the two concepts,
the paper provides some theorems as follows.

Let cl be a clausal concept with a concept literal L or a
role concept literal L. Then, cl/{L} denotes a new clausal
concept that deletes the literal L from cl. The prefix of a
clausal concept

cl = L

1
! L

2
!!! L

s
 is a clausal concept of

the form

c !l = L

1
! L

2
!!! L

t
,

0! t! s . If t=0, then the

prefix is ! .
Theorem 7. Let C be an ALC concept, and cl be an im-

plicate of C with a literal L. Then

(cl /{L})!Cimp(C[" / L]) .

Proof. Let

I =<!

I
,•

I
> be any model of concept

[/]C L! , then

(C[! / L])I

"# . Now, I is extended to

!I =<"

!I
,•
!I
> by setting I I !

" =" , L
!I
=" , then I＇is a

model of concept C. Therefore,, ([/])I I
C L C

!
" = . Since cl

be an implicate of concept C, hence,

C
!I
" cl

!I . Moreover,

cl
!I
= (cl /{L})I . Thus,

(C[! / L])I

" (cl /{L})I , and
[/] (/ { })C L cl L!! . Therefore,

(cl /{L})!Cimp(C[" / L]) .

Theorem 8. Let C be an ALC concept, VCon be an atomic
concept variable set of C, VRol be a role concept variable set
of C, T be a tree of C built by the algorithm BuildCIT, and

clausal concept cl be an implicate of C. Then there is a
unique prefix of cl that is a branch of T.

Proof. It was proved that there is a unique prefix of cl,
which is a branch of T. By induction on the number m of
concept variables in C, let

V =V

Con
!V

Rol
={E

1
,…, E

m
} ,

E

k
= A

k
!V

Con
 or

E

l
= QR

j
.L

i
!V

Rol
,

1! k < l!m .

1) Base case: Theorem 4 considers the case m=1.
2) Inductive hypothesis: It was assumed that the theorem

was true for all concepts with almost all m concept variables.
3) Induction: Assuming that C has m+1 concept variables.

Let

cl = L

d
1

! L
d

2

!!! L
d

s

be an implicate of C, where

i
d
L is either

i
d
E or

¬E

d
i

, and
1 2 s
d d d< < <! .

Therefore, it must be proved that there is a unique prefix
of cl that is a branch of T. Let Ei be any concept variable of
V,

E

i
!V

Con
or

E

i
!V

Rol
,

1! i!m , now assuming that E1 is

an atomic concept variable of the form VC, then it must be
proved that there is a unique prefix of cl that is a branch of CT,
which is the concept

C
T

= (E
1
!C

BuildCIT(C[!/ E
1
],V

Con
"{E

1
},V

Rol
,N

1
)
)

" (¬E
1
!C

BuildCIT(C[!/ E
1
],V

Con
"{E

1
},V

Rol
,N

2
)
)

" (C
BuildCIT(C[!/ E

1
],V

Con
"{E

1
},V

Rol
,N

1
)#BuildCIT(C[!/ E

1
],V

Con
"{E

1
},V

Rol
,N

2
)
)

.

By the inductive hypothesis, there is a unique prefix of cl
that is a branch of the intersection of two subtrees

BuildCIT(C[! / E

1
],V

Con
"{E

1
},V

Rol
, N

1
) and

BuildCIT(C[! / E

1
],V

Con
!{E

1
},V

Rol
, N

2
) . In this case, the

theorem is true for the third branch of CT. Moreover, if
1
1d > , then nothing is needed to prove, therefore, assuming

1
1d = . L1 is either E1 or ¬E1; these are the two cases.

Case 1: Assuming that L1=E1, then according to Theorem
7, cl/{E1} is an implicate of 1

[/]C E! . Moreover, by the
inductive hypothesis, there is a unique prefix G of cl/{E1}
that is a branch of

BuildCTT(C[! / E

1
],V

Con
"{E

1
},V

Rol
, N

1
) .

Therefore,

H = E

1
!G is a prefix of cl that is a branch of T.

