1

Setbacks in the Clinical Development of TRPV1 Antagonists: What Next?

Narender R. Gavva^{*}

Department of Neuroscience, Amgen, Inc., Thousand Oaks, CA, USA

Abstract: TRPV1 antagonists have been considered as potential treatments for pain associated with inflammatory diseases and cancer. During Phase I clinical trials with AMG 517, a highly selective TRPV1 antagonist, we found that TRPV1 blockade elicits marked, but reversible, and generally plasma concentration-dependent hyperthermia. Furthermore, in a Phase Ib study, AMG 517 administered after molar extraction (a surgical cause of acute pain) elicited long-lasting hyperthermia with maximal body temperature surpassing 40 °C, suggesting that TRPV1 blockade elicits undesirable hyperthermia in susceptible individuals.

Since TRPV1 blockade elicited hyperthermia is a major hurdle, we investigated the possibility of eliminating hyperthermia while maintaining antihyperalgesia by two approaches: i) peripheral restriction of TRPV1 antagonists, ii) characterization of TRPV1 modulators that exhibit differential pharmacology. Results from the preclinical studies of both approaches will be discussed.

1877-3818/09

^{*}Address correspondence to this author at the Department of Neuroscience, Amgen Inc., Thousand Oaks, CA, USA; Tel: (805)447-0607; E-mail: ngavva@amgen.com

Presented at the 2nd annual Pain therapeutics summit, Oct 6-7, 2008, New Brunswick, NJ

Setbacks in the Clinical Development of TRPV1 Antagonists: What Next?

Narender R. Gavva Ph.D. Department of Neuroscience

AMGEN

Outline

- Introduction
- Functional assays
- AMG 517 preclinical studies
- TRPV1 antagonism hyperthermia
- Mechanisms of hyperthermia
- AMG 517 clinical trial results
- Peripherally restricted antagonists hyperthermia
- Differential pharmacology of antagonists no hyperthermia
- Conclusions

• Agonists of TRPA1 and TRPV1 cause pain in humans and pain behavior in rodents

Narender Gavva

Pain Therapeutics Summit – Oct 7th 2008

TRPV1: A polymodal detector of painful stimuli

Narender Gavva

Pain Therapeutics Summit – Oct 7th 2008

TRPV1 knockout mice show reduced thermal hyperalgesia

Thermal hyperalgesia

Davis et al (2000) Nature 405:183-7; Caterina et al (2000) Science, 288, 306-13

- TRPV1 expression in the spinal cord is up-regulated after SCI Zhou et al (2002) J Surg Res. 107:140-4
- TRPV1 expression increased in inflamed human oesophagus Mathews et al (2004) *Eur J Gastroenterol Hepatol.***16**:897-902

Various distinct chemical scaffolds act as TRPV1 antagonists

Pain Therapeutics Summit - Oct 7th 2008

Strategy for SAR development

rTRPV1 (Cap) IC₅₀ = 79 nM rTRPV1 (pH) IC₅₀ = 350 nM

rTRPV1 (Cap) IC₅₀ = 120 nM rTRPV1 (pH) IC₅₀ = 680 nM

rTRPV1 (Cap) IC₅₀ = 0.9 nM rTRPV1 (pH) IC₅₀ = 0.5 nM

- High-throughput screening of our corporate database identified several *N*-aryl cinnamides as TRPV1 antagonists
- Constrained analogs of s-cis cinnamides provided an entry into a novel chemical series of TRPV1 antagonists
- Further optimization lead to the clinical candidate AMG 517

AMG 517 blocks all modes of TRPV1 activation

- AMG 517 is a potent antagonist of rodent, dog, monkey and human TRPV1
- AMG 517 does not block TRPA1, TRPV2, TRPV3, TRPV4, and TRPM8

AMG 517 blocks all modes of TRPV1 activation

- AMG 517 is a potent antagonist of rodent, dog, monkey and human TRPV1
- AMG 517 does not block TRPA1, TRPV2, TRPV3, TRPV4, and TRPM8

AMG 517 blocks capsaicin-induced flinching in rats

Narender Gavva

Pain Therapeutics Summit – Oct 7th 2008

hypothermia and cause hyperthermia by themselves

- On-target challenge model
 - Capsaicin, a TRPV1 agonist produces an "on-target" decrease in body temperature
 - Pretreatment with a TRPV1 antagonist should block capsaicin-induced hypothermia

