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Abstract: Description logics is a class of knowledge representation languages with high expressive power, and the com-
putational complexities of the queries of these expressive description logics are defined as PSPACE-complete. Moreover, 
knowledge compilation can be regarded as a new direction of research for dealing with the computational intractable rea-
soning problems. In fact, knowledge compilation based on description logic has been investigated in recent years. Howev-
er, when the compiled knowledge base is exponential as compared to original knowledge base, the queries are not. There-
fore, we proposed a new knowledge compilation method for description logic to solve the queries in linear time depending 
on the size of the query. In this paper, we first introduced the concept implicate tree for the ALC concept. Then, we pre-
sent an algorithm, which can transform an ALC concept into an equivalent concept implicate tree, and proved that each 
branch of the tree is an implicate of this concept. Finally, we proved that the queries are computable in linear time. The 
proposed method has an important property that no matter how large the concept implicate tree is, any query can be re-
solved in linear time depending on  the size of the query. 
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1. INTRODUCTION 

Description logics (DL) is a class of knowledge represen-
tation languages, which can model an application domain of 
interest by a structured and formally well-understood 
method[1]. In fact, DLs can be used in various areas, for 
example, Semantic Web [2, 3], Ontologies [4], and software 
engineering [5]. Schmidt-Schauß and Smolka proposed de-
scription logic ALC, and proved that the queries of ALC 
concepts were PSPACE-complete [6]. Subsequently, Donini 
et al. stated  that the queries of ALCN concepts were also 
PSPACE-complete [7]. With the rapid development of DLs, 
abundant DL systems have been presented, such as SHIN 
[8], SHIQ [9], SHOIQ [10, 11], SROIQ [12] and so on. 
However, the computational complexities of the queries of 
these expressive description logics are intracte. 

Knowledge compilation has emerged as a new direction 
of research for dealing with the computational intractability 
of general propositional reasoning [13]. In this approach, 
reasoning process is split into two phases: off-line compila-
tion and on-line query-answering [14]. In the first phase, the 
propositional knowledge base is compiled into some target 
language, which is typically tractable. In the latter phase, the 
query is actually answered by using the compiled knowledge 
base of the first phase. The key of this approach is that 
knowledge compilation needs to be done only once to be 
accessible for different queries. Hence, the compiling time 
can be amortized by many queries concerning the compiled 
knowledge base [15]. There are many target languages for 
knowledge compilation, such as prime implicate [16], DNNF  
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[17], and so on. In fact, the queries for these target languages 
are based on polynomial time or linear time dependent on the 
size of the compiled knowledge base. Moreover, Murray and 
Rosenthal introduced the reduced implicate tree that is a tar-
get language for knowledge compilation, and proved that a 
query can be done in linear time considering the size of the 
query [18-20]. 

As mentioned above, knowledge compilation is an effi-
cient method to deal with intractable problems. Therefore, 
many researchers have conducted their studies on knowledge 
compilation for description logics in recent years. Selman 
and Kautz compiled a concept of DL FL into two approxi-
mate concepts of DL FL̶, being  the first knowledge compi-
lation method for DL [21]. Subsequently, Furbach and 
Obermajer introduced the linkless concept description for 
ALC concepts, which can be regarded as a target language 
for knowledge compilation, by presenting an algorithm that 
transformed ALC concept to equivalent linkless concept 
description, and proved that queries for such descriptions 
were resolved in linear time based on  the size of the descrip-
tions [22]. Later, they used this technique for precompiled 
ALC concepts and TBoxes so that queries can be addressed 
in linear time [23, 24]. Moreover, Bienvenu proposed the 
prime implicate normal form for ALC concepts, and con-
cluded that the queries of such forms are based on polynomi-
al time [25]. Tingting Zou et al., proposed a novel 
knowledge compilation method for description logic based 
on the concept extension rule [26]. 

In fact, the queries of these methods were also based on 
the polynomial time or linear time depending on the size of 
the compiled knowledge base. However, when the compiled 
knowledge base was exponential in terms of the size of the 
original knowledge base, the queries were  not addressed 
rapidly. This paper aims to further improve the reduced im-
plicate tree for propositional logic, to make it a much more 
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efficient description logic for target language. Therefore, we 
proposed a new knowledge compilation method for the de-
scription logic based on the concept implicate tree, for which 
the queries can be addressed  in linear time based on  the size 
of the query regardless of the size of the compiled 
knowledge base.  

In this paper, we first introduced the concept implicate 
tree for ALC concept, which is a target language for 
knowledge compilation, and defined the concept represented 
by concept implicate tree. Then, an algorithm was presented, 
which can transform  ALC concepts into the concept impli-
cate trees. Moreover, we proved that the concept represented 
by this concept implicate tree was equivalent to the original 
ALC concept, and each branch of the tree was  an implicate 
of the original concept. Furthermore, we explained  that the 
satisfiability-testing and tautology-testing were  carried out 
in linear time with respect to the concept implicate tree. Fi-
nally, we presented an algorithm determining the subsump-
tion of two concepts, and proved that subsumption-testing 
was  computable in linear time based on  the size of the que-
ry. In a word, this method has an important property that no 
matter how large the concept implicate tree is, any query can 
be assessed in linear time depending on  the size of the que-
ry.  

