
Send Orders for Reprints to reprints@benthamscience.ae

556 The Open Cybernetics & Systemics Journal, 2015, 9, 556-564

 1874-110X/15 2015 Bentham Open

Open Access

Research on Sliding Window Join Semantics and Join Algorithm in
Heterogeneous Data Streams

Du Wei
1,2,4

 and Zou Xianxia
*,3,4

1Department of Computer Science, Guangdong Police College, Guangzhou 510232, P.R. China; 2 Guangzhou Key Research

Center of Public Safety, Guangzhou 510232, P.R. China; 3Department of Computer Science, Jinan University, Guangzhou

 510632, P.R. China; 4State Key Laboratory of Software Engineering, Wuhan University, 430072, P.R. China

Abstract: Sliding windows of data stream have rich semantics, which results all kinds of window semantics of different

data stream, so join semantics between the different types of windows becomes very complicated. The basic join semantic

of data streams, the join semantic of tuple-based sliding window and the join semantic of time-based sliding window have

partly solved the semantics of stream joins, but the heterogeneity of sliding windows is difficult to be solved. In this paper

we present the join semantic model based on matching window identifies for joining of multi-data stream. We make use

of window identifies to shield the difference of window attribute, window size, and window slide. In this paper, a sliding

window is divided into a number of sub-windows when the newest sub-window fills up it and it is appended to the sliding

window while the oldest sub-window in the sliding window is removed. We use the equivalence relation of overlapping

sub-window belonging to the adjacent sliding window to reduce the number of join computing. We propose the corre-

sponding algorithm of window join to maintain the window. The theoretical and experimental analysis show that the join-

ing model of window identifies can synchronize multiple data stream.

Keywords: Data stream, heterogeneous sliding window, join semantics, join algorithm.

1. INTRODUCTION

 As the merger of multiple data stream (MDS) has drawn
attention in related fields, various join algorithms and se-
mantic models have been advocated. For example, Xjoin [1]
algorithm, the first algorithm used to deal with the MDS join
in unstable network environment, employs non-block join
algorithm. It includes three phases. First, uses symmetric
hash join (SHJ) [2] to handle the join computing in memory;
second, supplements the unfinished join of the first phase;
third, does the further checkup for the first two stages and
produces the final result. By extending the traditional hash
join algorithm, non-block SHJ algorithm is able to support
the flow process and maintain hash buckets of both source A
and source B. It accepts new tuple t from source A, directly
probes the hash bucket of Source B, and meanwhile puts
tuple t into the hash bucket of source A through hash func-
tion. However, SHJ is suitable only when memory was large
enough for the both the two tables. HMJ [3] (hash-merge
join) algorithm improved the XJoin by using the traditional
merge join algorithm in the second phase, and algorithms
like RPJ [4] (rate-based progressive join) and DPHJ [5]
(double pipelined hash join) have made further refinements.
XJoin, HMJ (hash merge join) and PMJ [6] algorithms,
which focus on the approximate join computing of real-time
data stream and has no explicit join semantics.

To deliver the semantics more clearly, the window mech-
anism was introduced into the query computation of the data
stream. Document [7] considered the join between logic
windows, while document [8] took that between the physical
windows into account, and document [9] provided join query
algorithms according to different arrival rates of the data
stream. However, the difference between data streams is
much more complex. Different window types, slides and
initial points will make the semantics in window synchroni-
zation more complicated. When dealing with window syn-
chronization over MDS, some data stream management sys-
tems (DSMS) may adopt simple approaches like using com-
mon time as the upper bound of the windows or advancing
the windows at the same time [10]. CQL/STREAM [11]'s
MDS merger uses common time points as the upper bounds
of the windows, whereas TelegraphCQ [12] employs com-
mon iterative amount to achieve this goal.

