
Send Orders for Reprints to reprints@benthamscience.ae

526 The Open Cybernetics & Systemics Journal, 2015, 9, 526-535

 1874-110X/15 2015 Bentham Open

Open Access

A Centralized Service Discovery Approach for Agent-based Cloud Com-
puting System

Dingzheng Liu, Weiwei Xing
*
, Xiaoping Che and Peng Bao

School of Software Engineering, Beijing Jiaotong University, Beijing 100044, P.R. China

Abstract: Agent-Based Cloud computing is emerging as a paradigm in many domains, including service discovery, serv-

ice composition and service negotiation, etc. It achieves autonomous resource allocation and resource management by

delegating requests to agents. Agents utilized the obsolete acquaintance network and Service Capability Tables (SCTs) to

record and schedule agents for service discovery. These approaches are unable to perform global search under the inter-

mittent and volatile cloud computing environment. In this paper, we propose a robust service discovery approach with lo-

cal and global service discovery capabilities. We validate the proposed approach in different granularity of agent network

scale. Experimental results demonstrate that our approach outperforms the SCTs based approaches in the aspect of data

availability consistently.

Keywords: Agent-based system, cloud computing, service discovery.

1. INTRODUCTION

A cloud is distributed technology platform that leverage

sophisticated technology innovations to provide highly scal-

able and resilient environments, which can be remotely util-
ized by organizations in a multitude of powerful ways [1]. It

is a large pool of easily usable and accessible virtualized

resources (such as hardware, development platforms, and/or
services). These resources can be dynamically reconfigured

to adjust to a variable load, allowing for an optimum re-

source utilization. This pool of resources is typically ex-
ploited by a pay-per-use model, in which guarantees are of-

fered by the Infrastructure Provider by means of customized

Service-Level Agreement (SLAs) [2]. Cloud computing has
developed rapidly because of its flexibility to manage re-

source without any client side hassle. Clients can easily add

or remove capacity to form a desirable system for their own
specific usage, because of the resource pooling and resource

sharing technology adopted by cloud providers.

An agent is a computational entity that acts on behalf of

another entity (or entities) to perform a task or achieve a

given goal [3]. Multi-Agent system represents a computing
paradigm based on multiple interacting agents that are capa-

ble to intelligent behavior [4]. Agent-based cloud computing

[5] is a multi-agent based paradigm introduced to manage
the cloud resource autonomously. Agent-based cloud com-

puting is concerned with the design and development of

software agents for bolstering cloud service discovery, serv-
ice negotiation, and service composition [6]. Based on the

works of [7], we illustrate the architecture of agent-based

cloud computing system in Fig. (1).

In the architecture, different agents are proposed to repre-
sent different roles. The system consists of four kinds of
agents: Resource Agents (RAs), Service Provider Agents
(SPAs), Broker Agents (BAs) and Consumer Agents (CAs).

RAs play the role of managing and controlling access to
web services. RAs receive requests from SPAs or other RAs,
and carry out these requests by accessing their associated
web services. Finally, RAs transmit the result back to the
requester.

SPAs control and organize RAs. The detailed function
can be divided into three categories: (1) accepts request from
BAs, and fulfill them by releasing the request to RAs or sub-
contract it to other SPAs. (2) communicates with RAs and
manage the available resources. (3) contacts with BAs proac-
tively to advertise the available resources.

BAs are responsible for composing and providing a sin-
gle virtualized service to cloud consumer agents. BAs first
receive consumer requirements from CAs, and then they
contact a few SPAs and makes contracts with them. When
SPAs are done, BAs will return the results of available re-
sources to CAs. BAs act as an intermediate between SPAs
and CAs.

CAs accept consumer requirements from cloud consum-
ers and translate them through service ontology. Then map
the translated requirements to corresponding BAs. After the
BAs return the requested results, CAs will calculate a most
efficient plan and send it back to the cloud consumers.

The above-mentioned agents use Service Capability Ta-
bles (SCTs) to perform service discovery. SCTs are a varia-
tion of acquaintance network [8] while differs in adding the
status of cloud agents into records. The original acquaintance
network only stores the service capabilities of agents in the
system. Literally, SCTs store the service capability of each
agent and constantly update the status of the service. The

A Centralized Service Discovery Approach The Open Cybernetics & Systemics Journal, 2015, Volume 9 527

records in SCTs employ the idea of acquaintance network to
store a list of acquainted agents and their service capabilities.
Fig. (2) is an example of the acquaintance network. Each CA
maintains one SCT that records a set of BAs. Each BA main-
tains two SCTs that record information about SPAs and
other BAs.