Now, it is to be proved that H is a unique prefix of cl by con-
tradiction. Assuming that H ! is another prefix of cl that is a
branch of T. Let

!H = E

1
! !G , then G ! is a prefix of

cl/{E1} that is a branch of

BuildCTT(C[! / E

1
],V

Con
"{E

1
},V

Rol
, N

1
) . However, G is a

unique prefix of cl/{E1} by the inductive hypothesis, there-
fore, G G!= , H H!= . Therefore, H is a unique prefix of cl
that is a branch of T.

Case 2: Assuming that L1=¬E1, then according to Theo-
rem 7, cl/{¬E1} is an implicate of

C[! /¬E

1
] that is equiva-

2552 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Zou and Deng

lent to

C[! / E

1
] . Moreover, by the inductive hypothesis,

there is a unique prefix G of cl/{¬E1} that is a branch of

BuildCTT(C[! / E

1
],V

Con
!{E

1
},V

Rol
, N

1
) . Therefore,

H = ¬E

1
!G is a prefix of cl that is a branch of T. Now, it

is to be proved that H is a unique prefix of cl by contradic-
tion. Assuming that H ! is another prefix of cl that is a
branch of T, let

!H = ¬E

1
! !G , then G ! is a prefix of

cl/{¬E1} that is a branch of

BuildCTT(C[! / E

1
],V

Con
!{E

1
},V

Rol
, N

1
) . However, G is a

unique prefix of cl/{¬E1} by the inductive hypothesis, so
 !G = G , !H = H . Therefore, H is a unique prefix of cl that
is a branch of T.

Above all, there is a unique prefix of cl that is a branch of T.

Theorem 9. Let C be an ALC concept, VCon be an atomic
concept variable set of C, VRol be a role concept variable set
of C, and T be a concept implicate tree of C. Then every
prime implicate of C is a branch of T.

Proof. According to Theorem 8, the prefix of an impli-
cate is unique. Thus, it is obvious that the conclusion holds
true.

In example 2, all prime implicates of concept C are

A

1
! A

2
! !R

2
.¬A

4
,

1 1 2 5
. .A R R A! "! ,

¬A

2
! !R

1
."R

2
. A

5
.

Considering the concept implicate tree T, they both are
the branches of T.

Theorem 10. Let C be an ALC concept, VCon be an atom-
ic concept variable set of C, VRol be a role concept variable
set of C, and T be a concept implicate tree of C. Then every
subsuming implicate (including any prime implicate) of a
branch of T contains the literal, labelling the leaf of that
branch.

Proof. According to Theorem 8, it is obvious that this
conclusion holds true.

In example 2, an implicate

A

1
! A

2
! !R

2
.¬A

4
contains

the literal

!R

2
.¬A

4
, which is a label of the leaf of a branch of

T. Moreover, all other implicates of C in T, for example are,

A

1
! A

2
!!R

2
. A

4
! "R

1
.!R

2
.A

5
,

A

1
! A

2
! !R

1
."R

2
.A

5
,

A

1
!¬A

2
! !R

2
.¬A

4
! !R

1
."R

2
. A

5
,

A

1
!¬A

2
!!R

2
.A

4
! "R

1
.!R

2
. A

5
,

A

1
!¬A

2
! !R

1
."R

2
. A

5
,

A

1
! !R

2
.¬A

4
! !R

1
."R

2
. A

5
,

A

1
!!R

2
.A

4
! "R

1
.!R

2
. A

5
,

A

1
! !R

1
."R

2
.A

5
,

¬A

1
!¬A

2
! !R

2
.¬A

4
! !R

1
."R

2
. A

5
,

¬A

1
!¬A

2
!!R

2
.A

4
! "R

1
.!R

2
. A

5
,

¬A

1
!¬A

2
! !R

1
."R

2
. A

5
,

¬A

2
! !R

2
.¬A

4
! !R

1
."R

2
. A

5
,

¬A

2
!!R

2
.A

4
! "R

1
.!R

2
. A

5
,

and

¬A

2
! !R

1
."R

2
. A

5
, contain the literal

1 2 5
. .R R A! " ,

which is a label of the leaf of a branch of T.

