Flow Dilation in Rat Small Mesenteric Arteries is Mediated by Hydrogen Peroxide Generated from CYP Epoxygenases and Xanthine Oxidase

C.Y. Ngai^{1,2,3}, Y. Huang^{1,2,3}, J.R. Falck⁴, N.L. Tang^{2,5}, W.H. Ko³ and X. Yao^{1,2,3,*}

¹Institute of Vascular Medicine, Chinese University of Hong Kong, Hong Kong, China; ²Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China; ³School of Basic Medical Sciences, Chinese University of Hong Kong, Hong Kong, China; ⁴Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, USA; ⁵Department of Chemical Pathology, Chinese University of Hong Kong, Hong Kong, China

Abstract: We have previously demonstrated that hydrogen peroxide (H_2O_2) mediates flow-induced vascular dilation in rat small mesenteric arteries. In the present study, the source of this flow-induced H_2O_2 was explored. The arteries were pressurized to 50 mm Hg and preconstricted with phenylephrine. Intraluminal flow reversed the effect of phenylephrine, resulting in vascular dilation. Cytochrome P450 (CYP) inhibitors N-methylsulfonyl-6-(2-proparglyoxyphenyl) hexanoic acid (MS-PPOH, 10 μ M) and miconazole (30 μ M) reduced the magnitude of peak flow dilation by ~20%-30%, and reduced the duration of dilatory response by ~70-80%. Nevertheless, sulphaphenazole (10 μ M), a selective inhibitor of CYP 2C9, had no effect neither on the peak flow dilation nor the duration of dilatory response. Oxypurinol (100 μ M), an inhibitor of xanthine oxidase, attenuated the duration of dilatory response by ~60% but exerted no effect on the magnitude of peak flow dilation. Cyclosporin A (2 μ M), an inhibitor for mitochondrial permeability transition pore, MitoQ (300 nM), a mitochondria-targeted antioxidant, and apocynin (1 mM), a NADPH oxidase inhibitor, had no effect neither on the magnitude of peak flow dilation nor the duration of dilatory response. To further confirm the role of CYP in flow-induced H₂O₂ production, a fluorescent probe CM-H₂DCFDA was used to monitor the production of H₂O₂ production was markedly reduced in MS-PPOH and miconazole pretreated endothelial cells. Taken together, our results suggest that, during flow dilation, H₂O₂ is generated from CYP epoxygenases and xanthine oxidase.

INTRODUCTION

Blood flow through an artery generates hemodynamic shear stress which plays an important role in the control of vascular tone. *In vivo* studies showed that shear stress causes dilation in a variety of vessels from different species including humans [1, 2]. The mechanism of flow-induced vascular dilation has been intensively studied. It is found that flow dilation is endothelium-dependent, although the endothelial factor varies, depending on species, vascular bed, and vessel size [3]. Three principal dilators are released from endothelial cells upon stimulation by shear stress. These include nitric oxide (NO) and/or prostacyclin and/or endothelium-derived hyperpolarizing factor (EDHF) [3].

Rat small mesenteric arteries are one of favorite models for studying the regulation of vascular tone in resistance arteries. However, there is controversy as to which vasodilator is responsible for flow dilation in rat small mesenteric arteries. Published results suggest that either NO [4-6] or EDHF [7, 8] could be the main vasodilator responsible for flow dilation in rat small mesenteric arteries. This discrepancy may be due to the differences in experimental conditions used in different laboratories. Note that different groups used different systems, pressure perfusion system [7, 8] vs peristaltic pump [6], to generate intraluminar flow. Furthermore, in some studies, animals under specific conditions, such as pregnant [4] or with chronic L-NAME treatment [5], were used for the experiments. Recently, we reported that flow dilation in rat small mesenteric arteries was mediated by EDHF, but not NO nor prostacyclin [8]. The dilation was completely abolished by catalase, suggesting an involvement of H_2O_2 . Furthermore, exogenous application of H_2O_2 induced vascular dilation in these arteries and it also caused hyperpolarization of smooth muscle cells in the same arteries [8]. These results suggest that endothelial H_2O_2 , as an EDHF, is the main vasodilator responsible for flow dilation in rat small mesenteric arteries. Note that H_2O_2 has previously been suggested to be the main vasodilator involved in flow dilation in other vascular beds [9, 10].

 H_2O_2 is produced from superoxide anion (O_2^-) by superoxide dismutase (SOD). However, endothelial $O_2^$ could result from activity of multiple enzymes/organelles including NAD(P)H oxidase, cytochrome P450 (CYP), mitochondrial respiration, and xanthine oxidase [11]. Several studies have explored the source of H_2O_2 in flow dilation. Liu *et al.* show that inhibition of mitochondrial respiration reduced the flow-induced H_2O_2 production and abolished the flow dilation in human coronary arterioles from the patients with coronary artery disease, suggesting an involvement of mitochondria-generated H_2O_2 [12]. In contrast, two other studies [13, 14] demonstrated that NAD(P)H oxidase may be essential for shear stress-induced O_2^- generation in human umbilical vein endothelial cells.

