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Abstract: In this article, we present a sparse vector learning algorithm for ontology similarity measure and ontology 

mapping by virtue of accelerated first-order technology. The main procedure of our iterative algorithm is relying on prox-

imity operator computation, Picard-Opial process and accelerated first-order tricks. The simulation experimental results 

show that the new proposed algorithm has high efficiency and accuracy in ontology similarity measure and ontology 

mapping in plant science and university application. 
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1. INTRODUCTION  

Ontology, a knowledge representation and conceptual 
shared model, has proved itself to be useful in image re-
trieval, knowledge management and information retrieval 
search extension. What’s more, as an effective concept se-
mantic model, ontology also finds its place in the other dis-
ciplines like social science, medical science, biology science, 
pharmacology science and geography science (for instance, 
see Przydzial et al., [1], Koehler et al., [2], Ivanovic and 
Budimac [3], Hristoskova et al., [4], and Kabir et al., [5]). 

Actually, the ontology model is a graph G=(V,E), each 
vertex v in an ontology graph G stands for a concept and 
each edge e=vivj of an ontology graph G stands for a rela-
tionship between concepts vi and vj. Ontology similarity-
based technologies were employed in a variety of applica-
tions several years ago. On the condition of technology for 
stable semantic measurement, a graph derivation representa-
tion which is based on trick for stable semantic measurement 
is proposed by Ma et al., [6]. Later, Li et al., [7] contributed 
to pointing out an ontology representation method which can 
be used for online shopping customers knowledge in enter-
prise information. Santodomingo et al., [8] explained a crea-
tive ontology matching system. In his view, the complex 
correspondences are presented by processing expert knowl-
edge from external domain ontologies and in terms of using 
novel matching tricks. Pizzuti et al., [9] gave a detailed de-
scription about the main features of the food ontology and 
some examples of application for traceability purposes. Lasi-
erra et al., [10] proposed that ontologies are very useful in 
designing an architecture for looking after patients at home. 

Concerning ontology similarity measure and ontology 
mapping, several effective learning tricks work well. Wang 
et al., [11] tended to learn a score function to map each 
 

vertex to a real number. Then, according to the difference of 
the real number which the two vertices correspond to, we can 
measure the similarity between them. Huang et al., [12] 
worked out a fast ontology algorithm to calculate the ontol-
ogy similarity within a short time. Gao and Liang [13] re-
ported that the optimal ontology function can be determined 
by optimizing NDCG measure. And they also took the idea 
to physics education. Gao and Gao [14] deduced the ontol-
ogy function through the regression approach. Moreover, 
based on half transductive learning, Huang et al., [15] ob-
tained ontology similarity function. Gao et al., [16] raised 
new ontology mapping algorithm by means of harmonic 
analysis and diffusion regularization on hypergraph. Gao and 
Shi [17] proposed new ontology similarity computation 
technology. As a result, the new calculation model consider-
ing operational cost in the real implement. Few years ago, 
Gao and Xu [18] presented the ontology similarity measur-
ing and ontology mapping algorithms on basis of minimum 
error entropy criterion. Several theoretical analysis of ontol-
ogy algorithm can refer to Gao et al., [19], Gao and Xu [20], 
Gao and Zhu [21] and Gao et al., [22]. 

In this paper, we present the accelerated first-order based 
ontology algorithm for ontology similarity computation and 
ontology mapping. By means of the sparse vector, the ontol-
ogy graph is mapped into a real line and vertices are mapped 
into real numbers. Then the similarity between vertices is 
measured by the difference between their corresponding real 
numbers. The rest of the paper is arranged as follows: we 
present the notations and setting in Section 2; the ontology 
optimization algorithm and iterative strategies are raised in 
Section 3; at last, the experiments on plant ontology and uni-
versity ontology are designed to show the efficiency of the 
algorithm. 

2. SETTING 

Let V be a instance space. For each vertex in ontology 

graph, a p dimension vector expresses information including 
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its name, instance, attribute and structure, and semantic in-

formation of the concept which corresponds to the vertex 

and that is contained in name and attributes components of 

its vector. Let v= 1{ , , }
p

v v  be a vector that corresponds to 

a vertex v. To promote the representation, we try confusing 

the notations and using v to denote both the ontology vertex 

and its corresponding vector. The ontology learning algo-

rithms are set to get an optimal ontology (score) function f: 

V , and the similarity between two vertices is judged by 

the difference between two corresponding real numbers. The 

core of this algorithm is dimensionality reduction, i.e., 

choosing one dimension vector to express p dimension vec-

tor. In specific, an ontology function f is a dimensionality 

reduction function f: . 

