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Abstract: In view of the problem that there is only one typical Bell basis for QT (Quantum Teleportation), three new 

GBBs (Generalized Bell Bases) are obtained by transforming unitarily the Hadamard gates with the methods of Pauli 

gates in the quantum circuit of the traditional Bell basis, and four Bell bases have an identical general formula. Three 

controlled-QT schemes are proposed based on these GBBs. The changed processes of quantum entangled states during 

QT in these schemes are derived by using the similar method of the traditional Bell basis. The result analyses of quantum 

state collapses of controlled-QT show that more two-qubit quantum entanglement resources of Bell states can be 

available. These schemes can be considered as the beneficial supplements for current QT work with GBS (Generalized 

Bell State).  
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1. INTRODUCTION 

 Quantum teleportation (QT) is an important component 

of quantum information science as a novel quantum 

communication approach. It was originally presented by 

Bennett et al. [1] in 1993. Later, Bouwmeester et al. 

implemented the first QT experiment in 1997 [2], which 

attracted much attention from diverse countries. With this 

technique developing [3-7], QT has been widely applied in 

such fields as quantum key distribution [8, 9], quantum 

repeater communication [9, 10], quantum communication 

network [9, 11], etc, which make it occupy a significant 

position in QIP (quantum information processing). Since QT 

is closely related to Bell states, many researchers have 

generalized the traditional EPR (Einstein-Podorrsky-Rosen) 

States (i.e. Bell states) to investigate QT in deep, and have 

gained a lot of achievements which can be divided into the 

continuous-variable QT and discrete-variable QT. For the 

former, Hu et al. [12] put forward the QT schemes with the 

generalized EPR States based on Vaidman’s work [13]. The 

fidelity of EPR States relies on the squeezing degrees of 

entanglement and the reflection coefficient of the beam 

splitter, and there is much work to do to realize the schemes 

for the instrument and environment reasons. In fact, most 

researchers dealt with the latter. For instance, Bennett et al. 

[1] extended the singlet state to N-state with a general 

explicit expression. Hence, the limits of two qubits for Bell 

states were broken through. The original general formulae of 

the multi-qubit GBS (Generalized Bell State) have been 

provided, which have promoted greatly the developments of 

GBS-QT [14-17]. In 2005, Rigolin [18] introduced 16 

 

maximally entangled GBS (G states), and then Cao et al. 

[19] defined 16 non-maximally entanglement GBS (also 

called G states) based on Rigolin’s work [18] in 2010. By 

applying these G states, they expanded the traditional Bell 

states from two qubits to four qubits to teleport perfectly 

unknown two-qubit quantum state. The methods of unilateral 

coefficients were employed to change the Bell states to 

generalize the protocols of teleportation [20-23]. Similarly, 

the approaches of double coefficients were adopted to 

generalize the Bell states for quantum teleportation [14, 24]. 

In 2012, Tanaka et al. [25] utilized the method of Latin 

square to construct a new kind of GBSs, and they obtained 

two-level and m-level perfect teleportation schemes. These 

GBSs contain Bennett’s generalizations [1], yet Tanaka’s 

teleportation schemes have the condition of nonmaximal 

entangled state.  

 These QT schemes with GBS above enrich significantly 

the theoretical researches of quantum communication, and 

the unknown quantum states of two or more qubits can be 

teleported, which provides many valuable approaches for the 

QIP applications. 

However, most of current work has mainly focused on the 

GBS-QT schemes from two qubits to multi-qubits. The 

dimensions of Hilbert spaces have been expanded higher and 

higher. A new problem has occurred that the traditional Bell 

basis is single, and how to generalize this basis to teleport 

with EPR pairs only in four-dimensional space is needed to 

research. Unfortunately, whether there are other similar Bell 

bases in four-dimensional Hilbert space or not is still 

unclear. Moreover, these QT schemes lack the quantum 

circuits to generate GBS, which also brings some difficulties 

for the implementation of QT experiments. 
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In this paper, motivated by the GBSs-QT schemes [14-

25], three novel Hadamard gates are introduced using Pauli 

gates to derive theoretically three new generalized Bell bases 

(GBBs) from the quantum circuits of the typical Bell basis, 

and three controlled QT schemes with GBBs are proposed as 

the beneficial supplements for current GBS-QT work. 