^{*}Address correspondence to this author at the Department of Physiology, Chinese University of Hong Kong, Hong Kong; Email: yao2068@cuhk.edu.hk

Our previous studies showed that flow dilation in rat small mesenteric arteries is mediated by H_2O_2 . In the current study, we investigated the source of H_2O_2 for this flow dilation. Pharmacological inhibitors were employed to differentiate the enzymes/organelles that are responsible for H_2O_2 production during flow dilation in rat small mesenteric arteries. The results demonstrated that, during flow dilation, H_2O_2 is generated from CYP epoxygenases and xanthine oxidase.

MATERIALS AND METHODOLOGY

Pressure Myography

We followed the Guide for the Care and Use of Laboratory Animals published by US Institute for Laboratory Animal Research, National Research Council in 1996. Male Sprague-Dawley rats (260-280 g) were placed in a chamber and were killed by carbon dioxide. Pressure myography studies were performed as described elsewhere with slight modification [8, 15]. Briefly, a third or fourthorder mesenteric artery (about 2-3 mm long) was dissected and transferred to a pressure myograph (Danish Myotechnology) filled with oxygenated Krebs-Henseleit solution at 37°C. Krebs-Henseleit solution contained in mM: 119 NaCl, 25 NaHCO₃, 1 MgCl₂, 4.7 KCl, 2.5 CaCl₂, 1.2 KH₂PO₄ and 11 D-glucose. The artery was cannulated at both ends with glass micropipettes that were connected to independent reservoirs set at the same height and solution level to ensure no flow. Both reservoirs were filled with Krebs-Henseleit solution containing 1% BSA. The intraluminal pressure was then set to 50 mmHg by raising both reservoirs at the same time under no-flow conditions, and the artery was equilibrated for 30 min at 37°C. Phenylephrine (concentration varied to achieve similar constriction in different arteries, 0.1-4 µM) was used to preconstrict the artery to 60% - 80% of its initial vessel diameter. Flow was initiated by creating the pressure difference of 5 mm Hg between inflow and outflow flow (5-6 mmHg), by moving the two reservoirs an equal distance but in opposite vertical directions at the same time. The mean intraluminal pressure was maintained at 50 mmHg throughout the flow protocol. Shear stress was calculated by equation $\tau = 4 \ \mu f \pi^{-1} r^{-3}$ [16]. The initial shear force was near 10 dynes cm⁻². Flow dilation reduced the shear stress to ~ 3.5 dynes cm⁻². At the end of each experiment, acetylcholine (1 µM) was used to assess the viability of the endothelium. ATP (1 µM) was included in all experiments both extra- and intraluminally for the purpose of producing consistent flow dilation [15]. The external diameter of the artery was recorded continuously with a CCD (video camera module) camera using software MyoView (Photonics Engineering).

After the first dilatory response to flow, which acted as the control, the same arteries were washed then treated with a panel of different pharmacological agents both extra- and intraluminally for 30 min, followed by a second flow dilation. Dilatory response to the second flow was measured and compared to the control. The pharmacological agents included: MS-PPOH (10 μ M), miconazole (30 μ M), sulfaphenazole (10 μ M), oxypurinol (100 μ M), cyclosporin A (2 μ M), MitoQ (300 nM), DecylTPP (300 nM), apocynin 1 mM). Solvent (vehicle) controls were also performed, in which the arteries were treated with dimethyl sulfoxide (DMSO, 0.01%) or ethanol (0.01%)

Isolation of P rimary Mic rovascular Endothelial Ce lls (MVECs) from Rat Mesentery

Primary cultured microvascular endothelial cells were isolated from male Sprague-Dawley rat mesentery as described elsewhere [17]. Briefly, vessels of mesenteric bed were dissected and digested with 0.02% collagenase in phenol red-fee EBM basal medium for 45 min at 37°C. Dispersed cells were pelleted and then cultured in EGM medium supplemented with 1% bovine brain extract and 1% penicillin-streptomycin. The identity of endothelial cells was verified by immunostaining with an antibody against von Willebrand Factor.

Detection of H₂O₂ Production in Endothelial Cells

CM-H₂DCFDA, a fluorescent dye sensitive to H_2O_2 but not to O_2^{-} [18], was used to evaluate the production of H_2O_2 in MVECs upon shear stress. Briefly, the cells were grown on cover slips (Menzel-Glaser, Germany) to reach 70-80% confluence, and were loaded with 5 µM CM-H₂DCFDA for 40 minutes in dark at room temperature. Loaded cells were washed two times with normal physiological saline solution (NPSS) and incubated for additional 30 minutes with or without MS-PPOH (10 µM) or miconazole (30 µM) in NPSS containing 1% BSA and 1 µM ATP. Flow was initiated by pumping normal physiological saline solution (NPSS) containing 1% BSA and 1 µM ATP to a specially-designed parallel plate flow chamber, in which the cells were adhered to the bottom [19]. The flow shear stress was ~ 20 dyne/cm². NPSS contained in mM: 140 NaCl, 5 KCl, 1 CaCl₂, 1 MgCl₂, 10 glucose, 5 Hepes, pH 7.4. Fluorescence signals before and 1 hour after flow challenge was recorded by an Olympus FV1000 Fluoview confocal laser scanning system. An excitation wavelength of 488 nm was provided by Multiline-Argon laser and the fluorescence signal was collected using a 515 nm-long pass emission filter. Changes of CM-H₂DCFDA fluorescence in response to flow were displayed as a ratio of the fluorescence after flow relative to the fluorescence before flow (F1/F0).