The rest of this paper is organized as follows. In section 
2, the concept implicate tree is defined. Section 3 presents 
the process of transforming an ALC concept into an equiva-
lent concept implicate tree. In Section 4, it is  proved that the 
queries are computable in linear time. Section 5 summarizes 
the  main results. 

2. CONCEPT IMPLICATE TREE 

Let CA, RA and IA be the pairwise disjointing sets of 
atomic concepts, abstract role names, and abstract individu-
als, respectively, and ⊔ operation be the concept disjunction, 
with  ⊓ operation being the concept conjunction. 

Definition 1. Literal L, ALC concept C, and clausal con-
cept cl, are defined as follows: 

L := |!| A |¬A |"R.L | #R.L， 

    
C := L | C !C | C "C， 

    
cl := L | cl ! cl ， 

where 
  
A!C

A
, 

  
R! R

A
.  

Definition 2. In literal L, A or A¬  is called the concept 
literal, and A is known as the atomic concept variable, with 
the form or  known as the role concept literal and 
also as the role concept variable. 

For any concept C, VCon(C) denotes the set of all atomic 
concept variables of C, and VRol(C) denotes the set of all role 
concept variables of C. Moreover, ( . )depth QR L denotes the 
number of the form QR  in .QR L , },{ !"#Q . For example, 
if  

    
C = ( A

1
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2
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1
.¬A

3
)" ( A

1
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.!R

2
. A

2
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3
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R

A
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1
, R

2
} ,  

   
V

Con
(C) ={A

1
, A

2
} , 

   
V

Rol
(C) ={!R

1
.¬A

3
,"R

1
.!R

2
. A

2
} , 

   
depth(!R

1
.¬A

3
) =1 , 

   
depth(!R

1
."R

2
.A

2
) = 2 . 

Let C1, and C2 be the ALC concepts, and B is  the sub-
concept of C1. C1 [C2/ B] is used to refer to the new concept, 
which is produced by substituting C2 for every occurrence of 
B that is not in the scope of role restriction in C1. Especially, 
if C2 is ⊤ or , B is an atomic concept variable A or role 
concept variable .QR L , },{ !"#Q , then C1[⊤/B] denotes 
that ⊤ is substituted for B, and  for B¬ , but ⊤ or is not 
substituted for .QR B  or B¬ .  

Definition 3. Reduction rules are defined as follows: 

    
C[B / B!!] ,   

    
C[! / B!!] , 

    
C[B / B!!] ,   

    
C[! / B!!] , 

    
C[! / B!¬B] ,   

     
C[! / B!¬B] , 

   
C[! /"R.!] ,   

    
C[! /!R.!] . 

Definition 4. Let  be the set of 
atomic concept variables of ALC concept C, and 

   
V

Rol
(C) ={QR

i
.L

j
| Q!{",#},1$ i$ p,1$ j$ q}   

be the set of role concept variables of ALC concept C. A 
partial ordering relation  on sets VCon(C) and VRol(C) is 
defined as follows:  

(1) 
   
A!QR.L  iff 

   
A!V

Con
(C) ,

   
QR.L!V

Rol
(C) ; 

(2)
  
A

i
! A

j
 iff i<j; 

(3)
   
QR

i
.L

j
!QR

r
.L

s
iff 

   
depth(QR

i
.L

j
) < depth(QR

r
.L

s
) ; 

(4) 
   
QR

i
.L!QR

r
.L  iff i<r; 

(5) 
   
QR.L

j
!QR.L

s
 iff j<s; 

(6) 
    
!R.L! "R.L . 

In this paper, we assumed  that VCon(C) and VRole(C) satis-
fy this partial ordering relation, that is to say, VCon(C) and 
VRole(C) are the ordered sets. For simplicity, we write VCon(C) 
as VCon, and VRole(C) as VRole. 

Definition 5. Let C be an ALC concept, and cl be a 
clausal concept. Then cl is an implicate of C if and only if 

. Moreover, cl is a prime implicate of C if and only if
, and there does not exist an implicate of C such 

that 
  
C! c !l ! cl  and 

  
cl ! c !l . 

Definition 6. Concept implicate tree (CIT) T for ALC 
concept C is a tree defined as follows: 

(1) If C is tautology, then T contains only one root node 
labelled as⊤; 
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(2) If C is unsatisfiable, then T contains only one root 
node labeled as ; 

(3) Otherwise, root node of T is labelled as , and for 
any implicate 

     
cl = L

1
! L

2
!!! L

m
 of C, root node has a 

child node labelled as L1, which is the root of a subtree con-
taining a branch with labels corresponding to 

    
L

2
!!! L

m
.  

(4) T is reduced by using the rules in Definition 3, until 
no rule can be applied. 

According to definition 6, it can be observed that each 
branch of CIT T is an implicate of C. 

Definition 7. Let T be the concept implicate tree for ALC 
concept C. Then concept CT that is represented by the tree T 
is defined as follows: 

(1) If T has only one node, then CT is the label of this node. 

(2) Otherwise, CT is the concept disjunction of two con-
cepts; one concept is the label of the root, and the other 
is the concept conjunction of labels of all branches of 
this root. 

Example 1: ALC concept  
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where, 1 2( ) { , }
C
V C A A= , 
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1
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5
} .  

Then, the concept implicate tree T of C is shown as fol-
lows, and each branch of T is an implicate of C. For example,  
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5
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are all implicates of C. 