Fig. (2). Demonstration of acquaintance network.

Each SPA maintains two SCTs that record information
about RAs and other SPAs. Each RA maintains one SCT
about their siblings under the same jurisdiction of the SPA.

From the definition of SCTs and acquaintance network,
we discovered there are several drawbacks:

1). The limited entries in SCTs make it difficult for a thor-
ough search in the whole cloud computing network to-
pology. It will increase a great deal of overheads by in-
creasing the entries in SCT, because the time complexity
for locating corresponding entry by going through each
entry one by one is O(n).

2). The SCTs are unable to handle the joining and discon-
nection of agents. Because cloud services can be inter-
mittent and dynamic, adopting the acquaintance network
to handle service discovery will make newly joined
agents without any acquaintance. Then the newly joined
agents will be left alone indefinitely. Because of the in-
termittent and dynamic cloud computing environment, a
common scenario is that some agents happened to be the
entries of other agents simultaneously in the system,
which is very likely to happen because of cloud comput-
ing. As a result this agent will not be able to perform ef-
fective search since there is not enough entries in the
SCTs.

3). The message exchanged by agents to notify the service
status can cause flood in the network. As mentioned
above, SCT contains a column of service status which is
constantly updated. There will be a flood in the network
if some services frequently update status.

To address the above-mentioned problems, we proposed
a novel service discovery approach. Experiment result show
that our approach has better performance than the original
SCTs based approach in the aspect of data availability in the
agent-based computing environment.

This paper is organized as follows. Section 2 depicts the
related works in this domain. Section 3 describes the archi-
tecture of our approach. Section 4 introduces the routing
protocol for service discovery of our approach. The experi-
mental results are in Section 5 and the discussion is given.
Finally, we give our conclusion and outlines future work in
Section 6.

2. RELATED WORKS

Existing research efforts in the service discovery can be
divided into two categories: centralized and decentralized.

The difference between centralized and decentralized
service discovery is the existence of a central node for serv-

Fig. (1). Architecture of agent-based cloud computing system.

528 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Liu et al.

ice registering and discovering. Universal Description, Dis-
covery and Integration (UDDI) [9], the most popular service
discovery protocol in the last decades, is developed by IBM
according to the centralized pattern. In this model, service
discovery is executed by a client/server node. UDDI relies
on a central server to store all the service information, serv-
ice providers register their services on the central server us-
ing a unicast message. A client can retrieve service descrip-
tion by contacting the central server and use the service de-
scription to establish contact with the service provider. Scal-
ability and efficiency will be the bottleneck of the single
central server in the entire UDDI like centralized service
discovery pattern. In the cloud computing environment with
massive data and services, the scalability would be a tough
problem central server. As in big data environment, massive
amount of services emerge every day. It requires for an uni-
maginable speed of server expansion if we still use central-
ized service discovery approach. Then the distributed UDDI
registries have been proposed to neutralize this problem. In
[10], a distributed central server approach is employed to
achieve scalable service discovery for mobile Ad hoc net-
work (MANET). In [11], P. Castro et al. proposed a schema
to connect pervasive computing device in local network us-
ing central node. In [12], M. Denny et al. introduced the
Mobiscope which is a service discovery protocol for mobile
devices.

The decentralized service discovery protocols emerged
around the millennium appear to be better solutions since

clients and service providers tend to discovery each other
directly [10, 11]. By taking the central server out of the sys-
tem the bottleneck disappeared. The Universal Plug and Play
(UPnP) framework [12] is developed by Microsoft and UPnP
is one of the earliest decentralized service discovery protocol
putting into business use. Using the Simple Service Discov-
ery Protocol (SSDP), clients and service providers can dis-
covery each other directly. Service providers in UPnP send
advertisement in the form of multicast ssdp:alive messages.
Clients within the advertising range will be aware of the
service provider and can contact service provider directly if
needed. Clients can also send ssdp:discover messages to dis-
cover potential service providers nearby. UPnP can only be
applied in small scale network such as home network and
LAN, because the multicast messages can cause flood with-
out configured in limited range.