Chemicals

Phenylephrine hydrochloride was obtained from RBI (Natick, USA). ATP, acetylcholine, DMSO, BSA, miconazole, oxypuinol, sulphaphenazole were purchased from Sigma-Aldrich. Apocynin and cyclosporin A were from Calbiochem. CM-H₂DCFDA [5-(and-6)-chloromethyl-2'7'-dichlorodihydrofluorescein diacetate acetyl ester] was from Molecular Probes. Miconazole was dissolved in DMSO, MS-PPOH was dissolved in either ethanol or DMSO, MitoQ and Decyl TPP Bromide were dissolved in ethanol, oxypurinol was dissolved in 1N sodium hydroxide, and the others were dissolved in water. EBM basal medium and EGM complete medium were purchased from Lonza (Switzerland). Penicillin-streptomycin was obtained from Gibco-BRL.

Data Analysis

The peak magnitude of flow dilation was calculated as the percentage of phenylephrine-induced constriction by the following equation:

% Vasodilation = $(D_f - D_{phe}/D_i - D_{phe}) \times 100\%$

where D represents the external diameter of vessels; D_f is the maximum vessel diameter after flow; D_{phe} is the diameter after phenylephrine constriction and before flow; D_i is the initial diameter without any treatment.

In most cases, flow dilation is transient with a rapid rise phase followed by a relatively slow falling phase (Fig. 1). During the falling phase of flow transient, vessel diameter decreases exponentially. Because the decrease in diameter became very slow when flow transient approached its end, it was nearly impossible to accurately determine the "real time duration of flow dilation", which should be "from the start of flow dilation till its end". To overcome this problem and to reduce the error in estimation, the "duration of flow dilation" was arbitrarily set as the time difference between the start of flow dilation till the time when diameter of the vessel reduced to 50% of its maximal flow dilation (Fig. 1). This arbitrary parameter of "duration of dilatory response" was used to indicate the sustainability of flow dilation. Vessels that showed less than 10% reduction in diameter were considered to demonstrate sustained dilatory response and were excluded from the calculation.

Statistical Analysis

Data are given as mean \pm s.e.m. The Student's two-sample t-test was used to compare the treatment groups with relevant controls. *P*-values <0.05 were taken to show significant differences between means. In all of the pressure myograph experiments, n is the number of mesenteric arteries from different rats.

RESULTS

Effect of CYP Epoxygenase Inhibitors on Flow Dilation

Isolated small mesenteric arteries with a vessel external diameter between 250-400 μ m at 50 mmHg were preconstricted with phenylephrine to a similar level (60% - 80% of its initial diameter), and intraluminal flow was applied to induce dilation (Fig. 2). After stopping the flow and testing the viability of the vessels with acetylcholine (1 μ M), the vessels were washed with and stabilized in Krebs-Henseleit solution for 30 min to 1 hr and then reconstricted with phenylephrine. Flow was able to elicit dilation on the

Fig. (1). Determination of the duration of dilatory response to flow. The duration of dilatory response is defined as the time elapsed from the start of flow dilation till the time when the magnitude of dilation reduced to 50% of its maximal value.

Fig. (2). Flow-induced dilatory responses in rat small mesenteric arteries. (**a**) A representative trace showing the dilatory response to flow challenge. The vessel was preconstricted with phenylephrine. Solid bar on the top of the trace indicates the time period when intraluminal flow (Krebs-Henseleit solution with 1% BSA) was applied. After the first flow-induced dilatory response, the vessel was then washed by and maintained in Krebs-Henseleit solution for 30 minutes to 1 hour before the second flow challenge. (**b**) Comparison of the peak magnitude of dilation in response to the first and the second flow. (**c**) Comparison of the duration of dilatory response. Values are means \pm s.e.m. (n = 3-6).

vessels again (Fig. 2). There is no difference in dilatory responses, either in the peak magnitude of flow dilation or in the duration of dilatory response, from the first flow and to the second flow (Fig. 2). In other words, the dilatory responses to flow can be repeated in the same arteries without any significant reduction in flow dilatory response.

