
Send Orders for Reprints to reprints@benthamscience.ae

 The Open Cybernetics & Systemics Journal, 2015, 9, 359-362 359

 1874-110X/15 2015 Bentham Open

Open Access

Topological Sort Algorithm according to the Principle of a DAG’s Sub-
graph is still a DAG after Outputting a Start Node

Yong Wei
*

Software School of Shenzhen Institute of Information Technology, Shenzhen, Guangdong, 518172, P.R. China

Abstract: The paper proves that a DAG’s subgraph is still a DAG or empty after deleting a start node. Based on this con-

clusion, the program loops the DAG and its subgraph as parameters, calls the same method, outputs a start node. Resulting

nodes must be a topological sequence when the parameter is empty, so as to implement a topological sort algorithm. This

paper also proposes using key-value storage structure to represent a DAG, where each node as the key, the node’s subse-

quent nodes as the values. Because subsequent nodes must not be start nodes, the remains must be a start nodes set after

deleting each node’s subsequent nodes from the nodes set.

Keywords: Adjacency matrix, adjacent table, directed acyclic graph, key-value storage, topological sort.

1. INTRODUCTION

In 1960, Jarnagin first touched the problem in PERT pro-
ject management [1]. Two years later, Kahn pointed out that
a DAG (directed acyclic graph) has at least one topological
sequence, and he found such a topological sequence method
[2, 3]. The algorithm established a start node set S (could
also be a queue or stack). The program saved the start nodes
in S in case any start node was found either beginning or
processing. The topology sequence outputting could be
summarized as the following steps:

(1) Arbitrarily output a node from the start node set.

(2) Delete the node and edges which connected the node.

(3) If more start nodes emerge in the remaining graph,
save them in the S.

(4) If remaining graph is not null, continue to (1), other-
wise end the program.

In accordance with the depth-first search ideas, Cormen
et al. proposed another method to implement the topological
sort algorithm [4, 5]. The characteristic of this algorithm was
that the program did not output anther start node in S set
immediately after processing a start node. But the program
processed new emerging start node in the remaining graph
firstly. The algorithm was described as follows:

(1) Output a start node.

(2) Delete the node and edges that connected with the
node.

(3) If new start nodes emerge in the deleted node’s sub-
sequences, output one of them. Otherwise output anther node
from S. If there are no start nodes, end the program.

(4) Go to (2).

Vernet and Markenzon further proofed that if a Hamilto-

nian path exists, the topological sort order is unique [6].

From the beginning of 80's last century, in order to im-

prove the efficiency, the parallel algorithms for topological

sorting emerged [7].

The past topological sorting algorithm represented DAG

based on adjacency matrix or adjacency table. If the nodes

which have no incoming edges were called “start nodes”,

almost all topological algorithms were determined from the

start nodes.

This paper breaked the limitation of the adjacency matrix

or adjacency table, used key-value storage structure to repre-

sent DAG, and implemented the algorithm of finding the

start nodes. Moreover the paper put forward a method of

finding the topological sequence based on the principle that

the remaining subgraph is still a DAG after output a topo-

logical order node.

2. GRAPH’S DESCRIPTION OF THE KEY-VALUE

STRUCTURE

In the key-value storage structure, key is a certain data

identification. The program can find the data in a dataset

through the identification, and carry out operations, such as

reading, writing etc. Value refers to the data in the real world

such as height, weight, date of birth, place of birth and so on.

For example, in Java Map interface is key-value storage

structure, or key-value pair. The key is unique, meanwhile,

the value is various. Hashtable and HashMap are implemen-

tations of Map, they provide put() method to put the key-

value value into the table, then get this value through calling

get () method where the key is a parameter.

The topological sort is a process to map the topology se-

quence. Fig. (1) was a typical DAG, said the priority relation

between curriculum.

RETRACTED ARTICLE

360 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Yong Wei

Fig. (1). The priority relation between curriculum.

In Fig. (1), a topological sequence was: c1, c2, c3, c4, c5,
c8, c9, c7, c6. Another sequence was: c2, c5, c1, c8, c9, c3,
c4, c7, c6.

The following discussed how to use key-value storage
structure represent a DAG in Fig. (1).

Java provides a hash data structure of Hashtable class. Its
object has a key-value pair, uses put() method to put the key-
value data to the table, then sees the key as a parameter, calls
get() method to get the value.

A section of the following Java code represented the
graph in Fig. (1) using a Hashtable object graph, where the
key represented a node, the value said the subsequent nodes
of the node. If a node had multi-subsequent nodes, separated
them by spaces.