2. QT SCHEMES USING GBBS 

To describe more I/O (Input/Output) rules of Bell bases, 

four Bell states (
+

Ö , Ø
+

, Ö , Ø ) of the 

traditional Bell basis [1] are described again as 
i

 

( 00,01,10,11i = ) respectively: 

+

00 ( 00 11 ) / 2Ö= =  +                               (1) 

01 ( 01 10 ) / 2Ø
+

= = +                                             (2) 

10 ( 00 11 ) / 2Ö= =                                             (3) 

11 ( 01 10 ) / 2Ø= =                                           (4) 

The quantum circuit of the traditional Bell basis is shown 

as Fig. (1), and there exist a CNOT (Controlled-NOT) gate 

as Eq. (5) and a Hadamard gate as Eq. (6). 

 

CNOT

|0> or |1>

|0> or |1>

| i>

H

 
 

Fig. (1). Quantum circuit of the traditional Bell basis. 

 

NOT

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

=C
                                                        (5) 

1 1 1

1 12
=H                                                                   (6) 

2.1. Generalizations of the traditional Bell basis 

To measure quantum entangled states with more Bell 

bases in teleportation schemes, the Hadamard gate in Fig. (1) 

is transformed unitarily with three Pauli gates as X (i. e. 

x
), jY (i. e. j

y
), Z (i. e. 

z
) [26]: 

1

1 11
j

1 12
= =H YH

                                                      (7) 

2

1 11

1 12
= =H XH                                                       (8) 

3

1 11

1 12
= =H ZH                                                       (9) 

where j 1= . 

†

l l
H H  ( 1,2,3l = ) is an identity gate (I). †  is the 

conjugate transpose. So, Hl can be considered as the 

generalizations of Hadamard gate for the similar forms and 

functions, and H1, H2 and H3 are called as the first, the 

second and the third Hadamard gates separately, while Eq. 

(6) is named as the fourth Hadamard gate (H4). These new 

Hadamard gates are a little different from that of Ref. [17]. 

Now, the new Bell bases can be deduced with Hl instead 

of H in Fig. (1). If 1l = , then the outputs 
i

 with 
NOT
C  

and the inputs of 0  (or 1 ) are 

00 ( 00 11 ) / 2=-+                                                (10) 

01 ( 01 10 ) / 2=-+                                                 (11) 

10 ( 00 11 ) / 2=+                                                 (12) 

11 ( 01 10 ) / 2=+                                                 (13) 

From the Eqs. (10-13), the following formula of quantum 

entangled states holds. 

1,

0,
m n

m n

m n

 =
=  

 

                                                       (14) 

where  represents the inner product of quantum states. 

, 00,01,10,11m n = . 

Therefore, Eqs. (10-13) are orthogonal and normalized as 

well as Eqs. (1-4). These four maximally entangled states 

compose a new orthonormal basis which is generalized from 

the quantum circuit of the traditional Bell basis in Fig. (1). 

Here, Eqs. (10-13) are called as the first generalized Bell 

basis (B1), while the traditional Bell basis are referred to as 

the fourth Bell basis (B4) by Eq. (6). 

Similarly, if H2 is substituted for H using the approach of 

B1, then four maximally entangled states can also be attained 

to form an orthonormal basis with the similar expression of 

B4, and it is named as the second generalized Bell basis (B2). 

The Bell states of B2 with the same inputs as B4 are 

00 ( 00 11 ) / 2  =+                                                    (15) 

01 ( 01 10 ) / 2=+                                                     (16) 

10 ( 00 11 ) / 2=-+                                                  (17) 

11 ( 01 10 ) / 2=-+                                                 (18) 

When H3 is connected instead of H in Fig. 1, an 

orthonormal basis can be achieved from B4 as well as B1 and 

B2, and it is designated as the third generalized Bell basis 

(B3) with four Bell states: 

00 ( 00 11 ) / 2=-                                                   (19) 

01 ( 01 10 ) / 2=-                                                 (20) 
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10 ( 00 11 ) / 2=+                                                   (21) 

11 ( 01 10 ) / 2=+                                                    (22) 

2.2. Equivalent Relationship of Unitary Transform 
Among Four Bell Bases 

According to quantum mechanics, the quantum collapse 

results of quantum states are different if different bases are 

chosen to measure quantum entanglement states. Therefore, 

it is necessary to find the transformation relations among 

four Bell bases with sixteen Bell states. Generally, the Bell 

states of four Bell bases can be represented as: 

{ }| 00,01,10,11k

k i
i= =

B
B                                            (23) 

where 1,2,3,4k = . k

i

B  is a Bell state of 
k
B . 