Pharmacological inhibitors were employed to examine the possibility of CYP epoxygenase involvement in flow dilation. Previous results showed that 3 µM miconazole, a nonselective CYP inhibitor [20], failed to inhibit flowinduced dilation [8]. In the present study, we found the same agent (miconazole) at a significant higher concentration (30 µM) was able to reduce the peak magnitude of flow dilation as well as the duration of dilatory responses (Fig. 3) while the vehicle control (0.01% DMSO) did not, suggesting an involvement of CYP in flow dilation. To confirm the involvement of CYP, we used a structurally distinct and highly selective epoxygenase inhibitor MS-PPOH [21]. The results showed that MS-PPOH (10 µM) also decreased the peak magnitude and the duration of dilatory response while the vehicle control (0.01% ethanol) failed to do so, confirming the involvement of CYP epoxygenases in flow dilation. Sulphaphenazole (10 µM), a selective inhibitor of CYP 2C9 which is an isozyme of CYP epoxygenases [22], had no effect neither on the peak magnitude nor on the duration of dilatory response. These results suggest that CYP epoxygenases, but not the isoform CYP 2C9, were involved in flow dilation.

Effect of Xanthine Oxidase Inhibitor on Flow Dilation

Oxypurinol, a selective xanthine oxidase inhibitor [23], was used to examine the involvement of xanthine oxidase in

Fig. (3). Effect of CYP inhibitor on f low-induced vascular dilation. (**a**) A representative trace showing the effect of m iconazole on flow dilation. After the 1st flow-induced dilatory response, the vessels were washed and incubated in miconazole (30 μ M) for 30 minutes before the 2nd flow challenge. (**b**) A representative trace showing the effect of MS-PPOH (10 μ M) on flow dilation. (**c**) Summary of data showing the peak flow dilation in the absence (control) and presence of miconazole (30 μ M), MS-PPOH (10 μ M), sulfaphenazole (10 μ M) or vehicle (0.01% DMSO or 0.01% ethanol). (**d**) Summary of data showing the duration of dilatory response in the absence (control) and presence of respective agent. Values are means ± s.e.m. (*n* = 4-9). ***P* < 0.01; ****P*<0.001.

flow dilation. Oxypurinol (100 μ M) reduced the duration of dilatory response but had no effect on the peak magnitude of flow dilation (Fig. 4). These results suggest an involvement of xanthine oxidase in flow dilation.

Effect of Mitochondria-Generated H₂O₂ on Flow Dilation

Cyclosporin A and MitoQ w ere us ed t o examine t he involvement of mitochondrial reactive oxygen species (ROS)

in flow dilation. Cyclosporin A inhibits the opening of the permeability t ransition pore i n t he i nner m itochondrial membrane and t hus pr events t he produc tion of O $_2$ [24]. MitoQ is an e legantly-designed m itochondria-targeted antioxidant, w hich c an s electively s cavenge m itochondria-generated H $_2O_2$ a nd o ther R OS [25]. D ecyltriphenylphosphonium bromide (decylTPP bromide) is the triphenylphosphonium m oiety that is responsible for t argeting MitoQ to

Fig. (4). Effect of xanthine oxidase inhibitor on flow dilation. (a) A representative trace showing the effect of oxpurinol (100 μ M) on flow dilation. (b) Sum mary of data showing the peak flow dilation in the absence (control) and presence of oxypurinol. (c) Sum mary of data showing the duration of dilatory response. Values are means ± s.e.m. (n = 4-5). *P < 0.05.

Fig. (5). Effect of inhibiting/scavenging mitochondrial H_2O_2 on flow dilation. (**a**) A representative trace showing the effect of MitoQ (300 nM) on flow dilation. (**b**) A representative trace showing the effect of decyITPP (300 nM) on flow dilation. (**c**) Summary of data showing the peak flow dilation in the absence (control) and presence of MitoQ, decyITPP, or cyclosporin A (100 μ M). (**d**) Summary of data showing the duration of dilatory response. Values are means \pm s.e.m. (n = 3-5). *P < 0.05.

the m itochondria, but i t is i nactive a gainst mitochondriagenerated H_2O_2 [25, 26]. It serves as a negative control for MitoQ to account for a ny non-specific effect of l iphophilic cations [25, 26]. In experiments, cyclosporin A (2 μ M) had no effect either on the peak magnitude of flow dilation or on the duration of dil atory response whereas MitoQ (300 nM) reduced the duration of d ilatory response but did not a ffect the p eak magnitude (Fig. 5). Howe ver, d ecylTPP brom ide (300 nM) e xerted the same effect as MitoQ (Fig. 5). N o difference in flow dilation was found be tween MitoQ- and decylTPP b romide-treated ar teries (Fig. 5). Th erefore, th e effect of MitoQ on the duration of dilatory response to flow was due t o t he non-s pecific effect of liphophilic cations. These data suggest that mitochondria-generated H_2O_2 did not contribute to the flow dilation.

Effect of NADPH Oxidase Inhibitor on Flow Dilation

Apocynin is a selective inhibitor of NADPH oxidase that acts by inhibiting i ncorporation of t he p47 ^{phox} s ubunit of NADPH oxidase into the membrane unit [27]. Apocynin (1 mM) exerted no effect neither on the peak magnitude of flow dilation n or t he d uration o f d ilatory r esponse. H ence, o ur data suggest that NADPH oxidase was not involved in flow dilation in rat small mesenteric arteries.