The following steps added all nodes to the object graph:

 graph.put("c1","c3 c8");

 graph.put("c2","c3 c4 c5");

 graph.put("c3","c4");

 graph.put("c4","c6 c7");

 graph.put("c5","c6");

 graph.put("c6","");

 graph.put("c7","");

 graph.put("c8","c9");

 graph.put("c9","c7");

The graph was a Hashtable object, where the key repre-
sented a node, the value said the subsequent nodes.

3. FINDING THE START NODES OF DAG REPRE-
SENTED BY KEY-VALUE STORAGE

In Fig. (1), c1 and c2 were start nodes, because they had
not ancestral nodes. The core of the topological sorting algo-
rithm was how to find the graph’s start nodes.

Below was a description of the topological sorting algo-
rithm’s core-finding the start nodes of the DAG represented
by key-value storage structure.

If allnodes was a set of the all nodes, the allnodes con-
tained all of the start nodes after the following loop.

Algorithm 1: finding all start nodes of DAG

While (more nodes with key exist){

Object value = g.get(key);

allnodes = allnodes - value;

}

Algorithm 1 continued to scan each node, got its post
nodes through the get() method, Because the post nodes must
not be start nodes, deleted them until scanning all the nodes.
After while-loop, allnodes contained all start nodes. For ex-
ample, in Fig. (1) the value of allnodes was:[c9, c8, c7, c6,
c5, c4, c3, c2, c1], according to algorithm 1, constantly
scanned all the nodes, found its subsequent nodes, removed
them from allnodes which remained two start nodes [c2, c1]
at the end. The following steps demonstrated this process:

c9’s subsequent node was[c7], removed it, remains: [c9,
c8, c6, c5, c4, c3, c2, c1]

c8’s subsequent node was[c9],removed it,remains [c8,
c6, c5, c4, c3, c2, c1]

c6’s subsequent node was null, remains: [c8, c6, c5, c4,
c3, c2, c1]

c5’s subsequent node was [c6], removed it, remains: [c8,
c5, c4, c3, c2, c1]

c4’s subsequent nodes were[c6, c7], removed them, re-
mains: [c8, c5, c4, c3, c2, c1]

c3’s subsequent node was[c4], removed it, remains: [c8,
c5, c3, c2, c1]

c2’s subsequent nodes were[c3, c4, c5], removed them,
remains: [c8, c2, c1]

c1’s subsequent nodes were[c3, c8], removed them, re-
mains: [c2, c1]

Result was start nodes’ set: [c2, c1]

4. THE TOPOLOGICAL SORT ALGORITHM BASED
ON PRINCIPLE THAT DAG’S SUBGRAPH IS STILL

A DAG OR NULL

We could prove that after removed a start node and it’s
connecting edges from a DAG, the remaining subgraph was
still a DAG. So when output a node, we could call the same
method repeatedly to output a start node until the subgraph
was null.

The proofing processing: if G isGAD, G' is G’s subgraph

where an arbitrary start node and its connecting edges are
deleted. Because G is a DAG, G exists at least a topological

sequence. If G' is not DAG and had no topological sequence,

G also has not the topological sequence. So G' must be
DAG. Qed.

So we could establish a topological sort algorithm 2 as
follows:

Algorithm 2: outputting a topological sequence output a

arbitrary node from the start node set; delete it from the

DAG graph; repeat the same operations until the remaining
subgraph is null; get a topological sequence.

According to algorithm 2, continued the previous steps,
below demonstrated the topological sort implementation of
Fig. (1):

RETRACTED ARTICLE

Topological Sort Algorithm according to the Principle The Open Cybernetics & Systemics Journal, 2015, Volume 9 361

(1) Output an arbitrary start node c2

Removed c2, remains: [c9, c8, c7, c6, c5, c4, c3, c1]

c9 ’s subsequent node was[c7], removed it, remains: [c9,
c8, c6, c5, c4, c3, c1]

c8’s subsequent node was [c9], removed it, remains: [c8,
c6, c5, c4, c3, c1]

c6’s subsequent node was null, remains: [c8, c6, c5, c4,
c3, c1]

c5’s subsequent node was [c6], removed it, remains: [c8,
c5, c4, c3, c1]

c4’s subsequent nodes were [c6, c7], removed them, re-
mains: [c8, c5, c4, c3, c1]

c3’s subsequent node was[c4], removed it, remains: [c8,
c5, c3, c1]

c1’s subsequent nodes were [c3, c8], removed them, re-
mains: [c5, c1]

Result was start nodes’ set: [c5, c1]

(2) Output an arbitrary start node c5

Removed c5, remains: [c9, c8, c7, c6, c4, c3, c1]

Scanned each node, deleted its subsequent nodes, the rest
was start nodes’s set: [c1]

(3) Output the start node c1

Removed c1, remains: [c9, c8, c7, c6, c4, c3]

