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Abstract: The data analysis problem of step-stress accelerated life testing with exponential distribution is discussed. At 

the step-stress accelerated life testing conditions, an approximate E-Bayesian parameter estimation of step-stress acceler-

ated life testing with exponential distribution is given by considering the prior distributions of the hyperparameters and us-

ing Gibbs sampling method. Finally, a simulation example is given, the results show that the Gibbs sampling method is 

simple and the convergence is better. E-Bayesian parameter estimation is more effective than the maximum likelihood es-

timation. 
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1. INTRODUCTION 

With the development of technology and the improve-
ment of the products quality, high reliability and long-life 
products are available everywhere. However, at normal 
working conditions, the implementation of life testing can 
not meet the requirements of reliability evaluation. Acceler-
ated life testing is a life testing method that is used to shorten 
the life testing cycle by increasing the stresses. Accelerated 
life testing method can be used to assess the reliability of the 
products in a relatively short period of time and to identify 
the reasons for product failure. Accelerated life testing data 
analysis and parameter estimations are theoretical and practi-
cal application value. 

Step-stress accelerated life testing (briefly step-stress life 
testing) is an important life testing of accelerated life testing. 
In recent years, using the given statistical model of step-
stress life testing with exponential distribution, the paper [1] 
gave the statistical analysis method for type censoring life 
testing samples; the paper [2] gave the necessary and suffi-
cient condition for the existence and uniqueness of the MLE 
of the step-stress life testing in type  and  censoring cases 
and got the approximate confidence interval of the mean life 
at the normal stress level on that basis; in type  censoring 
case, the paper [3] got the Bayesian parameter estimation 
with constraints of step-stress life testing under the exponen-
tial distribution; the paper [4] gave an approximate Bayesian 
parameter estimation for step-stress life testing under the 
exponential distribution; the paper [5] gave a hierarchical 
Bayesian parameter estimation for step-stress life testing 
under the exponential distribution.  

Although in type  censoring case, the Bayesian parame-
ter estimation for step-stress life testing with exponential  
 

distribution was given in the papers [3-5], on the one hand 
there is no a good consideration on the parameters in the 
prior distributions; on the other hand the calculation of the 
posterior marginal distribution function involves complex 
integral calculations. Based on the above considerations, the 
E-Bayesian method is given for parameter estimation of 
step-stress life testing with exponential distribution in this 
paper. Prior distributions of the hyperparameters in the prior 
distribution are also given, thus the joint posterior density 
function is got. For the calculation of the parameter estima-
tion in the joint posterior density function, Gibbs sampling is 
used for the iteration of parameters to be estimated. Finally, 
a simulation example is given to analog comparator the E-
Bayesian estimation and the maximum likelihood estimation, 
the results show that the E-Bayesian estimation is more ef-
fective than the maximum likelihood estimation. 

This paper is organized as follows: In Section 2, the basic 
assumptions for step-stress life testing are stated. E-Bayesian 
estimations of step-stress life testing parameters are stated in 
Section 3. The estimation of the reliability indexes with ex-
ponential distribution in Section 4. An example is given to 
illustrate the proposed procedure in Section 5. The conclu-
sion of this study is given in Section 6. 

2. THE BASIC ASSUMPTIONS OF STEP-STRESS 

LIFE TESTING 

Determine the normal stress level S0 and the accelerated 
stress levels S1 , S2 ,…,Sk, the stress levels meet S0<S1<S2 < 
…<Sk, n samples are taken from a number of products for 
step-stress life testing. 