Based on the above theorems, if clausal concept

cl = L

1
! L

2
!!! L

d
is an implicate of concept C, and T is a

concept implicate tree of C, then there is a unique prefix

c !l = L

1
!!! L

t
 of cl that is a branch of T, 1 t d! ! , and

each literal Li is a label of that branch, 1 i t! ! , and Lt is a
label of the leaf node. Therefore, the study presents the algo-
rithm Subsume as shown in Fig. (5). The main idea is to
determine whether cl is an implicate of C if there exists a
branch that labelled the prefix of cl.

According to the algorithm, it is obvious that the sub-
sumption-testing can be done by traversing a single branch.
Therefore, the time complexity is linear depending on the
size of the query, but not on the size of T. This is an im-
portant property of the proposed method.

Theorem 11. Let C be an ALC concept, T be a concept
implicate tree of C, and cl be a clausal concept. Then it can
be decided in the linear time in |cl| whether

C! cl , |cl|

denotes the number of all literals in cl.
Proof. Considering the algorithm Subsume, it is obvious

that the first four steps of the algorithm can be done in linear
time. For the fifth step, the algorithm detects all the literals
in cl to decide whether

C! cl . Therefore, determining

whether

C! cl can be done in liner time in |cl|.

Algorithm Subsume
Input: concept implicate tree T of concept C, clausal concept cl;

Output: Yes, if

C! cl ; No, if C ! cl .

1. If cl =! , then return Yes.
2. If tree T has only one node labelled ! , then return Yes.

3. If tree T has only one onde labelled ⊤, then return No.

4. If cl =! , then return No.

5. For each literal Li of cl

 If there exists a branch w of T, such that

L

1
!!! L

i
is a

label of w and Li is a label of leaf node of w,
 then return Yes.

6. Return No.

Fig. (5). Algorithm Subsume.

Concept Implicate Tree for Description Logics The Open Cybernetics & Systemics Journal, 2015, Volume 9 2553

Above all, three queries for ALC concepts, satisfiability-
testing, tautology-testing, and subsumption-testing, can be
done in linear time depending on the size of the query.

CONCLUSION

In this paper, knowledge compilation for description log-
ic was presented based on the concept implicate tree. Firstly,
the concept implicate tree was defined for the ALC concept.
Moreover, the study also provided an algorithm to translate
the arbitrary ALC concept into an equivalent concept impli-
cate tree. Finally, it was proved that satisfiability-testing,
autology-testing and subsumption-testing were computable
in linear time with respect to the concept implicate tree. It
was concluded that any query can be done in linear time
based on the size of the query, regardless of the size of the
concept implicate tree. In other words, the proposed method
is an effective method to deal with knowledge compilation
for description logic.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

This work was partially supported by Liaoning Province
Natural Science Fund Project of China (2015020034), and
National Natural Science Foundation of China (61272171),
and the Fundamental Research Funds for the Central Univer-
sities of China (3132015044).

REFERENCES
[1] F. Baader, D. Calvanese, and D. McGuinness, The Description

Logic Handbook: Theory, Implementation, and Applications. Cam-
bridge University Press, 2003.

[2] Y. Jiang, Y. Tang, J. Wang, and S. Zhou, “A semantic web oriented
description logic”, Pattern Recognition and Artificial Intelligence,
vol. 20, pp. 48-54, 2007.

[3] F. Baader, I. Horrocks, and U. Sattler, “Description Logics for the
Semantic Web”, KI - Künstliche Intelligenz, vol. 16, pp. 57-59,
2002.

[4] F. Baader, I. Horrocks, and U. Sattler, Description Logics. In: S.
Staab, and R. Studer, Eds., Handbook on Ontologies, International
Handbooks on Information Systems, Springer, 2004, pp. 3-28.

[5] D. Berardi, D. Calvanese, and G. D. Giacomo, “Reasoning on
UML class diagrams”, Artificial Intelligence, vol. 168, pp. 70-118,
2005.

[6] M. Schmidt-Schauß, and G. Smolka, “Attributive concept descrip-
tions with complements”, Artificial Intelligence, vol. 48, pp. 1-26,
1991.

[7] F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt, “The complexi-
ty of concept languges”, Information and Computation, vol. 134,
pp. 1-58, 1997.

[8] I. Horrocks, and U. Sattler U, “A description logic with transitive
and inverse roles and role hierarchies”, Journal of Logic and Com-
putation, vol. 9, pp. 385-410, 1999.