Chord [13] is a structured peer-to-peer network protocol,
which has been used to facilitate decentralized web service
discovery. In [14], Q.He et al. proposed a Chord4S - a modi-
fied service discovery protocol based on Chord. Chord4S
distributes the descriptions of functionally equivalent serv-
ices to improve data availability. In order to improve routing
efficiency, Chord4S modified the routing protocol to be se-
quential for locating multiple functionally equivalent serv-
ices. In [15] Li, Yin, et al. proposed the PSWD, a distributed
web service discovery protocol based on a modified version
of Chord algorithm called XChord. In the original design of
Chord, it does not support querying resource by XML, but

Fig. (3). Design of discovery architecture.

A Centralized Service Discovery Approach The Open Cybernetics & Systemics Journal, 2015, Volume 9 529

author extended Chord with XML to form XChord, which is
completely capable of express service requests with XML
and query service description using XML.

In [16], M. Parhi et al. proposed a framework for service
description and discovery using ontology based on multi-
agent cloud environment. Because of the non-standardized
specification terminology used by different cloud providers,
the traditional search engines such as Google, bing, etc are
not able to perform the service discovery in an effective
manner. Adopting the framework proposed by M. Parhi,
service description is standardized and service discovery is
more accurate and efficient.

In [17], Y.-S. Chang et al. proposed a layered framework
for service discovery on cloud environment integrated with
intelligent agent. In [18], T. Uchibayashi discovered a multi-
agent framework for IaaS service discovery.

In the multi-agent cloud computing environment, decen-
tralized service discovery approaches are not appropriate.
With unstructured network topology design, it will cause
information flood and scalability problem. And with struc-
tured network topology like the above-mentioned Chord, the
web service will have to be relocated because of the adoption
of hash function in these protocols. It is similar to the work
presented in [19], [but our work focused on applying the
distributed centralized service discovery approach onto
multi-agent cloud environment. The proposed approach sup-
ports global search with a better performance, as detailed in
Section 3, 4, and 5].

3. NETWORK DESIGN OF DISCOVERY ARCHI-
TECTURE

In this section, we will introduce the basic design of our
approach and its advantage over the SCTs.

In the physical network of cloud computing, every agent
is interconnected like a giant web. Fig. (3) illustrates the de-
sign of our approach in a network topology view. In our ap-
proach, an index is an agent acts as a central control center
for the agents under its jurisdiction. The indexes are de-
ployed under the rules that: At least one index is reachable in
a fixed number of hops n (n depends on the agent density).
Indexes are elected in an impartial way in order not to affect
the load balance of the original physical network. The elec-
tion procedure for indexes will be detailed in the next sec-
tion. Indexes contain the description of web services pro-
vided by the agents under its jurisdiction and the latest serv-
ice status. Other agents that are not indexed will not be re-
sponsible for storing the service descriptions. On top of the
physical network, the indexes form an overlay network.
Overlay network is essential for the purpose of global
searching.

An agent can simply send a service lookup request to the
according index when it tends to discover a service. The in-
dex will look up locally stored information to check if there
is a matching service for the required one. The matching
service’s status should be available. If it exists in its cache,
index will forward the detailed information of agent which
provides service back to the agent requesting the service. If
not, index will perform a global searching and send the serv-
ice request to the index which most likely stores the request-

ing service. (Detailed service discovery techniques will be
discussed in the next section). Destination index to forward
the service request is based on the profiling exchanged be-
tween indexes (the profiling procedure will be discussed in
the next section). The index profiling provides a brief intro-
duction of the services it provides and the capacity it may
host.

Improvements of our approach over SCT as follows:

(1) We propose an overlay network above the physical net-
work in order to perform global searching.

(2) We adopt indexes in our approach to be able to handle
intermittent and volatile network environment like cloud
computing environment.

(3) Our approach generates minimize traffic during the
service publication; service discovery process because
of each index handles its own jurisdiction.

4. SERVICE DISCOVERY PROTOCOL

In this section, we mainly discuss the service discovery
protocol we designed for the approach. It consists of two
parts: Local Service Discovery and Global Service Discov-
ery.

4.1. Local Service Discovery

As mentioned in previous sections, indexes have three
functionalities: (1) Storing the service description and updat-
ing the service status of available service within the index’s
own jurisdiction. (2) Responding to service queries accord-
ing to the stored cache. (3) Periodically broadcasting mes-
sages to the jurisdiction for presenting its existence.