At the stress level Si, the working time of the failure 

products are 0 ti1 ti2 …
 

i
ir

t
i. In the case of type  censor-

ing, i is the pre-given time for stopping the tests at the stress 

level Si, ri is the number of failure products before the time i 

at the stress level Si; in the case of type  censoring, ri is the 

pre-given number of samples for stopping the tests. 
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Assumption 1. At the normal stress level S0 and the ac-

celerated stress levels S1<S2 < …<Sk, the life distribution of a 

test unit all obey the exponential distribution, its cumulative 

distribution function is: 

[ ]( ) 1 exp ( )i i i it tS SF = , t＞0          (2.1) 

where i(Si) >0 is the failure rate of the products at the stress 
level Si, its mean life is  

i(Si)=1/ i(Si) 

Assumption 2. The mean life of the products: i is the 
accelerated life function of the stress: 

ln i=μ+  (Si)               (2.2) 

where μ,  is parameters to be estimated; (Si) is the known 
function of the stress level Si. 

Assumption 3. Residual life of the products depends 
only on the already cumulative failure part and the stress 
level at that time, but has nothing to do with the cumulative 
[6]. 

3. E-BAYESIAN ESTIMATION OF STEP-STRESS 
LIFE TESTING PARAMETERS 

3.1. The Likelihood Function of Step-stress Life Testing 

Parameters  

For step-stress life testing data with exponential distribu-

tion, the failure data t11,t12,…,
1

1t r
are the life data of the 

samples at the stress level S1; but the failure data is not the 

real life of the samples at the stress level Si when i >1. 
Therefore, the failure data need to be converted into the real 

life data. 

According to Assumption 3, the cumulative failure prob-

ability at the stress level Si when the samples’ working time 

is ti equivalent to the cumulative failure probability at the 

stress level Sj when the samples’ working time is tij. That is 

to say: 

( ) ( )
i jiS S ijt tF F=  i, j=1,2,…,k. 

Then according to assumption one, we can get: 

[ ]1 exp ( ) 1 exp ( )i i i j j ijS t S t=  

So, 

i i
ij

j

t
t = , i, j=1,2,…,k.  

Let 
1

i j

i

j

R r=

=
, i=1,2,…,k, so the total testing time at the 

stress level Si is:  

1

( )
i

i i iij
j

t n
r

T R
=

= +

, (type  Censoring case) 

1

( )
i

i

i i i rij
j

t n
r

tT R
=

= +
, ( type  Censoring case) 

Thus according to relevant theorems, the likelihood func-

tion is got: 

1 2( , , , ) exp( )

11

ik i ii

k k
rL D T

ii ==

…        (3.1) 

where D= t11,…,
11rt , t21,…,

22rt ,…,tk1,…,
kk rt , 

1 2 … k. 

According to Assumption 2, for i=1/ i, we can see: 

i = 0exp｛b (S0)－ (Si)｝= 0 i   

where 0 is the failure rate of the products at the normal 

stress level; [ ]{ }0 1 1 0exp ( ) ( ) /b S S= =  is the 

accelerating factor between the stress level S1 and S0, 

＞1； 0

0 1

( ) ( )

( ) ( )

i

i

S S

S S

=  , i=1,2,…k. 

Let 
1

1

i i

k

rT

i

=

=

, 
2

1

i i

k

T T

i

=

=

, 

1

i

k

r r

i

=

=

 

So the likelihood function (3) can be converted to: 

1
20 00( , ) exp( )r TL T=            (3.2) 

Now, there are only two parameters in the likelihood 

function (3.2). In the actual production, people are most con-

cerned about the failure rate at the normal stress level 0 and 

the acceleration factor . 

3.2. Definition of E-Bayesian Estimation  

Definition 1 [7]. With ( , )i a b being continuous, 

iE ( , ) ( , ) [ ( , )]i i

D

a b a b dadb E a b= =   

 (3.3) 

is called the expected Bayesian estimation of i (briefly 

E-Bayesian estimation), where ( , )i a b is Bayesian estima-

tion of i with hyperparameters a and b, D is the domain of 
(a,b), and (a,b) is the density function of a and b over D. 

By Definition 1, the E-Bayesian estimation of i is the 

expectation of the Bayesian estimation of i for the hyper-

parameters a and b. The E-Bayesian estimation of i is not 

Bayesian estimation or hierarchical Bayesian estimation [8], 

it can be seen as a kind of modified Hierarchical Bayesian 

estimation. The E-Bayesian estimation method have wide 

scope potential applications in many fields [9,10]. 