[9] I. Horrocks, U. Sattler, and S. Tobies, “Practical reasoning for very
expressive description logics”, Logic Journal of the IGPL, vol. 8,
pp. 239-264, 2000.

[10] I. Horrocks, and U. Sattler, “A Tableau Decision Procedure for
SHOIQ”, In: Proceedings of the 19th International Joint Confer-
ence on Artificial Intelligence (IJCAI 2005), Morgan Kaufmann,
Los Altos, 2005, pp. 448-453.

[11] I. Horrocks, and U. Sattler, “A tableau decision procedure for
SHOIQ”, Journal of Automated Reasoning, vol. 39, pp. 249-276,
2007.

[12] I. Horrocks, O. Kutz, and U. Sattler, “The even more irresistible
SROIQ”, In: Proceedings of the 10th International Conference on
Principles of Knowledge Representation and Reasoning (KR 2006),
Menlo Park, California: AAAI Press, 2006, pp. 57-67.

[13] A. Darwiche, and P. Marquis, “A knowledge compilation map”,
Journal of Artificial Intelligence Research, vol. 17, pp. 229-264,
2002.

[14] A. Darwiche, and P. Marquis, “A perspective on knowledge compi-
lation”, In: Proceedings of International Joint Conference on Arti-
ficial Intelligence (IJCAI), 2001, pp. 175-182.

[15] M. Cadoli, and M. Donini, “A survey on knowledge compilation”,
AI Communications, vol. 10, pp. 137-150, 1997.

[16] P. Marquis, “Knowledge compilation using theory prime impli-
cates”, In: Proceedings of the 14th International Joint Conference
on Artificial Intelligence (IJCAI-95), 1995, pp. 837- 843.

[17] A. Darwiche, “Decomposable negation normal form”, Journal of
the ACM, vol. 48, pp. 608-647, 2001.

[18] N. V. Murray, and E. Rosenthal, “Efficient query processing with
reduced implicate tries”, Journal of Automation Reasoning, vol. 38,
pp. 155-172, 2007.

[19] N. V. Murray, and E. Rosenthal, “Linear response time for impli-
cate and implicant queries”, Knowledge and Information System,
vol. 22, pp. 287-317, 2010.

[20] N. V. Murray, and Erik Rosenthal, “Reduced implicate tries with
updates”. Journal of Logic and Computation, vol. 20, pp. 261-281,
2010.

[21] B. Selman, and H. Kautz, “Knowledge compilation and theory
approximation”, Journal of the ACM, vol. 43, pp. 193-224, 1996.

[22] U. Furbach, and C. Obermaier, “Knowledge compilation for de-
scription logics”, In: Proceedings of the 3rd Workshop on
Knowledge Engineering and Software Engineering (KESE), 2007.

[23] U. Furbach, and C. Obermaier, “Precompiling ALC tboxes and
query answering”, In: Proceedings of the 4th Workshop on Contexts
and Ontologies (C&O-2008) at the 18th European Conference on
Artificial Intelligence, Patras, Greece, 2008, pp. 11-15.

[24] U. Furbach, H. Günther, and C. Obermaier, “A knowledge compi-
lation technique for ALC TBoxes”, In: Proceedings of the 22nd In-
ternational Florida Artificial Intelligence Research Society Confer-
ence, Sanibel Island, Florida, USA, 2009, pp. 39-44.

[25] M. Bienvenu, “Prime implicate normal form for ALC concepts”,
In: Proceedings of the 23rd National Conference on Artificial Intel-
ligence, 2008, pp. 412-417.

[26] T. Zou, L. Liu, and S. Lv, “Knowledge compilation for description
logic based on concept extension rule”, Journal of Computational
Information Systems, vol. 8, pp. 2409-2416, 2012.

Received: June 10, 2015 Revised: July 29, 2015 Accepted: August 15, 2015

© Zou and Deng; Licensee Bentham Open.

This is an open access article licensed under the terms of the (https://creativecommons.org/licenses/by/4.0/legalcode), which permits unrestricted, non-
commercial use, distribution and reproduction in any medium, provided the work is properly cited.

