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Abstract: Infant mortality is a serious problem in India. In order to better understand the problem previous research has 

looked at the topic using sophisticated multivariate models assuming that infant mortality is either Gaussian or Log-

Gaussian. In this paper we argue that infant mortality is Log-Gaussian distributed with non-constant variance and that 

making such an assumption leads to more efficient estimates and a better fit to the data. Using infant mortality data from 

the National Health Survey in Bihar, India we compare two distributions--Log Gaussian and Gamma—and find that the 

Log-Gaussian non-constant variance model does indeed lead to more efficient estimates and a better fit to the data.  
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1. INTRODUCTION 

Infant mortality is not only an important factor in popula-
tion growth; it is also an important measure of economic 
development. Throughout the world it appears that the infant 
mortality rate (IMR) has declined since the 1960s. Indeed, 
between 1960 and 1998 there was a world-wide 55 percent 
decrease in the IMR [1]. Variations exited, though. In the 
Sub-Sahara region of Africa, for example, the IMR declined 
by 34 percent between 1960 and 1989. Nevertheless, the 
world-wide decline in the IMR has been good news. 

The IMR in India has also been the subject of much re-
search. Though India’s IMR has been declining, in 2009, it 
ranked 143

rd
 in IMR with 55 infant deaths per 1,000 live 

population.
1
 Such a record is troubling not only because of 

the loss in human life, but because India is an emerging eco-
nomic super-power, and it’s IMR is clearly not related to its 
emerging economic status.  

Why does India have such a high IMR? What are the fac-
tors that contribute to its high IMR? An existing body of 
research has attempted to answer these and related questions 
[2-12]. The problem is complex and scholars have used a 
wide array of factors to better understand the IMR in India. 
Yet, there are some important concerns over the assumption 
that IMR data are Gaussian distributed. That is, past research  
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1 Data from the CIA Factbook.   See the Wikipedia website: 
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has estimated IMR using multivariate models that assume a 
Gaussian distribution. Such an assumption may lead to inef-
ficient and biased estimates, and draw researchers into mak-
ing important conclusions from dubious results if the distri-
bution is not Gaussian [13]. We have two objectives in this 
paper. Our first objective is to estimate the impact selected 
risk factors have on the IMR in Bihar, India. Our second 
objective is to evaluate two models based on different as-
sumptions regarding infant mortality: one based on the as-
sumption that infant mortality is Log-Gaussian distributed, 
and the other assumes that it is Gamma distributed. Our data 
are from the Indian Survey of the National Family Health 
Survey-2 (NFHS-2) conducted in 1998-1999. 

II. BACKGROUND 

A. Research on Infant Mortality in India 

Previous research on India’s IMR begins by setting up a 
model that contains risk factors in three domains: proximate 
factors, maternal factors, and household/community factors 
[2-12]. Proximate factors are those items that involve medi-
cal care and non-medical care during the antenatal period, 
care at birth, and care during the postnatal period. Maternal 
factors refer to such things as the age, and birth intervals of 
the mother. And finally, household and community factors 
refer to such things as sanitation, water supply, and house-
hold and community cleanliness. Jain and Visaria [2] found 
that significant declines in the IMR are possible without im-
provement in societal economic development. What the 
authors found instead was that access to a small number of 
health and maternal services reduced the IMR: reproductive 
health services, perinatal care, improved breast feeding, im-
munization, the treatment of diarrhea, and the introduction to 
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supplementary foods. Other research has reported similar 
findings [6].  

In terms of economics, research has shown that econom-
ics is not a major factor in reducing the IMR in India, rather 
it is those non-economic factors, such as maternal and child 
health interventions [3, 4, 6].  