Gavva et al., J Neurosci. 2007 Mar 28;27(13):3366-3374

AMG 517 causes hyperthermia in multiple species

Gavva et al., JPET 2007 323:128-137

24

TRPV1 antagonists caused hyperthermia in rodents, dogs, monkeys

Agonists and antagonists do not cause body temperature changes in TRPV1 knockout mice

Steiner et al., *J Neurosci*. 2007 Jul 11;27(28):7459-68

 Agonist-induced hypothermia & antagonist-induced hyperthermia are entirely TRPV1 mediated

AMG 517 causes hyperthermia by vasoconstriction and increased thermogenesis

Gavva et al., 2008 Pain 136:202-210

Pain Therapeutics Summit - Oct 7th 2008

Antipyretic acetaminophen suppresses TRPV1 antagonist-induced hyperthermia

Rat radiotelemetry

- AMG8163 is a 'boc' analogue of AMG 517
- Similar to AMG 517, AMG8163 blocks all modes of TRPV1 activation

Repeated administration of AMG 517 attenuates hyperthermia

Monkey radiotelemetry

- TRPV1 is tonically activated and plays a role in body temperature regulation
- Role of TRPV1 in thermoregulation can be compensated

Clinical trial design

- Vehicle of all studies: A suspension in a 100 ml of 2% Pluronic 108 in OraPlus® followed by two 75 ml water washes
- 1st Phase I single dose safety & pharmacokinetic study
 - Double-blind, placebo-controlled, randomized, single dose, dose-escalation sequential cohort study
 - Healthy subjects received 1, 2, 5, 10, 20, or 25 mg AMG 517
 - End points: number and incidence of treatment emergent-events, oral and tympanic body temperature measurements
- 2nd Phase I Repeated dose study
 - Double-blind, placebo-controlled, randomized, single dose, dose-escalation sequential cohort study
 - Placebo, 2, 5, or 10 mg of AMG 517
 - treatment emergent-events, difference in max body temperature on day 1 versus subsequent days, through day 7
- Phase Ib Dental pain study
 - Double-blind, placebo-controlled, randomized, Parallel group, multi-center study
 - Inclusion criteria: moderate to severe post-operative pain
 - Single doses of placebo, 2, 8, or 15 mg of AMG 517

More details can be found in: Gavva et al., 2008 Pain **136**:202-210

AMG 517 has a long half-life in healthy subjects

Plasma half life: ~ 300 hrs

Gavva et al., 2008 Pain **136**:202-210

Narender Gavva

Pain Therapeutics Summit - Oct 7th 2008

AMG 517 elicits transient hyperthermia in humans

Body temperature & Cmax versus time

(mean <u>+</u> SD of the max body temperature [tympanic] presented)

Gavva et al., 2008 Pain 136:202-210

AMG 517 caused plasma concentrationdependent hyperthermia in healthy subjects

Body temperature versus Cmax

- Single dose, oral suspension in a 100 mL of 2% Pluronic 108 in OraPlus®
- Plasma half life of AMG 517 in humans: ~ 300 hrs

Trend of hyperthermia attenuation after repeated administration of AMG 517

(mean + SD of the max body temperature [tympanic] presented)

Gavva et al., 2008 Pain 136:202-210

AMG 517 caused marked hyperthermia in subjects who underwent molar extraction

 TRPV1 antagonists causing hyperthermia in rodents, dogs, monkeys, and humans indicates an evolutionarily conserved role of TRPV1 in thermoregulation

Gavva et al., 2008 Pain **136**:202-210

Narender Gavva

Pain Therapeutics Summit - Oct 7th 2008

First approach to address hyperthermia: Peripheral restriction of antagonists

Hypothesis

- Thermoregulation is CNS mediated
- Can we minimize hyperthermia by restricting antagonists to the periphery?

Strategy

- Reduce brain exposure: peripherally restricted TRPV1 antagonists
 - Increase polar surface area (PSA)
 - Decrease logP
 - Increase number of hydrogen-bond donors

Profiles of peripherally restricted TRPV1 antagonists

Compound	PSA	clogP	Cap IC ₅₀	B/P ratio
AMG13731	145	3.9	2.9	0.02
AMG21629	128	3.5	0.5	0.05
AMG32915	141	1.9	0.2	0.04
AMG41394	132	3.9	1.3	0.04

Effect of AMG13731 and AMG21629 on rat body core temperature

Site of action for TRPV1 antagonist-induced hyperthermia is outside the BBB

Narender Gavva

Pain Therapeutics Summit - Oct 7th 2008

Evaluation of compounds exhibiting differential pharmacology - 2nd Approach

	Capsaicin	рН 5	Heat	Body temp
Profile A	Block	Block	Block	
Profile B	Block	Partial block	Block	1
Profile C	Block	Potentiate	No effect	-1
Profile D	Block	Potentiate	Potentiate	