 
Moreover, the concept CT is  
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3. TRANSFORMATION 

In this section, we introduced a method to transform an 
ALC concept into an equivalent concept implicate tree, and 
proved that each branch of the tree is an implicate of this 
concept. Let Cimp(C) be the sets of implicates of concept C. 

Theorem 1. Let C be the ALC concept, VCon be the 
atomic concept variables of C, VRol be a role concept varia-
bles of C, and clausal concept cl be an implicate of C. If 
there exists an atomic concept variable A (or a role concept 
variable .QR L , 

   
Q!{",#}), such that

   
A!V

Con
(C) and 

   
A!V

Con
(cl)  (or 

   
QR.L!V

Rol
(C) , 

   
QR.L!V

Rol
(cl) ), then  

    
cl !Cimp(C[" / A])#Cimp(C[! / A])  

(or 
    
cl !Cimp(C[" /QR.L])#Cimp(C[! /QR.L]) ). 

Proof. (1) We first proved that
    
cl !Cimp(C[! / A]) . Let 

   
I =<!

I
,•

I
> be a model of concept 

   
C[! / A] , therefore, 

    
(C[! / A])I

!" .Following this , we extended I to 

   
!I =<"

!I
,•
!I
>  by setting I I !

" =" , I I
A
!
=" , then 

    
C
!I
= (C[! / A])I

"# . Therefore, I ! became the model of 
C. Because clausal concept cl was an implicate of C, there-
fore, I I

C cl
! !
" . Since

   
A!V

Con
(cl) , then   cl

!I
= cl

I . Hence, 

    
(C[! / A])I

= C
!I
" cl

!I
= cl

I . Thus, 
    
C[! / A]! cl . Accord-

ing to the Definition 5, 
    
cl !Cimp(C[! / A]) . The proof for 

   
C[! /QR.L] is similar. 

(2)Following this , we proved that 
   
cl !CImp(C[" / A]) . 

Let ,
I I

I =<! " > be the  model of concept [ / ]C A! , there-

fore ,
   
(C[! / A])I

"# . Now, we extended I to 

   
!I =<"

!I
,•
!I
>  by setting   !

I
=!

"I , I
A
!

=", then 

   
C
!I
= (C[" / A])I

#$ . Therefore, 
   
!I =<"

I
,•
!I
> is the  

model of concept C. Because clausal concept cl was an im-
plicate of concept C, therefore, 

  
C
!I
" cl

!I . Since

   
A!V

Con
(cl) , then I I

cl cl
!

= . Hence, 

   
(C[! / A])I

= C
"I
# cl

"I
= cl

I . Thus, 
   
C[! / A]! cl . Accord-

ing to the Definition 5, CImp( [ / ])cl C A! " . The proof for 

   
C[! /QR.L]  is similar. 
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Above all, 
    
cl !Cimp(C[" / A])#Cimp(C[! / A])  or 

    
cl !Cimp(C[" /QR.L])#Cimp(C[! /QR.L]) . 

Theorem 2. Let C1 and C2 be the ALC concepts. Then, 

    
Cimp(C

1
!C

2
) = Cimp(C

1
)!Cimp(C

2
) . 

Proof. 
  
(!)  Assuming that a clausal concept 

    
cl !Cimp(C

1
!C

2
) , we  proved that 

   
cl !Cimp(C

1
)"Cimp(C

2
) . (1) To see that 
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1
) . 

Let 
   
I =<!

I
,•

I
> be the  model of C1, then I is also a model  

of 
   
C

1
!C

2
. Since 

    
cl !Cimp(C

1
!C

2
) , then 

    
(C

1
!C

2
)I

= C
1

I
!C

2

I
" cl

I . Therefore,  
   
C

1

I
! cl

I , 
   
C

1
! cl . 

Thus 
   
cl !Cimp(C

1
) . (2) To see that 

   
cl !CImp(C

2
) . Let 

   
I =<!

I
,•

I
> be the  model of concept C2, then I is also a 

model of 
   
C

1
!C

2
. Since 

    
cl !Cimp(C

1
!C

2
) , then 

    
(C

1
!C

2
)I

= C
1

I
!C

2

I
" cl

I . therefore,  
   
C

2

I
! cl

I , 
2
C cl! . 

Thus 
   
cl !Cimp(C

2
) . Therefore, 

   
cl !Cimp(C

1
)"Cimp(C

2
) , 

and 
    
Cimp(C

1
!C

2
)!Cimp(C

1
)"Cimp(C

2
) . 

  
(!)  Assuming that

   
cl !Cimp(C

1
)"Cimp(C

2
) , we 

proved that 
    
cl !Cimp(C

1
!C

2
) . Let 

   
I =<!

I
,•

I
> be the 

model of 
   
C

1
!C

2
, then I is a model of C1 or C2. There are 

three cases: 

(1) I is a model of C1, but not a model of C2. Since

   
cl !Cimp(C

1
) , then 

   
C

1

I
! cl

I . Therefore, 

    
(C

1
!C

2
)I

= C
1

I
!C

2

I
= C

1

I
!"= C

1

I
# cl

I .  

(2) I is a model of C2, but not a model of C1. Since 

   
cl !Cimp(C

2
) , then 

2

I I
C cl! .Therefore, 

    
(C

1
!C

2
)I

= C
1

I
!C

2

I
="!C

2

I
= C

2

I
# cl

I . 