Effect of MS-PPOH and Miconazole on $\rm H_2O_2$ Production in MVECs

To furt her confirm the role of CYP e poxygenases in flow-induced H_2O_2 production, we monitored the change of CM-H₂DCFDA fl uorescence i nt he pri mary c ultured mesenteric endothelial cells in response to flow challenge. CM-H₂DCFDA is a fluorescent dye widely used to detect the change i n c ytosolic H ₂O₂ l evel [12, 18]. In experiments, exposure of c ultured endothelial cells to flow resulted in a rise in C M-H₂DCFDA f luorescence (F ig. **6a**, l eft column; and **6b**), indicating a flow-induced production of H₂O₂. This fluorescence increase w as completely a bolished in t hose cells th at w ere tr eated w ith MS-PPOH (10 μ M) (Fig. **6a**, middle c olumn; and **6b**) or miconazole (30 μ M) (Fig. **6a**, right column; and **6b**). As another c ontrol, vehicle (0.01% DMSO) treatment had no effect on flow-induced rise in CM-H₂DCFDA fluorescence (Fig. **6b**). These data are consistent with those from flow dilation study, supporting an important role of CYP epoxygenases in flow-induced H₂O₂ production.

DISCUSSION

Our pre vious s tudies [8] ha ve s howed t hat t he fl owinduced vascular dilation in rat mesenteric arteries is mainly mediated by H₂O₂, because 1) the dilation was completely abolished by catalase, and the inhibition can be reversed by washing away the catalase; 2) in the presence of a catalase inhibitor aminotriazole, catalase loses its inhibitory effect; 3) exogenous a pplication of H ₂O₂ i nduces r elaxation in phenylephrine-preconstricted arteries and hyperpolarized the smooth muscle cells. In the present study, we explored the source of H₂O₂ during flow-induced vascular dilation in rat small mesenteric ar teries. The r esults d emonstrated th at, during fl ow dil ation, H 2O2 i s g enerated f rom CYP epoxygenases and xanthine oxidase. Mitochondria-generated H₂O₂ and NADPH oxidase are not involved in the process. Within the t wo s ources that c ontribute to the H $_2O_2$ generation, CYP e poxygenases appear t o play a m ore important role a s the inhibition of C YP e poxygenases reduced both the peak magnitude and the duration of dilatory response, and it a lso s uppressed the H 2O2 production in MVECs. However, note that inhibition of CYP epoxygenases or xanthine oxidase alone failed to completely

Fig. (6). Effect of MS-PPOH and miconazole on flow-induced H_2O_2 production. (a) Representative v ascular endothelial cell CM- H_2DCFDA images before and after flow. Each pair of arrows point to one particular cell before and after flow. (b) S ummary of d ata showing t he c hange i n CM - H_2DCFDA f luorescence a s i n (a). Miconazole, 30 μ M; MS-PPOH, 10 μ M; DMSO, 0.01%. Values are means \pm s.e.m. (n = 5-6). ***P < 0.001.

abolish t he f low dil ation, s uggesting a n involvement o f multiple sources for H_2O_2 generation during flow dilation.

CYP epoxygenases metabolize arachidonic a cid to four regioisomeric e poxyeicosatrienoic a cids (EETs) (5, 6-, 8, 9-, 11,12-, and 14,15-EET) [28]. The EETs have been identified as EDHFs in several vascular beds including coronary and renal arteries [28, 29]. Based on the results that flow dilation can be m arkedly inhibited by m iconazole and 17octadecynoic acid, Miura et al. suggested that EETs are the vasodilator responsible for flow dilation in human coronary arterioles in the p atients with coronary a rtery d isease [30]. However, note that catalytic cycle of CYP epoxygenases can also produce ROS, i ncluding O 2⁻, H 2O2, a nd hydroxy l radicals [22, 31, 32]. H_2O_2 thus produced m ay a ct a s a n EDHF, c ontributing t o fl ow di lation. In fa ct, l ater s tudies from the same group have concluded that H_2O_2 is the major vasodilator responsible for flow dilation in human coronary arterioles [10, 12], a lthough t hey a rgued t hat, duri ng fl ow dilation, H₂O₂ is generated from mitochondria. In the present study, w e de monstrated a n important rol e of CYP epoxygenases in flow dila tion. As mentioned, activity of CYP epoxygenases m ay produce E ET and H_2O_2 , both of which may act as EDHF to cause vascular dilation. Although we cannot exclude the possibility that EET thus produced may also contribute to the flow dilation, the main vasodilator appears to b e H₂O₂ i nstead of E ET be cause our pre vious studies have already de monstrated t hat H₂O₂ scavenging could c ompletely a bolish t he fl ow d ilation [8]. F leming suggested that, among numerous CYP isoforms, CYP 2C9 is a physiologically relevant source of ROS in porcine coronary endothelial cells [22]. Recent studies showed that CYP 2C9 is i nvolved i n fl ow dil ation i n hum an pe ripheral c onduit arteries in healthy subjects and in patients with heart diseases [33]. Thus we tested the possible involvement of C YP 2C9 in flow d ilation in r at s mall mesenteric arteries. O ur d ata showed that s ulphaphenazole, a specific inhibitor for C YP 2C9, did not have any effect on flow dilation, suggesting that CYP 2 C9 is not involved in the flow d ilation o f r at s mall mesenteric arteries.