In system implementation, SyncSQL/Nile [13] formally
proposed the merge problem of MDS and its calculation
model. In that system, logical time is the common time do-
main, and the synchronization point is determined according
to the slide of the window. If a time point is the upper bound
of two data streams, it's called full synchronized time point
and other upper bounds are partial synchronized points. The
merger of MDS only happens at the full synchronization
points and partial synchronization points. The merger
thought of MDS in SyncSQL/Nile is shown in Fig. (1). To
merge data streams, the SyncSQL/Nile system uses logical
time as the time domain and has the same start time points.
Let the slides of two data streams are two and three time
units respectively, then the time points which are only multi-

Research on Sliding Window Join Semantics and Join Algorithm The Open Cybernetics & Systemics Journal, 2015, Volume 9 557

ple of 2 or only multiple of 3 are partial synchronization
points, while those are multiple of both 2 and 3 are full syn-
chronization points, which can only be computed at syn-
chronization points.

While window synchronization in SyncSQL/Nile only ap-
plies to the merger of MDS with same start points, it cannot
synchronize data streams produced by transactions. Data
streams produced by transactions generally use the submit
time of transaction instead of logical time as the time do-
main. If two data streams S1 and S2 adopt transaction submit
time as their common time domain, and meanwhile S2 al-
ways occurs later than S1, then there will always be a time
delay between window queries defined on S1 and S2. And
the time delay can be eliminated neither by window size nor
by its slide while merging MDS.

This paper proposed a join semantic model and corre-
sponding join algorithms for slide window based on match-
ing window-id. The Differences between data streams in
properties including time domain, start point, slide and win-
dow sizes will be concealed by the window-id. This paper is
organized as follows: section 2 describes the semantic model
of window join, and advocates a join semantic model for
matching window-ids; section 3 introduces the data structure
and window maintaining methods used by this semantic
model; section 4 introduces the join algorithm and improved
data structure of slide window and section 5 is about their
theoretical and experimental analysis.

2. THE SEMANTIC MODELS OF THE JOIN OF
SLIDE WINDOW

2.1. The Basic Model of the Join of Data Stream.

The join result of the data stream that do not use windows
can be seen as the join view [14] of the append-only pack-
age. And the join process of data stream S1 and S2 can be
seen as the join view of append-only package S1 and S2
which updates and maintains the package view when the
package S1 or S2 is updating. Package S1 or S2 only sup-
ports insert operation, so its join relationship is monotonic
and the one which time is larger of two tuples is used as the
time of join result and the package join view is append-only.
As a result the join of data stream defined as append-only
package is monotonic, in accordance with the nature of data
stream.

The semantic model requires that the merger status always
be saved in memory, namely the memory saves all the input
tuples of the data stream, and when a new tuple arrives, it
joins the merger status of its data stream and meanwhile
probes other data streams and produces the output based on
the exploration result.

2.2. The Join Model of Slide Window

The basic model of data-stream join is unrealizable for
unboundedly growing data and limited memory, because
memory overflow will eventually result in error in data
stream processing system. Therefore, the merger of data

Fig. (1). The example of SyncSQL/Nile window synchronization.

558 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Wei and Xianxia

stream is converted to the merger of recently arrived data,
namely the sliding-window join semantics. According to the
definition of the window, the sliding-window join can be
classified as the time-based model and the tuple-based model
[15]. Let the window size of data stream S is w units, and the
time-based slide window join requires that the data stream it
joins must join the tuple which arrives within w time; tuple-
based slide window join requires that the data stream joins it
must join the latest k tuples. If data stream S1 and S2 defines
the time-based equi-join

1 1 2 2
[] []S w S w of the slide win-

dow, it means: for any
1 1
s S ,

2 2
s S , there’s

1 2
s A s A=

on attribute A And when
1 1

[]s S w , at time point
2
s t ,

there’s
1 2 1 2

[,]s t s t w s t Or when
2 2

[]s S w , at time
point

1
s t , there’s

2 1 2 1
[,]s t s t w s t , in which

1
w and

2
w

are the window sizes of S1 and S2. The merger processing of
slide window will clear the data that isn't in the window in
real time so as to avoid memory overflow, and to guarantee
that future data will not merge with them. This will not affect
the join semantics.