(3) I is a model of C1, and also is a model of C2. Since

   
cl !Cimp(C

1
)"Cimp(C

2
) , then 

   
C

1

I
! cl

I ,
   
C

2

I
! cl

I . There-

fore, 
    
(C

1
!C

2
)I

= C
1

I
!C

2

I
" cl

I . Therefore,  

    
cl!Cimp(C

1
!C

2
) , and  

    
Cimp(C

1
)!Cimp(C

2
)"Cimp(C

1
!C

2
) . 

Above all, 
    
Cimp(C

1
!C

2
) = Cimp(C

1
)!Cimp(C

2
) . 

Theorem 3. Let cl be a clausal concept without the con-
cept variable E (E=A or E= .QR L ), and C be any ALC con-
cept. Then cl is an implicate of C if cl is an implicate of 

     
C[! / E]!C[! / E] . 

Proof. According to Theorem 1 and Theorem 2, it is ob-
vious that this conclusion is correct. 

According to Theorem 3, the set of implicates of C con-
sists of three parts: (1) The first part is the set of implicates 

concept variables E, E=A or E= .QR L ; (2) The second part is 

the set of implicate concept variable ¬E, E=A or E= .QR L

.QR L ; (3) the third part is the set of implicates of 

     
C[! / E]!C[! / E] , which neither contains concept variable 
E nor the concept variable ¬E, E=A or E= .QR L . 

Therefore, a concept implicate tree T can be regarded as a 
ternary tree, with each node having three subtrees except the 
leaf node. The first subtree is T1, the second subtree is T2, 
and the third subtree is T3. Let N be a node labelling

i
E , and 

T1, T2, T3 be the three subtrees of node N. Then the root node 
of T1 is labelled as

1i
E
+

, and T1 contains the sets of impli-
cates occurring

1i
E
+

. Moreover, the root node of T2 is la-

belled as 
   
¬E

i+1
, and T2 contains the sets of implicates occur-

ring
   
¬E

i+1
. Furthermore, the root node of T3 is labelled as !

, and T3 contains the set of implicates not occurring 
   
E

i+1
 and 

   
¬E

i+1
, which are the intersection of T1 and T2 irrespective of

   
E

i+1
 and

   
¬E

i+1
.  

Therefore, a method was proposed to build a concept im-
plicate tree of a given concept. First, the structure of a node 
of the tree was defined as shown in Fig. (1), then the algo-
rithms Simplify and BuildCIT were presented as shown in 
Figs. (2) and (3). Algorithm BuildCIT has four input pa-
rameters,  

Structure CITnode(label:      string,  
leaf:       boolean, 

first:     ↑CITnode, 

second: ↑CITnode, 

third:     ↑CITnode); 
 

Fig. (1). Structure CITnode. 

Algorithm Simplify 
Input: concept C 
Output: simplified concept of C. 
1. Applying the following rules until no rule can be applied: 

    
C = C[! / F !!] , 

    
C = C[F / F !!] , 

     
C = C[F / F !!] , 

     
C = C[! / F !!] , 

    
C = C[! / F !¬F] , 

     
C = C[! / F !¬F] , 

   
C = C[! /"R.!] , 

    
C = C[! /!R.!] . 

2. Return C. 
 

Fig. (2). Algorithm simplify. 

Where, ALC is a concept C, with the set of atomic con-
cept variables VCon, the set of role concept variables VRol, 
node N, one output parameter, and the concept implicate tree 
T. Initially, VCon=VCon(C), VRol=VRol(C), N=nil. For every 
node, the algorithm BuildCIT first built the first subtree and 
the second subtree, followed by  the third subtree based on 
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computing the intersection of the first two subtrees which is 
illustrated in Fig. (4). 

Example 2. For the concept C in example 1, the algo-
rithm BuildCIT(C, VCon, VRol, nil) built a tree T as follows:  

First, a new CITnode N !  was built, which is root node of 
tree T, and .N label! =" , returning to  BuildCIT(C, VCon, 
VRol, N ! ). 

For BuildCIT(C, VCon, VRol, N ! ): 

1) Let N N != ; 

2) An atomic concept variable A was selected1; 

3) 
    
C

1
= Simplify(C[! / E]) = ( A

2
! "R

2
.¬A

4
)" "R

1
.#R

2
.A

5

     
C

2
= Simplify(C[! / E]) = ¬A

2
! !R

1
."R

2
.A

5
; 

4)  A new CIT node N1 of tree T was built with N1.label= 
A1, N.first= N1, call BuildCIT(C1,{A2},VRol,N1);  

Algorithm BuildCIT 
Input: concept C, VCon, VRol, node N; 
Output: concept implicate tree T; 
1. If C =! or    C =! , then 

 build a new CITnode N ! of tree T, and .N label C! = ,  
returen T. 

2. If N=nil, then  

build a new CITnode N ! , which is root node of tree T, 
and .N label! =" ,  return BuildCIT(C, VCon, VRol, N ! ). 

3. If 
  
V

Con
=! , then  

select the first role concept variable 

   
E = QR

j
.L

i
!V

Rol
; 

Else, select the first atomic concept variable 
  
E = A!V

Con
. 

4. Let 
   
C

1
= Simplify(C[! / E]) ,      

    
C

2
= Simplify(C[! / E]) . 

5. If 
1
C =! , then  

build a new CITnode N1 of tree T, and N1.label=E,  
N1.leaf=True,  N.first= N1. 