An index stores service advertisements broadcasted by
agents which provide certain kind of service to the index
over n hops (n is the cover range of this specific index). The
cache information stored in index is managed using Least
Recently Used (LRU) algorithm, which replaces the least
recently used item with the newest item. In this way, index
can ensure the hit rate judging from Pareto principle (also
known as the 80–20 rule, states that, for many events,
roughly 80% of the effects come from 20% of the causes).
Agents providing services will set their broadcasting time
gap according to: (1) the number of agents under the same
jurisdiction, by analyzing the advisement received from in-
dex or the local routing table to find out the number of
nearby agents. (2) the load on the network, which can be
detected from the acknowledges received from a few last
sent messages. Using the two techniques above-mentioned
we ensure that our approach maintains relatively low number
of messages exchanged in the service discovery process.

Upon receiving the service query from an agent under its
jurisdiction, the index will check locally stored information
to identify whether the requested service exists in its juris-
diction. If the index finds a match or several matches, it will
run a selection algorithm to decide which match to send
based on the following principles: (1) Choose best match
according to the similarity between requested service de-
scription and matched service using service ontology analy-
sis. (2) Choose the most available service by going through
matched service’s status. If there are not any matches in the

530 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Liu et al.

local jurisdiction, the index will perform a global searching
for the requested service which will be discussed in the next
section.

4.1.1. Index Broadcasting and Electing Procedures

As mentioned above, indexes are responsible for being
recognized by agents which provide services and request
services within their own jurisdiction. To this end, index
must broadcast their existence through n hops. However,
broadcasting may cause flood in the network. In order to
control the number of messages in broadcasting, we adopt
following techniques: t messages are broadcasted to the
neighbors of the initial index only. Then out of the nodes
received the broadcast message, it selects the minimum
number of nodes that can reach all the nodes in their direct
connected neighbors while these zones do not intersect. Then
the selected nodes will forward the received messages to its
neighbors, and this procedure will repeat several times. After
n hops, the local index will be recognized by all the agents in
their own jurisdiction.

With the intention of not interfering the original layout of
agents, we propose an election procedure. This procedure is
fair for all agents and can keep the physical network stable
with unnoticeable message exchanging overhead. In order to
achieve less duplication, existing indexes are also required to
perform the election procedure when receiving an election
request. An agent can belong to more than one index, be-
cause of the instability nature of cloud computing environ-
ment. As noted above, indexes send out presence advertise-
ments in a time interval of x. Thus, when an agent does not
receive any index presence advertisements in the time inter-
val of a x (a is the network load parameter depending on the
current network condition), the agent begins to initiate an
election process for finding an index.

By starting the election process, an agent broadcasts the
election initiating message over n hops. Other agents within
the n hops range receiving the election initiating message can
either accept or refuse to be elected as an index. Judging
from its own capability and availability, an agent can make a
decision about whether being an index or not. If the agent
decides it can take the responsibility by acting as an index, it
will sends back an acceptance message to the election initia-
tor with the detailed information about its capability to store
cached service information, the availability of free resources
and the network environment around it (the message failure
rate sent into the local network, the indexes covering it, the
available resource directly connect to it for instance). When
the initiator receives enough acceptance messages in the time
interval of 2x, which is the time that one message can travel
back and forth for n hops. The initiator elects the most suit-
able candidate to be its index by evaluating the detailed in-
formation attached to the acceptance message. The initiator
values the resource around the candidate, i.e., the candidate
has the most neighbors and the least number of indexes it
belongs to, and distance between the candidate and the initia-
tor as two of the most important attributes. If the agent re-
fuses to be elected as an index, it simply sends back a refuse
message. The refuse messages will be discarded upon the
initiator receiving them. The above mentioned election pro-
cedures ensures the election can be done efficiently with the
best physical attributes indexes elected and the best distribu-

tion rate of indexes. Because one of the main factors decides
which agent becomes the index is “least number of indexes it
belongs to”.

In the case of two or more agents start electing procedure
at the same time, the agent with the smallest hexadecimal
MAC address continues the election process while other
agents awaits until the first agent finishes electing process.
The above mentioned election process keeps running to ad-
just the network load balance from time to time. And this
process ensures the intermittent network environment acts
efficiently.

4.2. Global Service Discovery

The last sub section discusses the service discovery strat-
egy within the jurisdiction. However, agents need to discover
the appropriate service in the whole cloud environment. We
can achieve this feature by designing a global service dis-
covery strategy. As we mentioned above, global service dis-
covery requires the cooperating of indexes which may store
the required service. Aiming to locate the corresponding
index to forward the query, we introduce the index profile
that provides a brief summarization of the index resources.