Since the slide window join model cannot be backtracked,
i.e. new tuples will not compute the expired windows, it re-
solved the feasibility of MDS calculation, but these seman-
tics don't concern the heterogeneity of the data streams.
Document [16] considered the merger of heterogeneous data
streams, but it mainly concentrates on the heterogeneity of
the structure and the model of data streams not that of the
slide window. In this paper, the heterogeneity of data-stream
slide window is summarized as follows:

(1) Different time domain. Some data streams use the trans-
action time, some use data reception time and some use logi-
cal time;

(2) Different start points of the data streams;

(3) Different window types. Some use logic window, and
some use physical window;

(4) Different units and size of the slide;

In systems like CQL/STREAM and TelegraphCQ, the join
of sliding-window over MDS requires that the merging data
streams employ exactly the same window mechanism and
time system. As for SyncSQL/Nile system, it realizes syn-
chronization according to different slides, or directly adopt
approximate calculation [17, 18] to ignore the existence of
heterogeneity in the slide window.

In this paper, the windows of each data stream are defined

and identified independently, transforming the join condi-

tions of multiple-data slide window into the respective defi-

nitions of their window-ids. For example, equi-join

1 1 2 2
[] []S w S w on data stream S1 and S2 is defined as:

for any
1 1
s S ,

2 2
s S , there's

1 2
s A s A=

and

1 2
S WID S WID=

Or
1 2

modS WID S WID k= on property A.

Window-id separates the definition of data-stream window

from the join conditions to solve join semantic problems

caused by the heterogeneity of slide window.

3. THE STORAGE AND MAINTENANCE OF SLIDE
WINDOW

Let the size and slide of the slide window are expressed by
the same unit; the slide window consists of several sub-

windows; take the greatest common divisor of window-size
and window-slide as the size of every sub-window, namely
the size of the sub-window is (,)m GCD size slide= , then:

Window size (_)size n size sub window= ; the window
size is n times that of the sub-window;

Window-slide (_)slide k size sub window= ; the slide is k
times that of the sub-window.

The sub-window sequence is stored in a one-dimensional
array of n bits, and in order to facilitate the management of
time-type windows, the tuple of the sub-windows employs
list structure. When each sub-window reaches its window-id
wid , if the window-id is new, it joins the FIFO queue, and
sets the pointer between sub-window array on the one side
and sub-window elements and window idwid on the other
side.

3.1. The Creation of Slide Windows

If window-id wid starts from 0, then the CN th sub-
window to arrive belongs to the data stream window

CN n

k
w = . IfCN w k n> + , it also belongs to other win-
dows, i.e. the wid range of theCN th sub-window is:

1CN wk

k
w wid w+

Example: let the slide window on data stream have three
sub-windows and its slide is one sub-window, then its data
structure is shown in Fig. (2).

Fig. (2). The data structure of the data stream window.

The following is the algorithm of creating the data struc-
ture of the slide window:

Research on Sliding Window Join Semantics and Join Algorithm The Open Cybernetics & Systemics Journal, 2015, Volume 9 559

Algorithm1: Create data structure of slide window (CDS-
SW)

INPUT: The newly arrived sub-window _sub w; CN ,the
count value of the sub-window(starts from 1); the window
queue list ; WCN ,the count value of sub-windows; The size
of the window size n= sub-windows; the slide of the window
slide k= sub-windows;

OUTPUT: The storage structure of slide window, the win-
dow queue list and WCN ,the count value of sub-windows.

METHOD:

BEGIN

Step 1: Compute the least value of the sub-window
CN n

k
w = and the number of slide windows it belongs to

1CN wk

k
l = according to its count valueCN of sub-window.