3.3. The Prior Distribution of the Parameters 0,  and 

the Joint Posterior Density Function 

Based on the engineering experience, the range of the ac-
celeration factor:  is 1  k1＜ ＜k2,

 
for this, take the prior 

density function of  as:  
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1( ) = , 1 k1＜ ＜k2            (3.4) 

If the prior distribution of o be its conjugated distribu-

tion—Beta (a, b) with density function as follows: 

0 0
0

11(1 )
( | , )

( , )

ba

a b
B a b

=  

where 0＜ 0＜ , a＞0, b＞0, 
1

1 1

0
( , ) (1 ) da b
B a b t t t=  

is the Beta function, a>0, b>0, both a and b are hyperparam-

eters 

In the case of modern high-reliability products, the pos-

sibility of the failure rate o being larger is smaller than the 

possibility of the failure rate o being smaller. For this, ac-

cording to the paper
 
[8], a and b should be chosen so that 

( 0|a,b) is a decreasing function of 0. When 0<a<1, 1<b, 

( 0|a,b) is a decreasing function of 0. To determine the 

specific value of a, b is very difficult, for the two hy-

perparameters are unobservable and the information ob-

tained in practical application is insufficient to deter-

mine the value of a, b. Therefore, a uniform distribution 

can be respectively defined over the range of a and b as the 

prior distributions of hyperparameters a and b. For this, take 

the prior distributions of hyperparameters a, b as follows: 

1(a)=U(0,1), 2(b)=U(1,c) 

where c is a constant.  

Considering that in the case of a<1, the bigger b is, the 

thinner is the tail of the Beta density function. But in view of 

the robustness of the Bayesian estimation, the thinner tailed 

prior distribution often leads to the worse robustness of the 

Bayesian estimate. Accordingly, b should not be too big, it is 

better to be chosen below some given upper bound c (c > 1 is 

a constant to be determined) 

When the parameters a, b is of independence, according 

to the Definition 1, we can get the prior density function of 0:  

1
)

-1
=

1

0
1 0

11
0 0(1 )

( d d
( , )

c
ba

a b
c B a b

        (3.5) 

So by the prior density function of  and 0: (3.4) and 

(3.5) ,as well as the likelihood function (3.2), according to 

Bayesian theorem, we can get its joint posterior density func-

tion, then according to Definition 1,we can get the E-

Bayesian joint posterior density function of ( 0, ,a,b): 

  

( 0, ,a,b T )
1

B(a,b)

r + a 1
0

(1 0)
b 1

1T 1exp(
20T )

        (3.6) 

where T=(n, ri, i, tij, j=1,2,…, ri, i=1,2,…,k) 

3.4. The E-Bayesian Estimation of the Parameters 0 and  

The problem of using Bayesian method for statistical in-
ference is the calculation of the posterior marginal distribu-

tion function. In many cases, it is difficult or even impossi-
ble to obtain the analytic expression of the posterior mar-
ginal distribution function, sometimes we can get the ana-
lytic expression but the results are rather complicated that is 
not easy for application and promotion. Therefore, this paper 
uses Gibbs sampling approach for the iteration of parameters 
to be estimated, the mean of the parameters to be estimated 
is obtained. The biggest advantage of the approach is imple-
menting simple and with the convergence of iteration. 

3.4.1. Gibbs Sampling 

MCMC (Markov Chain Monte Carlo) method is through 

the establishment of the Markov chain with a stable distribu-

tion to obtain the samples of p( |xn), then make statistical 

inference for the samples obtained . One of the most simple 

and extensive application of MCMC methods is Gibbs sam-

pling method. It was proposed by S. Geman and D. Geman 

in 1984 [11]. 

Take random variables as 1, 2,…, k, assume its full condi-

tional distribution p( s| r) (r s), s=1,2, …,k is available sam-

pling, that is to say, when a set of values for random variable 

r (r s) are given, we can generate a random sample of s. 