6. If 
2
C =! , then 

  build a new CITnode N2 of tree T, and N2.label= ¬E,  
N2.leaf=True,   
N.second= N2. 

7. If 
    
C

1
=! , then N.first=nil, N.third=nil; 

Else 
build a new CITnode N1 of tree T, and N1.label=E,  
N.first= N1, 

if 
  
V

Con
!" , then  

call BuildCIT(C1,VCon-{E},VRol,N1); 
              else       

call BuildCIT(C1,VCon,VRol-{E},N1). 

8. If 
    
C

2
=! , then N.second=nil, N.third=nil; 

Else 
build a new CITnode N2 of tree T, and N2.label= ¬E, 
N.second= N2, 

if 
  
V

Con
!" , then  

call BuildCIT(C2,VCon-{E},VRol,N2); 
              else     

 call BuildCIT(C2,VCon,VRol-{E},N2). 
9. If(N1.leaf and N2.leaf), then  

delete node N1, N2, and N.leaf=True, return T. 
10. If (N.first≠nil and N.second≠nil), then  

build a new CITnode N3 of tree T, and N.third=N3,  
call BuildThird(N.first, N.second, N3), 

and 
3
.N label =! . 

11. Return T.  
 

Fig. (3). Algorithm BuildCIT. 

Algorithm BuildThird 
Input: CIT nodes N1,N2,N3; 
Output: tree T. 
1. N3.label= N1.label. 
2. If N1.leaf==true and N2.leaf==true,  

then N3.leaf=true, return T. 
3. If N1.leaf==true,  

then N3.first= N2.first, N3.second= N2.second,  
N3.third= N2.third, return T. 

4. If N2.leaf==true,  
then N3.first= N1.first, N3.second= N1.second,  
N3.third= N1.third, return T. 

5. If N1.first=nil or N2.first=nil, then N3.first=nil; 
Else  
build a new CITnode N31 of tree T, 

      N3.first= N31,  
call BuildThird(N1.first, N2.first, N31). 

6. If N1.second=nil or N2.second =nil,  
then N3.second =nil; 
Else  
build a new CITnode N32 of tree T,  
N3.second = N32,  
call BuildThird(N1.second,  N2.second, N32). 

7. If N1.third =nil or N2.third =nil,  
then N3.third =nil; 

Else  
build a new CITnode N33 of tree T, 

       N3.third = N33,  
call BuildThird(N1.third, N2.third, N33). 

8. Return T. 
 

Fig. (4). Algorithm BuildThird. 
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5) A new CIT node N2 of tree T was built with  N2.label= ¬ 
A1, N.second= N2, call BuildCIT(C2, {A2},VRol,N2); 

6) A new CITnode N3 of tree T was built with N.third=N3, 
call BuildThird(N1, N2, N3), 3

.N label =! ; 

7) Returning to T. 

 
In this algorithm, three algorithms are addressed, 

BuildCIT(C1,{A2},VRol,N1), BuildCIT(C2, {A2},VRol,N2), 
and BuildThird(N1, N2, N3). The algorithms BuildCIT(C1, 
{A2},VRol,N1) and BuildCIT(C2, {A2},VRol,N2) iterate the 
process of algorithm BuildCIT(C, VCon, VRol, N ! ), and build 
the first and second subtrees of node N ! . Algorithm Build-
Third(N1, N2, N3) builds the third subtree of node N ! . Final-
ly, algorithm BuildCIT(C, VCon, VRol, N ! ) returns the con-
cept implicate tree T of C as shown below. 

Theorem 4. Let C be an ALC concept that contains only 
one concept variable E, T be a tree of C built by the algo-
rithm BuildCIT, and CT be a concept represented by the T, 
then CT is logically equivalent to C, and is one of the con-
cepts among! , ⊤, E, or ¬E.  

Proof. The concept C must be one of the following four 
concepts: ! , ⊤, E, or ¬E. If C =! or    C =! , then the algo-
rithm BuildCIT builds tree T, which contains only one node 
labelling! or ⊤. Thus, 

T
C =! or 

   
C

T
=! , and CT is logical-

ly equivalent to C. If C=E, then the algorithm BuildCIT 
builds tree T, which contains a root node labelling ! and the 
first sub-node labelling E. Thus, 

   
C

T
=!! E = E , and CT is 

logically equivalent to C. If C= ¬E, then the algorithm 
BuildCIT builds tree T, which contains a root node labelling 
!  and the second sub-node labelling ¬E. Thus, 

   
C

T
=!!¬E = ¬E , and CT is logically equivalent to C. 

Therefore, CT is logically equivalent to C, and is one of the 
concepts among! , ⊤, E, or ¬E. 

Theorem 5. Let C be an ALC concept, VCon be an atomic 
concept variable set of C, VRol be a role concept variable set 
of C, T be a tree of C built by the algorithm BuildCIT, and 
CT be a concept represented by the T, then CT is logically 
equivalent to C, and each branch of T is an implicate of C.  

Proof. (1) First  the logic equivalence was verified by in-
duction on the number m of concept variables in C, let 

    
V =V

Con
!V

Rol
={E

1
,…, E

m
} , 

  
E

k
= A

k
!V

Con
 or  

   
E

l
= QR

j
.L

i
!V

Rol
, 
   
1! k < l!m , 

   
Q!{",#} .  

<1> Base case: Let m=1, according to theorem 4, then CT 
is logically equivalent to C. 