Step 2: Set the window-idwid w= ;

Step 3: For i = 0 to l do

BEGIN

Step 3.1: Scan FIFO queue list , IF wid is already in the
queue

THEN

Compute the array index at thewid th sub-window

mod((1),)j CN wid k n= ;

Add 1 to the number of sub-windows, i.e.,

[]. []. 1list wid WCN list wid WCN= + ;

ELSE

wid join the slide window queue list ;

Initialize the pointer array of sub-windows

[0.. 1]array n null , [] [0]list wid array ;

Compute the array index at the wid th sub-window

mod((1),)j CN wid k n= .

Initialize the number of sub-windows

[]. 1list wid WCN = ;

ENDIF;

Step 3.2: The array pointer points to theCN th sub-window

[]. [] _list wid array i sub w ;

Step3.3: Add 1 to the window-id, i.e. 1wid wid= + ;

ENDFOR

END

Algorithm 1: Create the data structure algorithm of the slide
window

3.2. The Maintenance of Slide Windows

Whenever a sub-window arrives, the sub-window will be
added into the data structure of the data stream, and mean-
while join the corresponding window of its join object and
output the result into the buffer. When the output window
expires, it will output the join result of the entire window.
The join process of sub-windows uses SHJ algorithm, as
shown in Fig. (3). Both the input and the output of sliding-
window join are windows.

Fig. (3). The arrival of the new sub-window.

There are two conditions to determine whether the win-
dow expires: if the count value of the current window reach-
es n and the matched window of the join object reaches the
count value of the sub-window, it expires, the data pointer
and queue pointer of the sub-window will be deleted, as
shown in Fig. (4).

Fig. (4). To delete the expired window.

560 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Wei and Xianxia

Here’s the algorithm of maintaining slide window:

Algorithm 2: Delete expired window of data stream (DEW)

INPUT: The data structure of the sliding-window of data
stream S1 and S2

OUTPUT: The data structure of the sliding-window of data
stream S1

METHOD:

Step 1: Initialize 1 min() S1old wid of list of= , the window-
id that matches 1old and S2 2 S2 S1old wid of join=

Step 2: IF [1] 1list old WCN n= and [2] 2list old WCN n= //
1n and 2n are the total number of sub-windows of stream S1

and S2

THEN FOR l=1 TO n1 DO

Disconnect all pointers of []array l ;

Disconnect the pointer of [1]list old that points to
;

Delete 1old from queue list ;

ENDIF

END

Algorithm 2: The algorithm of the maintenance of slide
window

4. THE JOIN ALGORITHM OF SLIDE WINDOWS
THAT BASED ON WINDOW-ID

The join process of the slide window on data stream is
shown in Fig. (3). In this SHJ, the newly arrived sub-window
will be added into the queue of data stream windows through
CDS-SW algorithm and then set a pointer. After that it will
search for the window in the join object based on matching
conditions and do join computing with all its sub-windows.
The join computing process uses nested loop join algorithm.

However, a sub-window may belong to more than one da-
ta stream slide windows. And there will be a large number of
repeated nesting process, if the new sub-window joins all
those sub-windows of its matched window, resulting in a
waste of computing resources. If the sub-window belongs to
more than one slide windows, then these windows must be
next to each other. In this case, it can be expressed by the
equivalence relation and the forward pointer of the sub-
window array. Fig. (5) shows us the data structure of slide
windows which added equivalence relation based on Fig. (2).

4.1. Improve the Data Structure of Slide Window

The data structure created in Fig. (5) is based on improved
CDS-SW.

Algorithm 3: Improved CDS-SW (I-CDS-SW)

INPUT: The newly arrived sub-window _sub w; CN , the
count value of the sub-window (starts from 1); window
queue list ; WCN , the count value of sub-windows of slide
windows; The size of the window size n= sub-windows; The
slide of the window slide k= sub-windows;

Fig. (5). The equivalence relation between the adjacent sub-
windows.

OUTPUT: The storage structure of the slide window, the
window queue list andWCN , the count value of sub-
windows of the slide window

METHOD:

Step 1: Compute the minimum CN n

k
w = of the slide win-

dows which the sub-window belongs to and the number
1CN wk

k
l = of all its belonging sliding-windows in accord-
ance with the count valueCN .