4.2.1. Index Profile

We use Quotient Filter [20], a kind of approximate mem-
bership query (AMQ), to summarize the WSDL based serv-
ice description of an index. An AMQ is a space-efficient
probabilistic data structure used to test whether an element is
a member of a set. In other words, AMQ is a dictionary that
trades off space for a false positive rate on membership que-
ries. Quotient filter is efficient in describing indexes because
it does not store the whole lot of resources. It can make the
large unsorted file to map each service description record
into a table by adopting the hash function. The basic idea of
quotient filter is to make the already stored p-bit fingerprints,
which is the hash value of service description stored in index
into q most significant bits (the quotient) and r least signifi-
cant bits (the remainder) by employing quotienting [21].

Fig. (4). Example of quotient filter.

Fig. (4) illustrates an example of quotient filter. In the
figure, we can see that a quotient filter is a compact hash
table. The hash table has slots. The fingerprint is the
hash value of key l. We assume the quotient of is and
the remainder be . The quotient filter will try to store the

A Centralized Service Discovery Approach The Open Cybernetics & Systemics Journal, 2015, Volume 9 531

remainder in the slot of , which is called canonical slot.
The quotient filter adopts linear probing as the solution of
collision (if the quotients of two stored fingerprints are
equal). Linear probing means if there is a collision and the
canonical slot is taken then the latecomer remainders will be
stored to the right of the canonical slot.

Also, we have to introduce two definitions in the quotient
filter:

(1) A run is all of the remainders with the same quotient
stored contiguously.

(2) A cluster is a maximal sequence of occupied slots whose
first element is the only element of the cluster stored in
its canonical slot. Thus, a cluster may contain one or
more runs.

The additional bits in each slot have the following mean-
ing:

(1) is_occupied indicates whether this slot is the canonical

slot for the value stored or not.

(2) is_continuation indicates that whether the remainder of

this slot is part of the run not.

(3) is_shifted indicates whether the remainder is in the ca-

nonical slot or not. Table 1 illustrates the explanation of

different bits combination.

We can identify if a quotient filter contains a certain key l
by following procedures:

(1) Get the fingerprint by hashing l. And get the quotient

 and the remainder by running the quotient function.

(2) If the slot ’s three bits combination is 000 then we can

determine the filter does not contain key l.

(3) If the slot is not empty, which means the canonical

slot is taken. We must locate the quotient’s run in order

to find which slot l is stored. We start scanning the left

of to locate the start of cluster, in order to locate the

start of quotient’s run.

(4) The scan stops when is_shifted is false, which indicates

the start of the cluster. Then we start scanning right to

skip j (j is the total number of is_shifted recorded when

proceed (3)) runs, we compare the with the records

stored in the quotient’s run.

(5) If matches the recores, the key l is in the quotient filter.

Otherwise the key l does not exist in the quotient filter.

When two different elements map to same fingerprint we
call it a false positive. The load factor of a normal hash func-
tion = n/p, where n is number of elements and p = is the
number of slots. The probability of a false positive is ap-
proximately .

4.2.2. Service Discovery Scheme Between Indexes

A recent elected index initiates broadcasting to n hops
while none of the indexes has been aware of. Other indexes
received the message will send back profiles, which are the
content of quotient filter and host service capacity. Other-
wise, if an index is aware of one or more indexes from the
previous electing process or from the previous knowledge
when it is not an index yet, the index will send a profile re-
quest to all the known index neighbors. The index neighbors
send back the profile lists requested. In one way or another,
the index will create a list of index profiles when it enters the
network. Later on, each index broadcasts its list of profiles to
2 n hops, which is two times the range of its jurisdiction. In
this way, indexes are able to discover each other in a rela-
tively exchanging message saving pattern.

Every agent has at least one index according to our ap-
proach’s design. Fig. (5) illustrates the discovery procedure.

Table 1. Explanation of the bits combination.

is_occupied is_continuation is_shifted Description

0 0 0 Empty Slot

0 0 1 This slot is the start of a run which has been shifted from its canonical slot.

0 1 0 Not used

0 1 1 This slot is the continuation of a run that has been shifted from its canonical slot.

1 0 0 This slot is the start of a run that is in its canonical slot.

1 0 1
This slot is holding start of a run that has been shifted from its canonical slot. Also the run for

which this is the canonical slot exists but is shifted right.