<2> Inductive hypothesis: It was assuming that the theo-
rem was true for all concepts with  almost all m concept var-
iables. 

<3> Induction:  It was assumed that C had m+1 concept 
variables. Let Ei be any concept variable of V, 

  
E

i
!V

Con
or 

  
E

i
!V

Rol
,
   
1! i!m , now assuming that E1 is an atomic con-

cept variable form VCon, then, it must be proved that: 

     

C!C
T

= (E
1
!C

BuildCIT(C["/ E
1
],V

Con
#{E

1
},V

Rol
,N

1
)
)

" (¬E
1
!C

BuildCIT(C[!/ E
1
],V

Con
#{E

1
},V

Rol
,N

2
)
)

" (C
BuildCIT(C["/ E

1
],V

Con
#{E

1
},V

Rol
,N

1
)$BuildCIT(C[!/ E

1
],V

Con
#{E

1
},V

Rol
,N

2
)
)

 

According to the inductive hypothesis, we obtain,  

   
C[! / E

1
]"C

BuildCIT(C[!/ E
1
],V

Con
#{E

1
},V

Rol
,N

1
)
, 

    
C[! / E

1
]!C

BuildCIT(C[!/ E
1
],V

Con
"{E

1
},V

Rol
,N

1
)
,  

     

C[! / E
1
]!C[! / E

1
]

"C
BuildCIT(C[!/ E

1
],V

Con
#{E

1
},V

Rol
,N

1
)$BuildCIT(C[!/ E

1
],V

Con
#{E

1
},V

Rol
,N

2
)

. 

So, 

     

C
T

= (E
1
!C[! / E

1
])" (¬E

1
!C[! / E

1
])

" (C[! / E
1
]!C[! / E

1
])

. 

Let 
   
I =<!

I
,•

I
> be any model of concept C, so 

  C
I
!" , and there exists an individual a such that

  a!C
I .Following are the two cases of the individual a.  

Case 1, supposing
   
a! E

1

I , hence, 
    
a! (C[! / E

1
])I , and 

     
a! (C[" / E

1
]!C[! / E

1
])I .Therefore, 

   
a! (C

T
)I . Thus, 

( )I I

T
C C! , and 

  
C!C

T
. 

Case 2, supposing
   
a! E

1

I , hence 
   
a! (¬E

1
)I , 

   
a! (C[" / E

1
])I , and 

     
a! (C[" / E

1
]!C[! / E

1
])I .therefore, 

   
a! (C

T
)I . Thus, 

  
C

I
! (C

T
)I , and 

  
C!C

T
.  

Therefore, 
  
C!C

T
suggesting that 

  
C

T
!C is similar. 

Hence, 
T

C C! , that is to say, CT is logically equivalent to C. 

(2) It was shown that each branch of T is an implicate of 
C. According to the distributive laws of description logic that 
is similar to the distributive laws of proposition logic, CT is 
logically equivalent to the concept conjunction of the labels 
of its branches. Moreover, due to the interpretation of concept 
conjunction, each branch of T is an implicate of C. 
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Theorem 6. Let C be the ALC concept, VCon be an atom-
ic concept variable set of C, and VRol be a role concept varia-
ble set of C. Then algorithm BuildCIT is valid and complete. 

Proof. (1) First, the validity of the algorithm was proved. 
The algorithm BuildCIT built a tree T, and according to the-
orem 5, each branch of T was an implicate of C, thereby 
making  T  a concept implicate tree of C. Thus, the algorithm 
BuildCIT was proved to be valid.  

(2) Now, the complete algorithm is explained below. For 
any concept C, the algorithm BuildCIT can build a corre-
sponding tree T, and there does not exist a concept without  
the corresponding tree. Thus, the algorithm BuildCIT is 
complete. 

4. TRACTABLE QUERYING 

In this section, for any concept represented by a concept 
implicate tree, the queries are computable in the linear time 
depending on the size of the query. 

Let C be any ALC concept and T be a concept implicate 
tree of C. There are three queries for ALC concepts, satisfia-
bility-testing, tautology-testing, and subsumption-testing.  

Considering the satisfiability-testing, if T contains only 
one node that is labelled as! , then C is characterized with 
unsatisfiability, otherwise with satisfiability. With regard to 
the tautology-testing, if T contains only one node that is la-
belled as ⊤, then C has tautology, otherwise C has no tautol-
ogy. Obviously, these two queries can be addressed in the 
linear time.  

In order to test subsumption between the two concepts, 
the paper provides some theorems as follows.  

Let cl be a clausal concept with a concept literal L or a 
role concept literal L. Then, cl/{L} denotes a new clausal 
concept that deletes the literal L from cl. The  prefix of a 
clausal concept 

     
cl = L

1
! L

2
!!! L

s
 is a clausal concept of 

the form 
     
c !l = L

1
! L

2
!!! L

t
, 

   
0! t! s . If t=0, then the 

prefix is ! .  
Theorem 7. Let C be an ALC concept, and cl be an im-

plicate of C with a literal L. Then 

   
(cl /{L})!Cimp(C[" / L]) . 

Proof. Let 
   
I =<!

I
,•

I
> be any model of concept 

[ / ]C L! , then 
   
(C[! / L])I

"# . Now, I is extended to 

   
!I =<"

!I
,•
!I
>  by setting I I !