Step 2: Set the window-id wid w= ;

Step 3: Initialize the minimal slide window and the pointer
of the equivalent sub-window.

Step 3.1: Initialize the head pointer of the equivalent sub-
window hq null ;
Step 3.2: Scan the window queue list , IF w in list

THEN

Compute the array index of the w th sub-window

mod((1),)i CN wid k n= ;

Modify the count value of the sub-window

[] [] 1list w WCN list w WCN= + ;

ELSE

Press w into the slide window queue list ;

Initialize the pointer array of sub-window

[0..]array n null , [] [0]list wid array ;

Compute the array index atwid th sub-window

mod((1),)i CN wid k n= ;

[]array l

Research on Sliding Window Join Semantics and Join Algorithm The Open Cybernetics & Systemics Journal, 2015, Volume 9 561

Initialize the count value of the sub-windows

[] 1list wid WCN = ;

END IF;

Step 3.3: The pointer of the sub-window of the current slide
window points to CN th sub-window

[] [] _list wid array i sub w;

Step 3.4: The current array element points to the head point-
er of the equivalent sub-window [] []list wid array i q hq .

Step 3.5: The head pointer points to the current array ele-
ment [] []hq list wid array i q ;

Step 4: FOR i = 1 TO l DO / / add the current sub-window
to other slide windows

Step 4.1: Modify the count value of the current slide window
1wid wid= + ;

Step 4.2: Scan FIFO queue list , IF wid in list ,

THEN

Find the array index of the wid th sub-windows

mod((1),)i CN wid k n= ;

Modify the count value of the sub-windows

[] [] 1list wid WCN list wid WCN= + ;

Else

Press wid into the slide window queue [] 1list wid WCN = ;

Initialize the pointer array of the sub-window

[0..]array n sw null , [] [0]list wid array ;

Compute the array index at thewid th sub-window

mod((1),)i CN wid k n= ;

Initialize the count value of sub-windows

[] 1list wid WCN = ;

END IF

Step 4.3: The array pointer points to the CN th sub-window

[] [] _list wid array i sub w

Step 4.4: The current array element points to the head point-
er of the equivalent sub-window [] []list wid array i q hp

Step 4.5: The head pointer points to the current array ele-
ment [] []hp list wid array i q

ENDFOR

END

Algorithm 3: Improved algorithm of setting the data structu-
re of slide window

4.2. Join Algorithm of Slide Window

Let the sizes of the windows of data stream S1 and S2 are
1n sub-windows and 2n sub-windows respectively, _list R

is the matched window pair, then the resultant array is at
most composed of 1 2n n sub-windows and its array ele-
ments are the array indexes of each data stream.

Example: let the window size of data stream S1 is 1 3n =

sub-windows and the slide is 1 1k = sub-windows; The win-
dow size of data stream S2 is 2 2n = sub-windows with a
slide of 2 1k = sub-windows, just as shown in Fig. (6); every
pair of marched slide window consists of 1 2 6n n = sub-
windows, and the number of the tuples of each sub-windows
are determined in the light of the join and matching condi-
tions. The data structure of the join result is shown in
Fig. (7).

Fig. (6). The data structure of those sliding window which have 3 sub-windows and 2 sub-windows.

562 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Wei and Xianxia

Fig. (7). The data structure of the join result.

Here is the join algorithm of slide window:

Algorithm 4: Join of slide window (JSW)

INPUT: The storage structure of slide window in data stream
S1 and S2; the window match condition is that the wid is
equal

OUTPUT: The window queue of the join result _list R .

METHOD: While true do

Step 1: Let _s win ,the sub-window of S1 arrives, call algo-
rithm 3 to compute all the slide window that the sub-window
belongs to(..

l m
wid wid), and the array index of the sub-

window ai , in which i take a value from 0.. 1 1n .

Step 2: For each
k

wid of (..
l m

wid wid) in which ..k l m= Step
2.1: IF

k
wid is not in

2
list RETURN; / / determine whether

the matched window is already in the list.