In the practice implement, one sparse ontology function 
is expressed by 

f (v) =

  

v
i i

i=1

p

+              (1) 

Here  =
   
(

1
, ,

p
)  is a sparse vector and  is a noise 

term. The sparse vector  is to shrink irrelevant component 

to zero. To determine the ontology function f, we should 

learn the sparse vector  first. 

In our paper, we consider the general versions for learn-

ing . Let 1{ , }n
i i i
v y

=
 be a sample set with n vertex, V 

° 
n p

 be the matrix of n samples such that each sample 

vertex lies in a p dimension space, and y=
   
( y

1
, , y

n
)  ° 

 
n

 be the vector of outputs of the these n sample vertex. 

Hence, the regression function (1) can be expressed as the 

linear model: 

y = 
 
V +                (2) 

where  is the n dimension vector for noise distributed as 

N (0, 2
I
n n
) . 

The general regression obtains an estimate of the sparse 
vector by solving the following optimization problem: 

  
min

°
p
l( )+

1

             (3) 

where l( ) =

  

1

2
y V

2

2

 is the loss term, 
 1

=
1

p

ii=
 is 

the 
1
l -norm balance term that measures the sparseness of 

vector , and >0 is the balance parameter which controls 

the sparsity level.  

In what follows, let â = 1( ) p
i i=

° 
p

 be the vector. 

For each q 1, the ql -norm of sparse vector  is denoted by 

q
 =

  
(

ii=1

p
q

)

1

q
. Let 

C
:  be the indicator 

function of the set C ° 
p

such that ( )
C
x = 0 if x  C 

and ( )
C
x =+  otherwise. Furthermore, let ( )x be the 

sub-differential of  at x  °
p

 where :  is a 

convex function. 

3. MAIN ONTOLOGY ALGORITHM AND SOLUTION 
TECHNOLOGIES 

3.1. Optimization Framework 

Let >0 be a parameter,  be a prescribed convex sub-

set, and  be a function given by 

( , ) =

2

1

1
( )

2

p

i

i

i i=

+ . Then, our ontology optimiza-

tion model can be expressed as 

inf{
1

2
V y

2

2

+ ( , ) : °
p , }      (4) 

Here,  is an auxiliary vector. Above framework can be 
further formulated by 

  
min{

1

2
V y

2

2

+ ( ) : °
p}        (5) 

where the balance term takes the form 

 
( ) =

 
inf{ ( , ) : } . 

Since is jointly convex, the framework (5) is still con-

vex. Moreover, the balance function  is independent of the 

signs of the elements of ontology sparse vector . 

Now, we introduce proximity operator for optimizing our 

ontology model. Let  be a real-valued convex function on 

 
d

. For each t  
d

, the proximity operator of  is de-

noted by 
  
prox (t)  =

  
arg min{

1

2
z t

2

2

+ (z) : z     d } . 

This operator is well-defined since the above minimum 
exists and unique. 

3.2. Selection of Generic Convex Set  

Now, we focus on the generic convex set . For each 

 
 +
p

, the quadratic function ( , )  supplies an upper 

bound to the 
1
l -norm in view of 

 ( )
 1

, and the 

equality is hold if and only if  according to the 

arithmetic-geometric inequality.  

For each solution 
 ( , ˆ) , the sparsity pattern of  is in-

cluded in the sparsity pattern of ˆ , i.e., the indices associ-

ated with nonzero components of  are a subset of those of 

ˆ . If ˆ = 0, then  =0 also holds in view of the ratio 
2

i

i

. 
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Thus, if the set  supports some sparse solutions of ˆ , then 

the same sparsity pattern will be manifested on . Further-

more, the sparse vectors  is supported by 
ii

. For in-

stance, a restriction of the form 
1 2

…・
n

 sup-

ports consecutive zeros at the last elements of  and non-

zeros in other positions. As a result, it lead to zeros at the last 

elements of . In this point of view, in many situations like 

this, it is not hard to combine a convex constraint on , but 

it may not be available to do the same directly on . 