Xanthine oxi dase c atalyzes the oxi dation of xanthine or hypoxanthine during purine metabolism, leading to the formation of O_2^- and H_2O_2 . It has been shown that xanthine oxidase is a source for O_2^- production in hum an internal mammary a retries and s aphenous veins [34]. Xanthine oxidase a lso contributes to a n increased R OS levels in spontaneous hypertensive rats [35, 36]. We used oxypurinol, a selective inhibitor of xanthine oxi dase, to examine the possible involvement of xanthine oxi dase in flow dilation. The results showed that oxypurinol reduced the duration of dilatory re sponse t of low, s uggesting a n involvement of xanthine oxi dase in flow dilation in rats mall mesenteric arteries.

The electron transport chain within mitochondria can also generate O_2^- and H_2O_2 [37]. One previous study from Liu *et* al. suggests that, during flow d ilation in hum an c oronary arterioles, H₂O₂ is generated from mitochondria respiration [12]. Their conclusion was based on 1) fl ow-induced H_2O_2 production, a s de termined by H 2DCFDA f luorescence a nd electron s pin re sonance, i s re duced by rot enone, which is mitochondrial c omplex I i nhibitor; 2) t he flow dil ation o f human co ronary r esistance arteries is almost co mpletely abolished by ro tenone, a nd fur thermore t he d ilation w as partially inhibited by myxothiazol, a mitochondrial complex III inhibitor. These results are contradictory to the findings from the present study. In the present study, we found that scavenging m itochondria-generated H 2O2 w ith MitoQ o r inhibiting mitochondrial ROS production with cyclosporin A had no e ffect on fl ow di lation, bot h a rguing a gainst a n involvement of m itochondria-generated H 2O2 i n f low dilation. T he r eason for t his d iscrepancy is unc lear. However, compared to the study from Liu et al. [12], we used different animal species and different arteries. Fur thermore, the s tudy from L iu et al. u sed r otenone to inhibit mitochondria O_2^- generation [12]. There is a controversy on whether rote none can indeed inhibit mitochondria O₂ generation be cause rote none w as found t os timulate mitochondria O_2^- generation in some cases [38, 39]. In the present study, we used a much superior agent MitoQ that can selectively scavenge mitochondria-generated H₂O₂ and other ROS. T hese di fferences in e xperimental d esigns could contribute t o the c onflicting re sults about t he ro le o f mitochondria-generated H₂O₂ in flow dilation.

NADPH oxi dase i s a nother put ative s ource of O $_2^{-}$ in vascular e ndothelial c ells. It i s a membrane-bound flavocytochrome and us es both fl avin a nd he me groups to transfer e lectrons f rom N ADPH t o o xygen, y ielding O $_2^{-}$. Previous re ports s howed t hat la minar s hear s tress m ay generate O $_2^{-}$ via NADPH oxidase in cultured human umbilical vein endothelial cells [13, 14]. In our experiments, apocynin, a selective inhibitor for NADPH oxi dase, did not have e ffect on fl ow dil ation, suggesting t hat NA DPH oxidase is not involved in the process. However, there is a major difference in experimental de signs be tween ours and others': w e us ed i solated a rtery s egments a s e xperimental materials while the others used cultured human umbilical vein endothelial cells. The findings obtained from culture cells may not readily apply to *in vivo* situation. These could contribute to the discrepancy in results.

CONCLUSION

In summary, during flow dilation in rat small mesenteric arteries, H_2O_2 as the dilator is generated from CYP epoxygenases and xanthine oxidase.

ACKNOWLEDGEMENTS

This study was supported by Hong Kong RGC Grants (CUHK477307 and CUHK477408) and Li Ka Shing Institute of Health Sciences. We thank Dr. Murphy MP from MRC Dunn, Cambridge, UK, for his generous gift of MitoQ and its control decylTPP bromide.