ELSE IF (,)
k k

wid wid is not in _list R / / The matched
window is in the queue; determine whether it has already
finished joining

THEN (,)
k k

wid wid join the result queue _list R ; Initialize
the array [0..(1 2 1)]array n n

Step 2.2: Call equiv-window (
k

wid , i) / / Find all the
equivalent sub-windows _ 1ew list of (,)

k
wid ai

Step 2.3: For each i of
2
[] [0.. 1]

k
list wid array n is not null

call equiv-window (
k

wid , i) / / Find all the equivalent sub-
windows of the join object _ 2ew list

Set flag Flag = 0 / / used to flag whether the join result of
the sub-windows has been computed.

WHILE (_ 1ew list is not null) and (_ 1ew list is not null)
DO / / corresponds to the join of sub-window

BEGIN

IF _ 1 _ 2
k k

ew list wid ew list wid> THEN dequeue the
current element of _ 1ew list

ELSE IF _ 1 _ 2
k k

ew list wid ew list wid< THEN dequeue
the current element of _ 2ew list

ELSE IF (flag) THEN

[] [_ 1 _ 2] _ _
k k

list wid wid array ew list i ew list i R S W
ELSE BEGIN

Find _ _R S W , the join result of

_ 1[] []
k

ew list wid array i and _ 2[] []
k

ew list wid array i

[] [_ 1 _ 2] _ _
k k

list wid wid array ew list i ew list i R S W
/ / Set the result pointer

END IF

Flag = 1; / / Modify the flag

END WHILE

ENDFOR

END;

PROCEDURE equiv-window (
k

wid , i) / / Find all
the equivalent sub-window _ 1ew list of(

k
wid , i)

BEGIN

Step 1: Add ()
k

wid i to list _ew list / / _ew list use a
the FIFO structure

Step 2: ([] [])
k

p list wid array i q= ; / / p is the po-
inter of the sub-window(

k
wid , i)’s equivalent chain

Step 3: WHILE p nullDO

BEGIN

()p p next= ; / / p point to the adjacent no-
de

1
k

wid wid= ; / / The window-id of the slide
window which pointer p

belongs to

1i i= + ; / / The pointer index of the sub-window
that pointer p points to at the corresponding slide window

Add ()wid i to _ew list ;

END WHILE;

Step 4: Return(_ew list);

END;

Algorithm 4: The join algorithm of slide window based on
matching window-ids.

The maintaining process for join results is similar to
that for the slide window. If the two matched windows both
expires, then the join window expires too, the algorithm will
delete all the pointers in window queue and join window, as
shown in Fig. (8).

Research on Sliding Window Join Semantics and Join Algorithm The Open Cybernetics & Systemics Journal, 2015, Volume 9 563

Fig. (8). The process of the expired windows of the join result.

5. PERFORMANCE ANALYSIS

5.1. Proving the Correctness of the Algorithm

 We can see from algorithm 3 that equivalent sub-window
is essentially the same sub-window that divided into succes-
sive slide windows, thus if a sub-window exists, all its
equivalent sub-windows exists. Let (1_ , 2_)s w s w :
1_ 1s w S , 2 _ 2s w S , in which 1_s w , 2 _s w are the

sub-windows of transaction data stream S1 and S2 respec-
tively, and (1_ , 2_)s w s w satisfy the window-join condi-
tions, then 1_s w and 2 _s w must have the same window-id
wid . According to algorithm 4, these two sub-windows ei-
ther directly carry on the join calculation or point to the join
results of their equivalent sub-windows; i.e. the algorithm
can compute the join of all matched sub-windows.

 Let the result of 1_s w and 2 _s w have been computed
several times, then 1_s w and 2 _s w must belong to several
different equivalence classes of the sub-window, i.e., it’s
impossible that a sub-window can appear many times in the
data structure of slide windows, it is impossible in the data
structure of the slide windows(one hash function only have
one hash value), thus the algorithm will compute the
matched sub-window only once. Through the above analysis,
we can see that this algorithm can correctly compute the join
of slide window.