The paper [12] proved that at appropriate conditions, the 

joint distribution function p( 1, 2,…, k) was only decided by 

the full conditional distribution , so all of the marginal distri-

bution function p( s), s=1,2, …,k are only determined by the 

full conditional distribution. 

Gibbs sampling process is as follows: the starting point is 

given 
(0)

=( 1
(0)

, 2
(0)

…, k
(0)

), 

(1) Sampling 1
(1) 

from the full conditional distribution 

p( 1|xn, 2
(0)

,…, k
(0)

) ; 

(2) Sampling 2
(1)

 from the full conditional distribution 

p( 2|xn, 1
(1)

, 3
(0)

,…, k
(0)

); 

…; 

(i) Sampling i
(1)

 from the full conditional distribution 

p( i|xn, 1
(1)

, 2
(1)

,…, i-1
(1)

, i+1
(0)

,…, k
(0)

); 

…; 

(k) Sampling k
(1)

 from the full conditional distribution 

p( k|xn, 1
(1)

,…, k-1
(1)

). 

Repeat the above ⑴ to (k) steps, after t-steps iterations; 

we can get a Markov chain: 

(1)
=( 1

(1)
, 2

(1)
…, k

(1)
);

 

(2)
=( 1

(2)
, 2

(2)
…, k

(2)
) 

…; 

(t)
=( 1

(t)
, 2

(t)
…, k

(t)
) 

The sample which make Markov chain reach equilibrium 

can be as a sample of p( |xn). 

The fact can be proved that at appropriate conditions, 

when Iteration times t , then  

p( 1
(t)

, 2
(t)

…, k
(t)

) p( 1, 2,…, k) 
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Hence, an estimation of the marginal distribution we 

need can be got [13]: 

( )ˆ ( ) ( , )
t

s s r
f f r s= . 

The convergence of the iteration sampling is determined 

by t. 

3.4.2. The Gibbs Sampling Process of the Parameters 0, , 
a and b 

By the E-Bayesian joint posterior density function (3.6), 

we can see that the full conditional posterior probability den-

sity function of 0 is: 

) 20 0 00

11( , , , (1 ) exp( )br a
a b T T

+

. 

The full conditional posterior probability density function 

of  is: 

) 1
20 0

1( , , , exp( )Ta b T T . 

The full conditional posterior probability density function 

of a is: 

)0 0( , , , / ( , )a
a b T B a b . 

The full conditional posterior probability density function 

of b is: 

)0 0( , , , (1 ) / ( , )b
b a T B a b . 

The random number for the full conditional posterior dis-

tribution of 0, , a and b can be produced by selected sam-

pling method. 

According to the steps of Gibbs sampling method, the 

starting point is given as ( 0
(0)

, 
(0)

, a
(0)

 , b
(0)

 ), then the t time 

iteration is divided into the following four steps: 

(1) Sampling 0
(t) 

from the full conditional posterior dis-

tribution (  | T, 
(t-1)

, a
(t-1)

, b
(t-1)

). 

(2) Sampling 
(t) 

from the full conditional posterior dis-

tribution (  | T, 0
(t)

,a
(t-1)

, b
(t-1)

). 

(3) Sampling a
(t) 

from the full conditional posterior dis-

tribution (a | T, 0
(t),

 
(t),

 b
(t-1)

). 

(4) Sampling b
(t) 

from the full conditional posterior dis-

tribution (b | T, 0
(t),

 
(t),

 a
(t)

). 

Then ( 0
(t)

, 
(t)

, a
(t)

 , b
(t)

, t=1,2,…n,n+1,…,N ) is a Gibbs 

iteration sample of parameters ( 0, , a, b), where n is the 

discarded sample size before Gibbs iterations have got a 

steady state, N＞n is the overall sample size. 