REFERENCES

- Kuo, L.; Chilian, W.; Davis, M. Interaction of pressure- and flowinduced responses in porcine coronary resistance vessels. *Am. J. Physiol.*, **1991**, *261*(6 Pt 2), H1706-15.
- [2] Joannides, R.; Haefeli, W.; Linder, L.; Richard, V.; Bakkali, E.; Thuillez, C.; Lüscher, T.. Nitric oxide is responsible for flowdependent dilatation of human peripheral conduit arteries in vivo. *Circulation*, **1995**, *91* (5), 1314-9.
- [3] Busse, R.; Fleming, I. Regulation of endothelium-derived vasoactive autacoid production by hemodynamic forces. *Trends Pharmacol. Sci.*, 2003, 24 (1), 24-9.
- [4] Cockell, A.; Poston, L. Isolated mesenteric arteries from pregnant rats show enhanced flow-mediated relaxation but normal myogenic tone. J. Physiol., 1996, 495(Pt 2), 545-51.
- [5] Henrion, D.; Dechaux, E.; Dowell, F.; Maclour, J.; Samuel, J.; Lévy, B.; Michel, J. Alteration of flow-induced dilatation in mesenteric resistance arteries of L-NAME treated rats and its partial association with induction of cyclo-oxygenase-2. *Br. J. Pharmacol.*, **1997**, *121* (1), 83-90.
- [6] Thorsgaard, M.; Lopez, V.; Buus, N.; Simonsen, U. Different modulation by Ca2+-activated K+ channel blockers and herbimycin of acetylcholine- and flow-evoked vasodilatation in rat mesenteric small arteries. *Br. J. Pharmacol.*, **2003**, *138* (8), 1562-70.
- [7] Takamura, Y.; Shimokawa, H.; Zhao, H.; Igarashi, H.; Egashira, K.; Takeshita, A. Important role of endothelium-derived hyperpolarizing factor in shear stress--induced endotheliumdependent relaxations in the rat mesenteric artery. J. Cardiovasc. Pharmacol., 1999, 34 (3), 381-7.
- [8] Liu, C.; Ngai, C. Y.; Huang, Y.; Ko, W. H.; Wu, M.; He, G. W.; Garland, C. J.; Dora, K. A.; Yao, X. Depletion of intracellular Ca2+ stores enhances flow-induced vascular dilatation in rat small mesenteric artery. *Br. J. Pharmacol.*, **2006**, *147*(5), 506-15.
- [9] Phillips, S.; Hatoum, O.; Gutterman, D. The mechanism of flowinduced dilation in human adipose arterioles involves hydrogen peroxide during CAD. Am. J. Physiol. Heart Circ. Physiol., 2007, 292(1), H93-100.
- [10] Miura, H.; Bosnjak, J.; Ning, G.; Saito, T.; Miura, M.; Gutterman, D. Role for hydrogen peroxide in flow-induced dilation of human coronary arterioles. *Circ. Res.*, **2003**, *92*(2), e31-40.
- [11] Li, J.; Shah, A. Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology. *Am. J. Physiol. Regul. Integr. Comp. Physiol.*, **2004**, 287(5), R1014-30.
- [12] Liu, Y.; Zhao, H.; Li, H.; Kalyanaraman, B.; Nicolosi, A.; Gutterman, D. Mitochondrial sources of H2O2 generation play a key role in flow-mediated dilation in human coronary resistance arteries. *Circ. Res.*, **2003**, *93*(6), 573-80.
- [13] Duerrschmidt, N.; Stielow, C.; Muller, G.; Pagano, P.; Morawietz, H. NO-mediated regulation of NAD(P)H oxidase by laminar shear stress in human endothelial cells. *J. Physiol.* 2006, 576(Pt 2), 557-67.
- [14] De Keulenaer, G.; Chappell, D.; Ishizaka, N.; Nerem, R.; Alexander, R.; Griendling, K. Oscillatory and steady laminar shear stress differentially affect human endothelial redox state: role of a

superoxide-producing NADH oxidase. Circ. Res., 1998, 82(10), 1094-101.