1 1 0 Not used

1 1 1
This slot is holding continuation of a run that has been shifted from its canonical slot. Also the

run for which this is the canonical slot exists but is shifted right.

Fig. (5). Global discovery model.

532 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Liu et al.

(a) Results of the network consisting 500 agents

(b) Results of the network consisting 750 agents

(c) Results of the network consisting 1000 agents

Fig. (6). Contd……

A Centralized Service Discovery Approach The Open Cybernetics & Systemics Journal, 2015, Volume 9 533

(d) Results of the network consisting 1250 agents

(e) Results of the network consisting 1500 agents

(f) Comparison between different sets of data

Fig. (6). Experiment results.

534 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Liu et al.

When an agent A searches for a specific service, the discov-
ery procedure starts as follows:

(1) It sends a query message to a local index B.

(2) Upon receiving the query message, B starts to look into
its own cache to whether the requested service is within
the jurisdiction.

(3) If the service is found, B sends back the detailed service
information along with the service provider’s informa-
tion to A. If the requested service does not exist in the
local jurisdiction, B looks up its stored list of profiles.
By using the quotient list query B locates all the in-
dexes, which are most likely to have the requested serv-
ice.

(4) Then B forwards the query to these indexes.

(5) Finally, requested indexes send back a match message to
B.

(6) B sends a match message back to A if there exists any
requested service or a no match message if the requested
service does not exist neither in local jurisdiction nor
other indexes. At this point, the query process is com-
pleted.

5. EXPERIMENTS

To evaluate the performance of our approach, a SCT

simulation is implemented to act as a control group. Data

availability is evaluated specifically because they are quite

important in service discovery operations. We use OM-

NeT++ as a platform to execute the following experiments.

The simulation is performed in the network scale of 500,

750, 1000, 1250 and 1500 agents in order to evaluate our

approach’s performance under different network scales. The

network topology in this experiment is similar to the shown

in Fig. (3).

In intermittent network environments, our approach has

better data availability judging from the designing aspect. To

simulate the intermittent network environments, we choose a

portion of agents to disconnect from the network randomly,

increasing from five percent to fifty percent of the total por-

tion of agents with the pace of five percent. Then the remain-

ing agents send out service queries randomly. The number of

request queries is randomly selected from the interval [1,5].

We record the number of failed service queries to measure

the data availability under intermittent network environ-

ments. We conducted the experiments under the assumption

of the ratio of (consumer agents) : (broker agent) : (service

provider agent) : (resource agent) is fixed to 1:1:1:1.

From Fig. (6), we can see that our approach has better

data availability because the curve of our approach stays

below the SCT curve the entire time. We observe that the

failure rate of service queries is higher than the portion of

failed agents. This phenomenon indicates that there is other

reason except for failed agents causing query failure. The

reason is that with some outdated service description in in-

dex there is a small chance it will cause query failure. To

sum up, our approach has a better performance than SCT in

the aspect of data availability.

6. CONCLUSION AND FUTURE WORK

Service discovery not only remains as a critical compo-
nent in service oriented architecture, but also plays an impor-
tant role in the cloud computing environment. This paper
introduces a novel service discovery approach, which can be
applied to agent-based cloud computing environment. We
used the method of centralized service discovery based on
service indexes after evaluating the merits and faults of it. In
order to implement the features that cannot be realized in the
original design of SCT and improve the data availability in
the service discovery, we designed a virtual network on top
of the physical network consisting of indexes. By adopting
the central indexes within a small scale of jurisdiction, our
approach is able to perform global service discovery with a
relatively low overhead. According to experiment results,
our approach improves the data availability.

In the future, we plan to build a structured network to-
pology on the virtual network in order to achieve global
service query with higher efficiency.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

This work is supported in part by National Natural Sci-
ence Foundation of China (No. 61100143, 61272353,
61370128, 61428201), Program for New Century Excellent
Talents in University (NCET-13-0659), Beijing Higher Edu-
cation Young Elite Teacher Project (YETP0583).

REFERENCES

[1] T. Erl, R. Puttini, and Z. Mahmood, Cloud Computing: Concepts,
Technology & Architecture, Pearson Education: US, 2013.

[2] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, "A
break in the clouds: towards a cloud definition," ACM SIGCOMM

Computer Communication Review, vol. 39, pp. 50-55, 2008.
[3] D. Talia, "Cloud Computing and Software Agents: Towards Cloud

Intelligent Services," In: WOA, CEUR Workshop Proceedings, pp.
2-6, 2011.