In our paper, the sets  we considered have the expres-
sion as follows: 

=
   
{      

++

p : A = S}  

where A is a k p  matrix and S is a convex set. Two main 

selections of interest are when S is the unit ball of a norm or 

a convex cone. We refer to the corresponding set  as norm 

constraint set or conic constraint, respectively. Two specific 

examples are considered to respect the sparsity patterns with 

each selection. 

For conic constraint sets, we select S =   
 +
k

, and thus 

={      
+

p: A 0} . For the norm constraint sets, we 

select S as the 
1
l -unit ball and  is the edge map of an on-

tology graph G with edge set E, i.e., = 

  

{      
+

p:
i j

(v
i
,v

j
) E

1} . Furthermore, if G is a one 

dimension grid ontology graph, then it can be expressed as 

=

  

{     
+

p:
i j

i=1

p 1

1} . 

3.3. Calculating the Proximity Operator 

In this subsection, we give the strategies to solve problem 

(4) using the accelerated first-order technologies. This tricks 

depend on the proximity operator computation restricted to 

 
p

.  

By virtue of its definition, the proximal operator of  at 

 
( ,μ)       

P
    

P
 is the solution of the following ontol-

ogy problem 

inf{
1

2
( , ) ( ,μ)

2

2

+   

  
( , ) :      p , }            (6) 

For given , a calculating gets that the objective func-

tion in (6) reaches its minimum at 

i
( ) = i i

i
+

. 

In terms of this fact, we infer the modified ontology 
problem 

min{
1

2
μ

2

2

+
2

( i

2

i
+

+
i
)

i=1

p

: }       (7) 

We consider how to solve (7) in our general setting 

=
   
{ :      

+

p: A S} . Suppose that the projection on 

the set S can be smoothly determined. For this purpose, let 

 

B =
I

A

 be the 
  
( p + k) p  matrix and the function 

  
(s, t) =

1
(s)+

2
(t) , where ( , )s t       

p
    

k
, 

2 ( )t = ( )
S
t  and 

1
(s) =

  
2

( i

2

s
i
+

+ s
i
+

 
++

(s
i
))

i=1

p

. 

One fact we emphasize here that the solution of problem 

(7) is the same as the proximity function of the linearly com-

posite map 
  

B  at μ , which gets the solution of the prob-

lem 

   
min{

1

2
μ

2

+ (B ) :      p} . 

3.4. Algorithm Presentation 

Let ( )l â  =
2

2

1

2
y Vâ and suppose that an upper bound 

L of T
V V  is obtained. The basic idea of proximal first-

order methods is to replace l with its linear approximation 

around a point 
t
w  specific to iteration t. This leads to the 

computation of a proximity operator, and specifically 

t
u =

  
(

t
,

t
)  argmin{

L

2
( , ) (w

t

1

L
l(w

t
))

2

2

  

  
+ ( , ) :      p , } . And then, the point 

t
w is 

updated rely on the current and previous estimates of the 

solution
t
u , 

1t
u , . . . and the process repeats. Our main al-

gorithm for ontology sparse vector computing is sated as 

follows: 

Ontology Sparse Vector Learning Algorithm: 

1
u , 

1
w  any feasible values 

for t=1,2,. . . do 

Calculate a fixed point 
( )ˆ tv  of 

 
H

t
  

1t
u

+ t
w

  

1

L
l(w

t
)

c

L
B

T
v̂

(t )
  

1t
w

+
 
  t+1

u
t+1

(
t+1

1)u
t
 

end for 
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Specifically, let 
 t

 be the parameter defined by 
 t

=1 and 

1
t+1

t+1

2
=

  

1

t

2
, then the optimal update is w

t+1
u
t+1

 + 

  
t+1

(
1

t

1)(u
t+1

u
t
) . 

By computing the proximity operator of 
  L

B , we re-

phrased the algorithm using the sequence 
 t

 

=
  
1

t
+ 1

t
 =

  

1
t
+

t

t 1

. For each iteration, using 

Picard-Opial process, 
 
H

t
 is denoted as  

H
t
(x) = (I prox

c

)((I
c

L
BB

T )v  

  

1

L
B( l(w

t
) Lw

t
)) . 