5.2. Experimental Analysis

 In this section, two basic experiments are used to illus-
trate that the algorithm can be applied to join those different

types windows and compare the computing time of those
different data structure. The experimental platforms are pen-
tium dual-core CPU@2.6GHz and C language. First, carry
on join calculation on the streams of two windows with dif-
ferent types, in which data stream S1 is defined as a physical
window with a window size of 5000 tuples and a slide of
1000 tuples, and S2 as a logic window with a window size of
5 minutes and a slide of 1 minute. To simplify the experi-
ment, the data-stream tuples are produced by loop structure,
random function and time-delay function, and all the tuples
are integer, ignoring factors like network instability.

 According to I-CDS-SW, the maintenance algorithm of
data stream, every window of S1 and S2 consists of 5 win-
dows, and has a slide of 1 sub-window; S2 produces 120
tuples per second averagely; the maintenance of the windows
of every stream is independent; there's a 10-minute time de-
lay between the two data streams. Since the join algorithm
JSW only judges on the join conditions and the window-id,
the time cost of this algorithm can be expressed as:

 The total computing time = time of maintaining data
structure + query time+ computing time + delay time

 The time of reading the disk file when there's not enough
memory is neglected here. The output result of different-type
windows is shown in Fig. (9). This figure shows that the join
output is irrelevant to window type; the output is affected by
the time delay of the two data streams and the output result
only relates to the number of sub-windows and the data in
sub-windows.

Fig. (9). The join output of those different types windows.

 Besides, the join of the data streams of two physical win-
dows contrasted the influence of the data structure of CDS-
SW on join calculation with that of I-CDS-SW.Through the
comparison result shown in Fig. (10), it uses the equivalence
relation when calculating, reduced the time for query and
computing so that the total computing time is shortened.

 The join semantics based on window-id is an extension to
the current join semantics of slide window. This experiment
proved the practicability of the join algorithm and relevant
data structure, illustrating the fact that using window-id
match of slide window is a viable way to synchronize MDS.

564 The Open Cybernetics & Systemics Journal, 2015, Volume 9 Wei and Xianxia

CDS-SW

I-CDS-SW

Fig. (10). The comparison of computing time of those two kinds of

data structures.

CONCLUSION

 The join semantic model of heterogenous data stream is
an important and a complex problem to the join calculation
of MDS, which is significant to real time processing and data
integration. In this paper we advocated a join semantic mod-
el based on the match of window-id by focusing on the dif-
ferences in time system, window-size and slide of the data
stream. And according to this model, the data structure and
respective join algorithms were provided. To reduce the re-
peated calculation of slide window, the equivalence relation
of sub-windows was used to improve the data structure of
slide window. The semantic model also solved the heteroge-
netity problem in the join calculation of MDS, but it still
cannot deal with the situation where the window-size and
window-slide are expressed by different units; the join algo-
rithm didn’t cover the possibility that the data is too big to be
stored in memory, all of which need further research.

CONFLICT OF INTEREST

 The authors confirm that this article content has no con-
flict of interest.

ACKNOWLEDGEMENTS

 This work was supported in part by Technology Research
Project of the Ministry of Public Security Grant No.
2014JSYJB048, State Key Laboratory of Software Engineer-
ing Grant No.SKLSE2012-09-37 and National Natural Sci-
ence Foundation of China Grant No.61272413. Zou Xianxia
is the corresponding author.

REFERENCES

[1] T. Urhan and M. J. Franklin. “XJoin: Getting Fast Answers From
Slow and Burst Networks,” Technical Report CS-TR-3994, UMI-

ACS-TR-99-13, Computer Science Department, University of
Maryland, 1999.

[2] A. N. Wilschut, and P. M. G. Apers, “Dataflow query execution in
a parallel main-memory environment,” In: Proceedings of the First
International Conference on Parallel and Distributed Information
Systems, PDIS, 1991, pp. 68-77.