The quantum gates to transform between 
s
B  and 

t
B  are 

denoted as 
st
B  and 

ts
B , where { }, 1,2,3,4s t . The linear 

relationships for these quantum gates to transform unitarily 

any Bell states between two Bell bases 
s
B  and 

t
B  satisfy 

the following equations: 

s t

i st i
=

B B
B                                                                 (24) 

t s

i ts i
=

B B
B                                                                (25) 

where 00,01,10,11i = . 

By linear transformations, 
st
B  and 

ts
B  are given by 

12 21

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

= =B B                                                (26) 

 
13 31 24 42

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

= = = =B B B B
                                 (27) 

14 41 23 32

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

= = = =B B B B
                         (28) 

34 43 12 21
= = =B B B B                                                   (29) 

11 22 33 44
= = = =B B B B I                                                   (30) 

Denote { }, | , 1,2,3,4
s t

B s t= =B B  as a set, where 

,
s t
B B  is the ordered couple relationship via the unitary 

transform of 
st
B  from 

s
B  to 

t
B . For Eqs. (26-30), 

{ }, , 1,2,3,4r s t , †*
st st

=B B I ;
ss
BB ; if 

st
BB , then 

ts
BB ; if 

rs
BB  and 

st
BB , then 

rt
BB .  

On the basis of set theory, four Bell bases satisfy the rule 

of equivalent relations including self-return, symmetry and 

transitivity via mutual unitary transforms. Moreover, any of 

Bell bases can be transformed unitarily for quantum states 

evolutions. 

2.3. Three Controlled QT Schemes via GBBs 

To test whether the generalized Bell bases can be used in 

QIP fields or not, three controlled teleportation schemes with 

these GBBs are constructed to demonstrate their functions as 

Fig. (2). 

 

|
u
>

|
A
>

Alice Bob

|
B
>

Hi

Hi

| '
u
>

X/Z/
(-j)Y

Pauli 
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Quantum 
channel

Typical channel
(Feedback)

Input

Output

X/Z/
(-j)Y

controller: X/Z/(-j)Ycontrolled object: QT systems

controlled 
QT systems

i=1,2,3,4

 

 

Fig. (2). Controlled systems of QT schemes using GBBs. 

 

Firstly, 
1
B  is taken as an example to teleport an unknown 

state 
1

 (
1 1 1

0 1a b= + ) from Alice (the sender) 

to Bob (the receiver) [1]. a and b are complex. 
2 2| | | | 1a b+ = . The particles 2 (

2
) and 3 (

3
) from 

an EPR pairs ( 1

11
23

B
) are shared by Alice and Bob. Using 

Bennett’s method [1] in the first GBB-QT scheme, 
1

 can 

be recovered and controlled by Bob via the typical channel 

with the feedback information of Bell bases from Alice: 

1

123 312
00,01,10,11

i i

i

c

=

=
B                                           (31) 

Where 
123

 is the tensor product of 
1

and 1

11
23

B
. 

3i
c  can be solved respectively by the controllable Bell 

bases  in Fig. (2) as follows: 

00 33

1
j

2
c =  Y                                                              (32) 

01 33

1
( )
2

c = Z                                                              (33) 

10 33

1

2
c = X                                                               (34) 

11 33

1

2
c =  I                                                              (35) 

where 
3

 (i. e. 
3 3
0 1a b+ ) is a replica [1] of 

1
. 

Similarly, the mathematical operations show that if 1

00
23

B , 
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1

01
23

B
 or 1

10
23

B
 is a substitute for 1

11
23

B
, then 

1
 

can also be teleported. 

Secondly, it is proved by the detailed derivations that if 

2
B  and 

3
B  displaces 

1
B  as the other two GBB-QT 

schemes, then Alice can teleport unknown quantum states to 

Bob as well as using 
1
B . Altogether, under the controls of 

the gates X, Z and (-j) Y in Fig. (2), three GBBs can be 

utilized in controlled-QT as well as the traditional Bell basis 

in spite of lacking tests of Bell's inequalities violation. 

3. RESULTS 

By Controlling 
1
B , 

2
B  and 

3
B  in Fig. (2) separately, 

the results of inverse unitary transform for Bob to restore 

unknown quantum states via controlled-QT are shown from 

Tables 1-3. 

 

Table 1. Bob's unitary transforms via the first Bell basis. 

 
00 3
c  

01 3
c  

10 3
c  

11 3
c  

00
 I  -X  -Z  jY  

01
 X  -I  -jY  Z  

10
 -Z  -jY  I  X  

11
 -jY  -Z  X  I  

 

Table 2. Bob's unitary transforms via the second Bell basis.. 