Also, at stage s of the proximity calculating is 

  
v

s+1
=

  
kv

s
+ (1 )H

t
(v

s
) . Furthermore, the fixed point proc-

ess associated with the assignment of u are equivalent to 

  
u

t+1
 

   

prox

L
B

(w
t

1

L
l(w

t
)) . Let T be the total times of 

iteration. Then the computation complexity of above algo-

rithm is 
  
O(

1

T
2
) . 

4. SIMULATION STUDIES 

In this section, we designed two simulation experiments 

which are related to ontology similarity measure and ontol-

ogy mapping, respectively. Note that after getting the sparse 

vector , the ontology function then is derived by 

  
f (v) = v

i i

i=1

p

 such that the noise term  is ignored. 

4.1. Experiment on Plant Data 

In this subsection, we use “PO” ontology O1, constructed 
in http: //www.plantontology.org. (Fig. 1 shows the basic 
structure of O1), to check the efficiency of our new algorithm 
in ontology similarity measuring. Similarly, the P@N stan-
dard [23] is used for this experiment. Moreover, the ontology 
methods in Wang et al., [11], Huang et al., [12] and Gao and 
Liang [13] are employed to the “PO” ontology. We calculate 
the accuracy by the three algorithms, and at last compare the 
results with the new algorithm. Part of the data can be re-
ferred to Table 1. 

While N= 3, 5, or 10, the precision ratio which we get 
from our algorithm is higher than that determined by algo-
rithms proposed in Wang et al., [11], Huang et al., [12] and 
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Fig. (1). “PO” ontology O1. 

Table 1. The experiment data for ontology similairty measure. 

 P@3 Average Precision Ratio P@5 Average Precision Ratio P@10 Average Precision Ratio 

Our Algorithm 49.04% 57.85% 71.01% 

Algorithm in [11] 45.49% 51.17% 58.59% 

Algorithm in [12] 42.82% 48.49% 56.32% 

Algorithm in [13] 48.31% 56.35% 68.71% 
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Gao and Liang [13]. In particular, such precision ratios are 
increasing clearly as N increases. Thus, our algorithm is su-
perior to the method presented by Wang et al., [11], Huang 
et al., [12] and Gao and Liang [13].  

4.2. Experiment on University Data 

“University” ontologies O2 and O3, whose structures are 
presented in Figs. (2 and 3) separately, are used for our last 

experiment. This experiment tends to determine ontology 
mapping between O2 and O3 by means of our ontology algo-
rithm. P@N criterion is used to measure the equality of the 
experiment as well. Ontology algorithms in Wang et al., 
[11], Huang et al., [12] and Gao and Liang [13] are chosen 
to be applied to university ontologies as comparisons with 
the results obtained by our algorithm. In the end, through the 
comparisons of the precision ratio obtained by our algorithm 

 
Fig. (2). “University” Ontology O2. 

 
Fig. (3). “University” Ontology O3.  

Table 2. The experiment data for ontology mapping. 

 P@1 Average Precision Ratio P@3 Average Precision Ratio P@5 Average Precision Ratio 

Our Algorithm 57.14% 71.43% 84.29% 

Algorithm in [11] 50.00% 59.52% 68.57% 

Algorithm in [12] 42.86% 52.38% 60.71% 

Algorithm in [13] 57.14% 64.29% 65.00% 
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and the four methods, we get several experiment results 
which can be referred to Table 2.  

The experiment results in Table 2 show that, our algo-
rithm turns out to be more efficient than algorithms proposed 
in Wang et al., [11], Huang et al., [12] and Gao and Liang 
[13] especially in the situation where N is sufficiently large. 

CONCLUSION 

In this paper, the new ontology framework and its opti-
mal technologies are presented for ontology sparse vector 
computation. The new iterative computation algorithm is 
based on proximity operator computation, Picard-Opial 
process and accelerated first-order tricks. At last, simulation 
data shows that our new algorithm has high efficiency in 
plant science and university ontologies. The ontology sparse 
algorithm raised in our paper illustrates the promising appli-
cation prospects for multiple disciplines. 
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