Profiles defined by agonist-induced ⁴⁵Ca²⁺ uptake assays

AMG8562, a profile C compound that does not cause hyperthermia in rats

Lehto et al 2008 JPET 326:218-229

AMG8562 is modestly effective in capsaicin-challenge and pain models

AMG8562, exhibits profile B modulation of human TRPV1

Profile B modulators cause hyperthermia in rats

Current status of TRPV1 antagonists in the clinic

Compound name	Company	Route of administration	Indication	Stage	Current status
ABT-102	Abbott	Oral		Phase I	Initiated ?
AMG 517	Amgen	Oral	Dental pain	Phase Ib	Terminated
AZD1386	AstraZeneca	Oral	Dental pain	Phase II	Completed
GRC 6211	Lilly/Glenmark	Oral	Dental pain	Phase II	Suspended
JTS-653	Japan Tobacco	Oral	Overactive bladder pain	Phase I	On going
MK 2295	Merck/Neurogen	Oral	Dental pain	Phase II	Completed
SB-705498	GSK	Oral	Migraine	Phase II	Terminated
			Rectal pain	Phase II	Terminated
			Dental pain	Phase II	Completed
PF-4065463	Evotec/Pfizer	unknown	unknown	unknown	unknown

Conclusions

- Genetic and pharmacological evidence suggests that TRPV1 contributes to hyperalgesia
- TRPV1 antagonists block capsaicin-induced flinch (on-target challenge) and act as anti-hyperalgesics
- AMG 517, a selective TRPV1 antagonist caused plasma concentration dependent hyperthermia in humans
- Antagonist-induced hyperthermia showed a complete and clear attenuation after repeated dosing in preclinical species but not in humans
- Mechanisms of hyperthermia include antagonist-induced vasoconstriction and increased thermogenesis
- Peripherally restricted TRPV1 antagonists caused hyperthermia
- Profile C modulators of TRPV1 did not cause hyperthermia and demonstrated modest efficacy in pain models
- Clinical trial results of other TRPV1 antagonists are eagerly awaited

Outstanding questions and next steps

Preclinical

- 'Profile C' modulators of both rodent and human TRPV1
- Efficacy after repeated dosing of TRPV1 antagonists
- TRPV1 function in non-pathophysiological states (e.g., thermosensation)

Clinical

- Development by different routes of administration (e.g., topical application)
- Development of short half-life antagonists
- Development of antipyretic + TRPV1 antagonist combination
- Development of TRPV1 antagonists in primary indications (e.g., Osteoarthritis)

The Team

Departments

PKDM

E-phys

Modeling

Toxicology

Clinical

Legal

Analytical

Marketing

Neuroscience

Neuroscience Levla Arik Anthony Bannon James Davis Narender Gavva Sample Bank Charles Henley **Regulatory Affairs** Gal Hever **Rongzhen Kuang David Immke Pharmaceutics** Sonya Lehto Lana Klionsky Ella Magal Licheng Shi **Project Management** Rami Tamir Jue Wang Judy Wang Weiya Wang Gary Zajic Dawn Zhu

Chemistry

Yunxin Bo Ning Chen Balan Chenera Darin D'Amico Liz Doherty Lillian Liao Mark Norman Nobuko Nishimura Vassil Ognyanov Dan Retz Mark Stec Nuria Tamayo Phi Tang **Kevin Yang**

Process Chemistry

Charles Bernard Chris Borths **Tracy Bostick** Margaret Faul Andrew Hague Tony King Bobby Raihi Thomas Storz Jason Tedrow **Oliver Thiel**

TRPV1 Core Team

Narender Gavva **Christopher Banfield** Anthony Bannon **Gudarz Davar** Celia Dominguez Margaret Faul Anu Gore **David Hovland** Pat Kesslak Sonya Lehto Jean-Claude Louis Mark Norman Sekhar Surapaneni James Treanor

Collaborators

Andrej Romanovsky, Andras Garami St. Joseph's Hospital and Medical Center, Phoenix, AZ Frank Porreca, Todd Vanderah University of Arizona, Tucson, AZ

Narender Gavva

Pain Therapeutics Summit - Oct 7th 2008

Accepted: January 29, 2009

© Narender R. Gavva; Licensee Bentham Open.

Received: January 28, 2009

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, noncommercial use, distribution and reproduction in any medium, provided the work is properly cited.