 
00 3
c  

01 3
c  

10 3
c  

11 3
c  

00
 I  X  -Z  -jY  

01
 X  I  -jY  -Z  

10
 -Z  jY  I  -X  

11
 -jY  Z  X  -I  

 

From Tables 1-4, no matter which Bell state is 

corresponding to the initial EPR pairs of Alice and Bob, 

unknown quantum states can be teleported and duplicated 

via inverse unitary transforms.  

Through the selection of one or four Bell bases, the 

comparison results of the controlled QT-schemes via GBBs 

and the QT scheme using the typical Bell basis are shown as 

Table 5. 

 

Table 3. Bob's unitary transforms via the third Bell basis. 

 
00 3
c  

01 3
c  

10 3
c  

11 3
c  

00
 I  -X  Z  -jY  

01
 X  -I  jY  -Z  

10
 Z  jY  I  X  

11
 jY  Z  X  I  

 

For comparisons, the quantum gates for Bob to restore 

unknown quantum states via QT with the traditional Bell 

basis [1] are collected in Table 4. 

 

Table 4. Bob's unitary transforms via the fourth Bell basis. 

 
00 3
c  

01 3
c  

10 3
c  

11 3
c  

00
 I  X  Z  jY  

01
 X  I  jY  Z  

10
 Z  -jY  I  -X  

11
 jY  -Z  X  -I  

 

 

Table 5. Comparison results of QT schemes using GBBs and 

the typical Bell basis. 

 QT via the typical Bell basis 
Controlled-QT via  

four GBBs 

1 One Hadamard gate Four Hadamard gates 

2 Single Bell bases Four Bell bases 

3 Limited measure basis More measure bases 

4 Limited Bell states Abundant Bell states 

5 Poor quantum information Much quantum information 

6 
Less quantum entanglement 

resource 

More quantum entanglement 

resource 

7 
Only one kind of quantum 

channel for QT 

Four kind of quantum channels 

for QT 

8 
Fixed quantum circuit of Bell 

basis 

Controllable quantum circuits 

of Bell bases 

9 Sixteen QT schemes Sixty-four QT schemes 
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4. DISCUSSION 

Interestingly, Tables (1-4) are exceedingly similar with 

some laws, which illustrates that the QT schemes using these 

generalized forms of the traditional Bell basis [1] are of 

some reasonableness. One reasons is that B1 is equivalent to 

B3, while B2 is equivalent to B4 in the light of the 

superposition theorem of quantum state, and four Bell 

bases are of identical general expressions. The other reason 

is that the relations of unitary transformation among four 

Bell bases are equivalent, and these mutual equivalent 

relations result in the similar results of four quantum 

teleportation schemes. 

Table 5 shows these controlled-QT schemes of GBBs 

have some advantages. Differently from the QT systems [1, 

2], more quantum information of Bell state with the same 

general expression in Eq. (23) can be obtained than before 

via more Bell bases used in our QT schemes. The reason is 

that different outputs of Bell states with the same inputs are 

obtained by the unitary transforms of Pauli gates in Fig. (1). 

Two different groups of Bell bases result in the difference 

shown in Tables (1-4), where every item in one row of the 

initial Bell state is corresponding to a potential collapsed 

result of quantum entangled state for Bob during controlled  

GBB-QT. Using the controlled Pauli gates in Fig. (2), the 

collapsing results of quantum states vary with their different 

initial Bell states, and the changed quantum information of 

these results can be collected and utilized as new advantages 

of quantum resources in Tables 5. 

5. CONCLUSION 

By transforming unitarily the Hadamard gate with Pauli 

gates in the quantum circuit of the typical Bell basis, three 

new GBBs have been obtained, and the proposition that there 

are other similar Bell bases in four-dimensional Hilbert 

space is true. Four Bell bases have an identical general 

expression. Utilizing these GBBs, unknown quantum states 

can be teleported as well as using the traditional Bell basis. 

The controlled-QT schemes with GBBs have the advantages 

of simple unitary transforms and easy implementations by 

increasing three Pauli gates, which is the beneficial 

supplements of current GBS-QT work. From the GBB-QT 

processes, there exist some new available quantum entangled 

resources by the collapsed results of more Bell states, which 

can be used in such QIP fields as quantum key distribution, 

quantum entanglement swapping, quantum communication 

network, quantum repeater, etc. Also, the phase information 

of Bell bases needs to be exploited for QIP. 
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