- [15] Liu, C.; Mather, S.; Huang, Y.; Garland, C.; Yao, X. Extracellular ATP facilitates flow-induced vasodilatation in rat small mesenteric arteries. *Am. J. Physiol. Heart Circ. Physiol.*, **2004**, 286(5), H1688-95.
- [16] Ando, J.; Kamiya, A. Blood flow and vascular endothelial cell function. *Front. Med. Biol. Eng.*, **1993**, 5(4), 245-64.
- [17] Ashley, R.; Dubuque, S.; Dvorak, B.; Woodward, S.; Williams, S.; Kling, P. Erythropoietin stimulates vasculogenesis in neonatal rat mesenteric microvascular endothelial cells. *Pediatr. Res.*, 2002, 51(4), 472-8.
- [18] Kirkland, R.; Franklin, J. Evidence for redox regulation of cytochrome C release during programmed neuronal death: antioxidant effects of protein synthesis and caspase inhibition. J. *Neurosci.*, 2001, 21(6), 1949-63.
- [19] Yao, X.; Kwan, H.; Dora, K.; Garland, C.; Huang, Y. A mechanosensitive cation channel in endothelial cells and its role in vasoregulation. *Biorheology*, **2003**, *40* (1-3), 23-30.
- [20] Van de Voorde, J.; Vanheel, B. Influence of cytochrome P-450 inhibitors on endothelium-dependent nitro-L-arginine-resistant relaxation and cromakalim-induced relaxation in rat mesenteric arteries. J. Cardiovasc. Pharmacol., 1997, 29(6), 827-32.
- [21] McSherry, I.; Sandow, S.; Campbell, W.; Falck, J.; Hill, M.; Dora, K. A role for heterocellular coupling and EETs in dilation of rat cremaster arteries. *Microcirculation*, **2006**, *13*(2), 119-30.
- [22] Fleming, I., Cytochrome p450 and vascular homeostasis. *Circ Res* 2001, 89 (9), 753-62.
- [23] Zhu, J.; Huang, T.; Lombard, J. Effect of high-salt diet on vascular relaxation and oxidative stress in mesenteric resistance arteries. J. Vasc. Res., 2007, 44(5), 382-90.
- [24] Chernyak, B.; Izyumov, D.; Lyamzaev, K.; Pashkovskaya, A.; Pletjushkina, O.; Antonenko, Y.; Sakharov, D.; Wirtz, K.; Skulachev, V. Production of reactive oxygen species in mitochondria of HeLa cells under oxidative stress. *Biochim. Biophys. Acta.*, 1757(5-6), 525-34.
- [25] Kelso, G.; Porteous, C.; Coulter, C.; Hughes, G.; Porteous, W.; Ledgerwood, E.; Smith, R.; Murphy, M. Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J. Biol. Chem., 2001, 276(7), 4588-96.
- [26] Quijano, C.; Castro, L.; Peluffo, G.; Valez, V.; Radi, R. Enhanced mitochondrial superoxide in hyperglycemic endothelial cells: direct measurements and formation of hydrogen peroxide and peroxynitrite. *Am. J. Physiol. Heart Circ. Physiol.*, 2007, 293(6), H3404-14.
- [27] Hamilton, C.; Brosnan, M.; Al-Benna, S.; Berg, G.; Dominiczak, A. NAD(P)H oxidase inhibition improves endothelial function in rat and human blood vessels. *Hypertension*, **2002**, *40*(5), 755-62.
- [28] Gross, G.; Falck, J.; Gross, E.; Isbell, M.; Moore, J.; Nithipatikom, K. Cytochrome P450 and arachidonic acid metabolites: role in myocardial ischemia/reperfusion injury revisited. *Cardiovasc. Res.* 2005, 68(1), 18-25.
- [29] Imig, J.; Falck, J.; Wei, S.; Capdevila, J. Epoxygenase metabolites contribute to nitric oxide-independent afferent arteriolar vasodilation in response to bradykinin. J. Vasc. Res., 38(3), 247-55.
- [30] Miura, H.; Wachtel, R.; Liu, Y.; Loberiza, F. J.; Saito, T.; Miura, M.; Gutterman, D. Flow-induced dilation of human coronary arterioles: important role of Ca(2+)-activated K(+) channels. *Circulation*, 2001, 103(15), 1992-8.
- [31] Bondy, S.; Naderi, S. Contribution of hepatic cytochrome P450 systems to the generation of reactive oxygen species. *Biochem. Pharmacol.*, **1994**, *48*(1), 155-9.
- [32] Davydov, D. Microsomal monooxygenase in apoptosis: another target for cytochrome c signaling? *Trends Biochem. Sci.*, 2001, 26(3), 155-60.
- [33] Fischer, D.; Landmesser, U.; Spiekermann, S.; Hilfiker-Kleiner, D.; Hospely, M.; Müller, M.; Busse, R.; Fleming, I.; Drexler, H. Cytochrome P450 2C9 is involved in flow-dependent vasodilation of peripheral conduit arteries in healthy subjects and in patients with chronic heart failure. *Eur. J. Heart Fail.*, **2007**, *9*(8), 770-5.
- [34] Berry, C.; Hamilton, C.; Brosnan, M.; Magill, F.; Berg, G.; McMurray, J.; Dominiczak, A. Investigation into the sources of superoxide in human blood vessels: angiotensin II increases superoxide production in human internal mammary arteries. *Circulation*, 2000, 101(18), 2206-12.

22 The Open Circulation and Vascular Journal, 2009, Volume 2

- [35] Suzuki, H.; DeLano, F.; Parks, D.; Jamshidi, N.; Granger, D.; Ishii, H.; Suematsu, M.; Zweifach, B.; Schmid-Schönbein, G. Xanthine oxidase activity associated with arterial blood pressure in spontaneously hypertensive rats. *Proc. Natl. Acad. Sci. U S A.*, **1998**, 95(8), 4754-9.
- [36] Ulker, S.; McMaster, D.; McKeown, P.; Bayraktutan, U. Impaired activities of antioxidant enzymes elicit endothelial dysfunction in spontaneous hypertensive rats despite enhanced vascular nitric oxide generation. *Cardiovasc. Res.*, 2003, 59(2), 488-500.

Revised: February 20, 2009

[37]

[38]

[39]

Accepted: February 20, 2009

Zhang, D.; Gutterman, D. Mitochondrial reactive oxygen species-

mediated signaling in endothelial cells. Am. J. Physiol. Heart. Circ.

Li, N.; Ragheb, K.; Lawler, G.; Sturgis, J.; Rajwa, B.; Melendez, J.;

Robinson, J. Mitochondrial complex I inhibitor rotenone induces

apoptosis through enhancing mitochondrial reactive oxygen species

Nakamura, K.; Bindokas, V.; Kowlessur, D.; Elas, M.; Milstien, S.;

Marks, J.; Halpern, H.; Kang, U. Tetrahydrobiopterin scavenges superoxide in dopaminergic neurons. J. Biol. Chem., 2001,

production. J. Biol. Chem., 2003, 278(10), 8516-25.

Physiol., 2007, 292(5), H2023-31.

276(37), 34402-7.

© Ngai et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

Received: January 13, 2009