[4] K. Virani, and D. Virani, "Service composition based on multi
agent in cloud environment," International Journal of Engineering

Research and Technology, vol. 1, no. 9, 2012.
[5] K. M. Sim, "Agent-based cloud computing," IEEE Transactions on

Services Computing, vol. 5, pp. 564-577, 2012.
[6] K. M. Sim, "Complex and concurrent negotiations for multiple

interrelated e-markets," IEEE Transactions on Cybernetics, vol. 43,
pp. 230-245, 2013.

[7] J. O. Gutierrez-Garcia, and K. M. Sim, "Agent-based cloud service
composition," Applied Intelligence, vol. 38, pp. 436-464, 2013.

[8] J. Ferber, Multi-agent Systems: an Introduction to Distributed
Artificial Intelligence, vol. 1: Addison-Wesley Reading: US, 1999.

[9] T. Bellwood, L. Clément, D. Ehnebuske, A. Hately, M. Hondo, Y.
L. Husband, K. Januszewski, S. Lee, B. McKee, J, Munter, and C.

von Riegon, "UDDI Version 3.0," Published Specification, Oasis,
vol. 5, pp. 16-18, 2002.

[10] E. Meshkova, J. Riihijärvi, M. Petrova, and P. Mähönen, "A survey
on resource discovery mechanisms, peer-to-peer and service

discovery frameworks," Computer Networks, vol. 52, pp. 2097-
2128, 2008.

[11] C. N. Ververidis, and G. C. Polyzos, "Service discovery for mobile
ad hoc networks: a survey of issues and techniques," IEEE

Communications Surveys and Tutorials, vol. 10, pp. 30-45, 2008.
[12] B. A. Miller, T. Nixon, C. Tai, and M. D. Wood, "Home

networking with universal plug and play," IEEE Communications

A Centralized Service Discovery Approach The Open Cybernetics & Systemics Journal, 2015, Volume 9 535

Magazine, vol. 39, pp. 104-109, 2001.

[13] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H.
Balakrishnan, "Chord: a scalable peer-to-peer lookup service for

internet applications," ACM SIGCOMM Computer Communication
Review, vol. 31, pp. 149-160, 2001.

[14] Q. He, J. Yan, Y. Yang, R. Kowalczyk, and H. Jin, "A decentralized
service discovery approach on peer-to-peer networks," IEEE

Transactions on Services Computing, vol. 6, pp. 64-75, 2013.
[15] Y. Li, F. Zou, Z. Wu, and F. Ma, "Pwsd: a scalable web service

discovery architecture based on peer-to-peer overlay network," In:
Advanced Web Technologies and Applications, Springer: US, 2004,

pp. 291-300.
[16] M. Parhi, B. K. Pattanayak, and M. R. Patra, "A multi-agent-based

framework for cloud service description and discovery using
ontology," In: Intelligent Computing, Communication and Devices,

Springer: US, 2015, pp. 337-348.
[17] Y.-S. Chang, T.-Y. Juang, C.-H. Chang, and J.-S. Yen, "Integrating

intelligent agent and ontology for services discovery on cloud

environment," In: Systems, Man, and Cybernetics (SMC), IEEE
International Conference, 2012, pp. 3215-3220.

[18] T. Uchibayashi, B. O. Apduhan, and N. Shiratori, "A framework of
an agent-based support system for IaaS service discovery," In:

Computational Science and Its Applications (ICCSA), 13th
International Conference, 2013, pp. 28-32.

[19] F. Sailhan, and V. Issarny, "Scalable service discovery for
MANET," In: 3rd IEEE International Conference on Pervasive

Computing and Communications, 2005, pp. 235-244.
[20] M. A. Bender, M. Farach-Colton, R. Johnson, R. Kraner, B. C.

Kuszmaul, D. Medjedovic, P. Montes, P. Shetty, R.P. Spillane, E.
Zadok, "Don't thrash: how to cache your hash on flash,"

Proceedings of the VLDB Endowment, vol. 5, pp. 1627-1637, 2012.
[21] J. Clerry, "Compact hash tables using bidirectional linear probing,"

IEEE Transactions on Computers, vol. 100, pp. 828-834, 1984.

Received: September 16, 2014 Revised: December 23, 2014 Accepted: December 31, 2014

© Liu et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/-

licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