[3] M. F. Mokbel, M. Lu, W. G. Aref, and H.M. Join, “A non-blocking
join algorithm for producing fast and early join results,” In: Pro-
ceedings of the 20th International Conference on Data Engineering,
ICDE '04, 2004, pp. 251-263.

[4] Y. Tao, M. L. Yiu, D. Papadias, M. Hadjieleftheriou, and N. Ma-
moulis, “RPJ: producing fast join results on streams through rate-
based optimization”, In: Proceedings of the 2005 ACM SIGMOD
International Conference on Management of Data, 2005, pp. 371-
382.

[5] M.A. Bornea, V. Vassalos, Y. Kotidis, and A. Deligiannakis,
“Double index nested-loop reactive join for result rate optimiza-
tion,”. In: Proceedings of the International Conference on Data
Engineering (ICDE), 2009, pp. 481-492.

[6] J.-P. Dittrich, B. Seeger, D. S. Taylor and P. Widmayer, “Progres-
sive merge join: a generic and non-blocking sort-based join algo-
rithm,” In: Proceedings of the International Conference on Very
Large Databases (VLDB), 2002, pp. 299-310.

[7] S. Chandrasekaran, and M. J. Franklin, “Streaming queries over
streaming data,” In: Proceedings of the VLDB Conference, 2002,
pp. 203-214.

[8] S. Madden, M. Shah, J. Hellerstein, and V. Raman, “Continuously
adaptive continuous queries over streams,” In: Proceedings of the
SIGMOD Conference, 2002, pp. 49-60.

[9] J. Kang, J.F. Naughton, and S.D. Viglas, “Evaluating window joins
over unbounded streams,” In: Proceedings of the ICDE Confer-
ence, 2003, pp. 341-352.

[10] L. Golab, S. Garg, and M.T. Ozsu, “On indexing sliding windows
over on_line data streams,” In: Proceeding of the 9th International
Conference on Extending Database Technology (EDBT), 2004, pp.
712-729.

[11] A. Arasu, S. Babu and J. Widom, “The CQL continuous query
language: semantic foundations and query execution,” The VLDB
Journal, vol. 2006, no. 15, pp. 121-142, 2006.

[12] S. Krishnamurthy, S. Chandrasekaran, O. Cooper, A, Deshpande,
M.J. Franklin, J.M. Hellerstein, W. Hong, S.R. Madden, F. Reiss,
and M.A. Shah, “TelegraphCQ: an architectural status report,”
IEEE Data Engineering Bulletin, vol. 26, no. 1, pp. 11-18 March
2003.

[13] T. M. Ghanem, and A. K. Elmagarmid, “Per-AKE LARSON,
Walid G. Aref. supporting views in data stream management sys-
tems,” ACM Transactins on Database Systems, vol. 35, no. 1, pp.
1-47, 2010.

[14] A. Chakraborty, and A. Singh, “A Disk-based, Adaptive Approach
to Memory-Limited Computation of Exact Results for Windowed
Stream Joins,” Department of Electrical & Computer Engineering,
Technical Report UW-ECE #2009-09, 2009.

[15] J. Xie and J. Yang. “A survey of join processing in data streams,”
Data Streams, vol. 31, pp. 209-236, 2007.

[16] L. P. Danh, J. X. Parreira, and H. Manfre, “Linked stream data
processing,” In: Proceedings of the 3rd International Conference on
Web Intelligence, Mining and Semantics, vol. 31, 2012, pp. 245-
289.

[17] A. Das, J. Gehrke, and M. Reidewald, “Approximate join pro-
cessing over data streams,” In: Proceedings of the 2003 ACM
SIGMOD International Conference on Management of Data, 2003,
pp. 40-51.

[18] T. Jens, and R. Mueller, “How soccer players would do stream
joins,” In: Proceedings of the 2011 ACM SIGMOD International
Conference on Management of Data, 2011, pp. 625-636.

Received: September 16, 2014 Revised: December 23, 2014 Accepted: December 31, 2014

© Wei and Xianxia; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/-

licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