" =" ,   L
!I
=" , then I＇is a 

model of concept C. Therefore,, ( [ / ])I I
C L C

!
" = . Since cl 

be an implicate of concept C, hence, 
  
C
!I
" cl

!I . Moreover, 

   
cl
!I
= (cl /{L})I . Thus, 

   
(C[! / L])I

" (cl /{L})I , and 
[ / ] ( / { })C L cl L!! . Therefore,  

   
(cl /{L})!Cimp(C[" / L]) . 

Theorem 8. Let C be an ALC concept, VCon be an atomic 
concept variable set of C, VRol be a role concept variable set 
of C, T be a tree of C built by the algorithm BuildCIT, and 

clausal concept cl be an implicate of C. Then there is a 
unique prefix of cl that is a branch of T.  

Proof. It was proved that there is a unique prefix of cl, 
which is a branch of T. By induction on the number m of 
concept variables in C, let 

    
V =V

Con
!V

Rol
={E

1
,…, E

m
} , 

  
E

k
= A

k
!V

Con
 or 

   
E

l
= QR

j
.L

i
!V

Rol
, 

   
1! k < l!m .  

1) Base case: Theorem 4 considers the case m=1. 
2) Inductive hypothesis: It was assumed that the theorem 

was true for all concepts with almost all m concept variables. 
3) Induction: Assuming that C has m+1 concept variables. 

Let  

     
cl = L

d
1

! L
d

2

!!! L
d

s

 

be an implicate of C, where  

i
d
L  is either 

i
d
E or 

  
¬E

d
i

, and 
1 2 s
d d d< < <! .  

Therefore, it must be proved that there is a unique prefix 
of cl that is a branch of T. Let Ei be any concept variable of 
V, 

  
E

i
!V

Con
or 

  
E

i
!V

Rol
,
   
1! i!m , now assuming that E1 is 

an atomic concept variable of the form VC, then it must be 
proved that there is a unique prefix of cl that is a branch of CT, 
which is the concept 

     

C
T

= (E
1
!C

BuildCIT(C[!/ E
1
],V

Con
"{E

1
},V

Rol
,N

1
)
)

" (¬E
1
!C

BuildCIT(C[!/ E
1
],V

Con
"{E

1
},V

Rol
,N

2
)
)

" (C
BuildCIT(C[!/ E

1
],V

Con
"{E

1
},V

Rol
,N

1
)#BuildCIT(C[!/ E

1
],V

Con
"{E

1
},V

Rol
,N

2
)
)

. 

By the inductive hypothesis, there is a unique prefix of cl 
that is a branch of the intersection of two subtrees 

   
BuildCIT(C[! / E

1
],V

Con
"{E

1
},V

Rol
, N

1
)  and 

    
BuildCIT(C[! / E

1
],V

Con
!{E

1
},V

Rol
, N

2
) . In this case, the 

theorem is true for the third branch of CT. Moreover, if 
1
1d > , then nothing is needed to prove, therefore, assuming 

1
1d = . L1 is either E1 or ¬E1; these are the two cases.  

Case 1: Assuming that L1=E1, then according to Theorem 
7,  cl/{E1} is an implicate of 1

[ / ]C E! . Moreover, by the 
inductive hypothesis, there is a unique prefix G of cl/{E1} 
that is a branch of 

   
BuildCTT(C[! / E

1
],V

Con
"{E

1
},V

Rol
, N

1
) . 

Therefore, 
    
H = E

1
!G  is a prefix of cl that is a branch of T. 

Now, it is to be proved that H is a unique prefix of cl by con-
tradiction. Assuming that H ! is another prefix of cl that is a 
branch of T. Let 

    
!H = E

1
! !G , then G !  is a prefix of 

cl/{E1} that is a branch of 

   
BuildCTT(C[! / E

1
],V

Con
"{E

1
},V

Rol
, N

1
) . However, G is a 

unique prefix of cl/{E1} by the inductive hypothesis, there-
fore, G G!= , H H!= . Therefore, H is a unique prefix of cl 
that is a branch of T.  

Case 2: Assuming that L1=¬E1, then according to Theo-
rem 7,  cl/{¬E1} is an implicate of 

   
C[! /¬E

1
]  that is equiva-
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lent to 
   
C[! / E

1
] . Moreover, by the inductive hypothesis, 

there is a unique prefix G of cl/{¬E1} that is a branch of 

    
BuildCTT(C[! / E

1
],V

Con
!{E

1
},V

Rol
, N

1
) . Therefore,  

    
H = ¬E

1
!G  is a prefix of cl that is a branch of T. Now, it 

is to be proved that H is a unique prefix of cl by contradic-
tion. Assuming that H ! is another prefix of cl that is a 
branch of T, let

    
!H = ¬E

1
! !G , then G !  is a prefix of 

cl/{¬E1} that is a branch of 

    
BuildCTT(C[! / E

1
],V

Con
!{E

1
},V

Rol
, N

1
) . However, G is a 

unique prefix of cl/{¬E1} by the inductive hypothesis, so 
  !G = G ,   !H = H . Therefore, H is a unique prefix of cl that 
is a branch of T.  

Above all, there is a unique prefix of cl that is a branch of T. 

Theorem 9. Let C be an ALC concept, VCon be an atomic 
concept variable set of C, VRol be a role concept variable set 
of C, and T be a concept implicate tree of C. Then every 
prime implicate of C is a branch of T. 