We only care about the failure rate at the normal stress 

level: 0 and the acceleration factor , so the E-Bayesian 

parameter estimation of 0 and  are respectively: 

( )
0 0

1

1ˆ
N

t

t nN n = +

= , ( )

1

1
ˆ

N

t

t nN n = +

=  

4. THE ESTIMATION OF THE RELIABILITY IN-
DEXES WITH EXPONENTIAL DISTRIBUTION 

Our ultimate goal is to get the estimation of the product 

mean life at the normal stress level: 0, then according to the 

assumption two and the accelerated life equation (2.1), the 

parameters μ and  in the accelerated life equation are esti-

mated. Thereby, the accelerated life model is established. 

According to the Assumption 2, the mean life is 

i(Si)=1/ i(Si). So the first reliability index which is the mean 

life is got:  

0
0

ˆˆ 1/=  

Using the E-Bayesian parameter estimation of the failure 

rate 0
ˆ , the second reliability index which is reliability is 

obtained: 

R(t)=exp(- t)=exp(- 0
ˆ t) 

Then according to the accelerated life equation (1), we 

have ln 
0
ˆ =μ + (S0), using the least square method to get 

a distribution curve with various points (μ, ), the approxi-

mation of the parameters μ and  can be estimated : μ= μ̂ , 

= ˆ . Thereby, we can establish the accelerated life model: 

ln i= μ̂ + ˆ (Si). 

5. A SIMULATION EXAMPLE 

Now there are a number of electronic products, their life 

obeys the exponential distribution, 40 samples are taken 

from the products for the four-steps step-stress accelerated 

life testing. The normal stress level is S0=28V(volt), take 

accelerated stress levels as S1 =38V, S2=41V, S3=44V, 

S4=47V, the censoring time of each step is 1 =1000h(hour), 

2=600h, 3=250h, 3 =125h. Accelerated life equation 

ln =68-16lnS is Pre-given, where the parameters μ=68, = -

16. Using Monte-Carlo method to obtain a set of lifetime 

data: 

First using the method in the paper [2] parameters μ,  in 

the accelerated life equation are estimated, the MLE of μ,  

are respectively: μ̂ =61.2955, ˆ = 14.2498. Then from 

the accelerated life equation, we can get the estimation of 

the failure rate: 0
ˆ =1.0033 10

6 
and the estimation of the 

acceleration factor: ˆ =77.6047. 

Next, E-Bayesian method is used to estimate the above 

parameters. Take the uniform distribution over (100,150) as 

the prior distribution of , take Gibbs sampling iteration 

times N =5500, the initial value are given as 0=0.1, =100, 

a=0.1, b=20. The fact can be found that the parameters ba-

sically reach a steady state after the 500 iteration steps 

.Therefore, the E-Bayesian estimation of the parameters 0 

and  are obtained from the mean of 5000 samples after n = 

500 steps, then we can get the estimation of the failure 

Rate: 0
ˆ =4.3107 10

7
 and the estimation of the accelera-
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tion factor: ˆ =129.2715, furthermore, we can get the esti-

mation of parameters μ and  are respectively μ̂ =67.7083, 

ˆ = 15.9208. 

The results show that E-Bayesian parameter estimations 

are very close to the true values; however the parameter es-

timations which are obtained by the MLE method have a 

larger difference with the true values. 

CONCLUSION 

Using the E-Bayesian method, the parameters estimation 
and the reliability indexes estimation for step-stress acceler-
ated life testing with exponential distribution are given. The 
values of the hyperparameters in the prior distribution are 
avoided. Using Gibbs sampling for the calculation of the 
posterior marginal distributions and parameter estimation, 
the calculation with high-dimensional integrals is avoided. 
Finally, the fact can be seen that E-Bayesian parameter esti-
mation is more effective and practical than the maximum 
likelihood estimation from the simulation example. 
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Table 1. Step-stress life testing data of the electronic products. 

t11      

921.2852h      

t21 t22 t23 t24 t25  

50.4314h 104.2676h 245.5130h 450.5856h 558.9485h  

t31 t32 t33 t34 t35 t36 

49.7372h 67.1302h 112.7626h 179.0157h 214.0247h 233.9544h 

t41 t42 t43 t44   

50.7118h 103.6320h 112.0713h 115.0968h   