Scanned each node, deleted its subsequent nodes, the rest
was start nodes’s set: [c8, c3]

(4) Output the start node c8

Removed c8, remains: [c9, c7, c6, c4, c3]

Scanned each node, deleted its subsequent nodes, the rest
was start nodes’s set: [c9, c3]

(5) Output the start node c9

Removed c9, remains: [c7, c6, c4, c3]

Scanned each node, deleted its subsequent nodes, the rest
was start nodes’s set: [c3]

(6) Output the start node c3

Removed c3, remains: [c7, c6, c4]

Scanned each node, deleted its subsequent nodes, the rest
was start nodes’s set: [c4]

(7) Output the start node c4

Removed c4, remains: [c7, c6]

Scanned each node, deleted its subsequent nodes, the rest
was start nodes’s set: [c7, c6]

(8) Output the start node c7

Removed c7, remains: [c6]

Scanned each node, deleted its subsequent nodes, the rest
was start nodes’s set: [c6]

(9) Output the last start node c6, ended the program.

The above steps got a topological sequence: c2, c5, c1,
c8, c9, c3, c4, c7, c6.

5. CONCLUSION

The graphs generally have two kinds of storage structure,
adjacency matrix and adjacency table. The adjacency matrix
is a nice data structure, but for graph with more vertices and
less edges this structure has a great waste of storage space.
Therefore we usually represent the graphs with adjacency
table, it is a storage structure of arrays mixed with linked-
lists. The adjacency table uses linkedlists to link all subse-
quent nodes, so it saves space relatively. But as a mixed
structure, this adds complexity of algorithm.

This paper uses key-value storage structure in computer
language to express a graph. In this storage method, key is a
certain data identification, value refers to the data in the real
world. Each node in the DAG graph as key, all the subse-
quent node as the value, thus we implement key-value graph
storage structure.

Key-value storage structure does not appear redundant
space contrast to adjacency matrix, so as to achieve the pur-
pose of saving space. Adjacency table storage structure is
mixed structure of arrays and linkedlists, this increases the
complexity of the algorithm, key-value storage structure
does not exist the problem. In contrast, key-value storage
structure not only saves space, but also eases algorithm.

The key of the topological sort algorithm step is to find
the start nodes, which have no incoming edges in the DAG.
Therefore we scan all nodes one by one, then delete its sub-
sequent nodes because all the subsequent nodes must not be
the start node. The rest must be the start nodes set after the
end of scanning.

According to the principle that a DAG which an arbitrary
start node and its connected edges have been deleted is also a
DAG or empty, the paper puts forward the topological sort
algorithm:

(1) Find the start nodes in the graph.

(2) Output an arbitrary start node, delete it and its con-
nected edges.

(3) If the subgraph is empty end the program, otherwise
goto (1)

To DAG and its subgraph, the processing of finding the
start node and outputting the sequences is exactly the same
in the algorithm, so we can use recursion to make the code
more concise and clear.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

Declared none.

REFERENCES

[1] M. P. Jarnagin, Automatic Machine Methods of Testing PERT

Networks for Consistency, Technical Memorandum No. K-24/60,
Dahlgren, Virginia: U. S. Naval Weapons Laboratory, 1960.

RETRACTED ARTICLE

362 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Yong Wei

[2] K. B. Arthur, "Topological sorting of large networks", Communi-

cations of the ACM 5, vol. 11, pp. 558-562, 1962,
doi:10.1145/368996.369025 .

[3] D. E. Knuth, The Art of Computer Programming: vol. 1, Funda-
mental Algorithms. (3rd ed.) Reading, MA: Addison-Wesley, 1997.

[4] T. E. Robert, "Edge-disjoint spanning trees and depth-first search",
Acta Informatica, vol. 6, no. 2, pp. 171-185, 1976,

doi:10.1007/BF00268499 .

[5] C. H. Thomas, L. E. Charles, R. L. Ronald, S. Clifford, "Section

22.4: Topological sort", Introduction to Algorithms (2nd ed.), MIT
Press McGraw-Hill, pp. 549-552, 2001.

[6] V. Oswaldo, M. Lilian, "Hamiltonian problems for reducible flow-
graphs", In: Proc. 17th International Conference of the Chilean

Computer Science Society (SCCC '97), pp. 264-267, 1997,
doi:10.1109/SCCC.1997.637099 .

[7] D. Eliezer, N. David, S. Sartaj, "Parallel matrix and graph algo-
rithms", SIAM Journal on Computing, vol. 10, no. 4, pp. 657-675,

1981, doi:10.1137/0210049, MR 635424 .

Received: September 16, 2014 Revised: December 23, 2014 Accepted: December 31, 2014

© Yong Wei; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/-

licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

RETRACTED ARTICLE