Proof. According to Theorem 8, the prefix of an impli-
cate is unique. Thus, it is obvious that the conclusion holds 
true. 

In example 2, all prime implicates of concept C are 

    
A

1
! A

2
! !R

2
.¬A

4
,

1 1 2 5
. .A R R A! "! ,  

    
¬A

2
! !R

1
."R

2
. A

5
. 

Considering the concept implicate tree T, they both are 
the branches of T. 

Theorem 10. Let C be an ALC concept, VCon be an atom-
ic concept variable set of C, VRol be a role concept variable 
set of C, and T be a concept implicate tree of C. Then every 
subsuming implicate (including any prime implicate) of a 
branch of T contains the literal, labelling the leaf of that 
branch.  

Proof. According to Theorem 8, it is obvious that this 
conclusion holds true. 

In example 2, an implicate 
    
A

1
! A

2
! !R

2
.¬A

4
contains 

the literal 
   
!R

2
.¬A

4
, which is a label of the leaf of a branch of 

T. Moreover, all other implicates of C in T, for example are,  

    
A

1
! A

2
!!R

2
. A

4
! "R

1
.!R

2
.A

5
,  

    
A

1
! A

2
! !R

1
."R

2
.A

5
,  

     
A

1
!¬A

2
! !R

2
.¬A

4
! !R

1
."R

2
. A

5
, 

    
A

1
!¬A

2
!!R

2
.A

4
! "R

1
.!R

2
. A

5
, 

    
A

1
!¬A

2
! !R

1
."R

2
. A

5
,  

    
A

1
! !R

2
.¬A

4
! !R

1
."R

2
. A

5
, 

    
A

1
!!R

2
.A

4
! "R

1
.!R

2
. A

5
,  

    
A

1
! !R

1
."R

2
.A

5
,  

    
¬A

1
!¬A

2
! !R

2
.¬A

4
! !R

1
."R

2
. A

5
, 

    
¬A

1
!¬A

2
!!R

2
.A

4
! "R

1
.!R

2
. A

5
, 

    
¬A

1
!¬A

2
! !R

1
."R

2
. A

5
,  

    
¬A

2
! !R

2
.¬A

4
! !R

1
."R

2
. A

5
, 

    
¬A

2
!!R

2
.A

4
! "R

1
.!R

2
. A

5
,  

and 
    
¬A

2
! !R

1
."R

2
. A

5
, contain the literal 

1 2 5
. .R R A! " , 

which is a label of the leaf of a branch of T. 

Based on the above theorems, if clausal concept 

     
cl = L

1
! L

2
!!! L

d
is an implicate of concept C, and T is a 

concept implicate tree of C, then there is a unique prefix

     
c !l = L

1
!!! L

t
 of cl that is a branch of T, 1 t d! ! , and 

each literal Li is a label of that branch, 1 i t! ! , and Lt is a 
label of the leaf node. Therefore, the study presents the algo-
rithm Subsume as shown in Fig. (5). The main idea is to  
determine whether cl is an implicate of C if there exists a 
branch that labelled the prefix of cl. 

According to the algorithm, it is obvious that the sub-
sumption-testing can be done by traversing a single branch. 
Therefore, the time complexity is linear depending on the 
size of the query, but not on the size of T. This is an im-
portant property of the proposed method.  

Theorem 11. Let C be an ALC concept, T be a concept 
implicate tree of C, and cl be a clausal concept. Then it can 
be decided in the linear time in |cl| whether 

  
C! cl , |cl| 

denotes the number of all literals in cl. 
Proof. Considering the algorithm Subsume, it is obvious 

that the first four steps of the algorithm can be done in linear 
time. For the fifth step, the algorithm detects all the literals 
in cl to decide whether

  
C! cl . Therefore, determining 

whether 
  
C! cl can be done in liner time in |cl|. 

Algorithm Subsume 
Input: concept implicate tree T of concept C, clausal concept cl; 

Output: Yes, if
  
C! cl ; No, if   C ! cl . 

1. If   cl =! , then return Yes. 
2. If tree T has only one node labelled ! , then return Yes. 

3. If tree T has only one onde labelled ⊤, then return No. 

4. If cl =! , then return No. 

5. For each literal Li of cl 

    If there exists a branch w of T, such that 
    
L

1
!!! L

i
is a 

label of w and Li is a label of leaf node of w,  
    then return Yes. 

6. Return No. 
 

Fig. (5). Algorithm Subsume. 



Concept Implicate Tree for Description Logics The Open Cybernetics & Systemics Journal, 2015, Volume 9      2553 

Above all, three queries for ALC concepts, satisfiability-
testing, tautology-testing, and subsumption-testing, can be 
done in linear time depending on the size of the query.  

CONCLUSION 

In this paper, knowledge compilation for description log-
ic was presented based on the concept implicate tree. Firstly, 
the concept implicate tree was defined for the ALC concept. 
Moreover, the study also provided an algorithm to translate 
the arbitrary ALC concept into an equivalent concept impli-
cate tree. Finally, it was proved that satisfiability-testing, 
autology-testing and subsumption-testing were computable 
in linear time with respect to the concept implicate tree. It 
was concluded that any query can be done in linear time 
based on  the size of the query, regardless of the size of the 
concept implicate tree. In other words, the proposed  method 
is an effective method to deal with knowledge compilation 
for description logic. 
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