Both sets of studies inform our own study in two ways. 
First, they assist us in setting up a model for analysis that 
includes predictors from the three risk-factor domains: 
proximate, maternal, and household/community. Secondly, it 
is our sense that previous research may have been in error 
because they estimated models assuming a Gaussian or Log-
Gaussian distribution with constant variance, when, in fact, 
the distribution may be Gamma distributed and/or with non-
constant variance. For example, Myers et al. [13] found that 
transforming data for stabilization may not, in fact, stabilize 
the distribution (see also [14] for a discussion). Results from 
previous research, then, might be inefficient and biased. For 
example, Fig. (1) presents the actual distribution of the IMR 
data to be used in our study. Note how the distribution bears 
a strong resemblance to a Gamma distribution. Estimating 
these data under the Gaussian assumption could lead to seri-
ous errors. 

Our study attempts to contribute to this research by esti-
mating two models: one that assumes that the IMR is Log-
Gaussian and the other Gamma distributed. We propose to 
use the simultaneous modeling of the mean and dispersion in 
infant mortality by using a Joint Generalized Linear Model 
(JGLM).  

B. Log-Normal and Gamma Models with Constant  
Variance  

For heteroscedastic data, the log-transformation is often 
recommended in stabilizing the variance [15]. It is well-

known that if the variance is constant, parameters from the 
Log-Gaussian and Gamma models have a common interpre-
tation [16]. However, as Das and Lee [14] have shown that 
the simple log-transformation may not be sufficient in stabi-
lizing the variance, and that a different structured constant 
dispersion may be required. Further, with structured disper-
sion it is unlikely that the two models (Log-Gaussian and 
Gamma) will provide coefficients with a common interpreta-
tion [14].  

In regression models with multiplicative error, the esti-
mation approach is commonly based on either the Log-
Gaussian or the Gamma model [16]. For positive observa-
tions it is well-known that the logarithm of the dependent 
variable leads to a correspondence between multiplicative 
regression and additive models. The correspondence satisfies 
the classical linear model’s assumption that the variance of 
the response (Y) is constant over the entire range of parame-
ter values (homoscedastic).  

However, when the variance increases with the mean 
(heteroscedastic) we might consider a model with a constant 
coefficient of variation:  

Var(Y) = 
2
 μ

2
Y , 

where  is the coefficient of variation of Y and μY = E(Y ). 
In generalized linear models [17] the gamma model satisfies 
the above mean and variance relationship. For small , the 
variance-stabilizing transformation, Z = log(Y), has ap-
proximate moments  

E(Z) = log μY – 
2
/2

 
and Var (Z)  

2
 

If the systematic part of the model is multiplicative on 
the original scale, and hence additive on the log scale, then  

Yi = μYi i     (i =1, 2,…, n)                                 (1) 

 

Fig. (1). 
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with  

i = log μYi  =   x
t
i  = o + xi1 1 + … + xip p  

and the errors, { i}’s,  are independent identically distrib-
uted (IID) with E( i) = 1. In GLMs μYi is the scale parameter 
and Var ( i) = 

2  
 is the shape parameter. Consequently,  

Zi  = log Yi = μZi  + i  ( i =  1, 2, …, n)                              (2) 

with  

μZi  = [ o + E{log( i)}] + xi1 1 + …+xip p 

and { i = log i – E{log ( i)}}’s are IID with E( i ) = 0. 

Conversely, if Yi follows a log-normal distribution, i.e., 
Zi ~ N(μZi, 

2
 ) then 

μYi = E(exp Zi) = exp( μZi + 
2
/2)   exp(μZi). 

With the exception of the intercept term the remaining 
parameters 1, 2,…, p can be estimated either from the con-
stant coefficient of variation model (1) or the linear model 
for the transformation of the original data to a log scale (2) 
with a common interpretation [13]. Firth [16] provided a 
comparison of the efficiencies of the maximum-likelihood 
(ML) estimators from a Gamma model (the constant coeffi-
cient of variation model) when the errors are in fact Log-
Gaussian, with those of the Log-Gaussian model when the 
errors have a Gamma distribution. He concludes that the ML 
estimators from the Gamma model perform slightly better 
under reciprocal specification. For small 

2
 it is likely to be 

difficult to discriminate between the Normal-theory linear 
models for log Y, and Gamma-theory multiplicative models 
for Y.  

1. Multiplicative Models with Non-Constant Variance  

Issues in industrial processes are germane to the issue in 
our paper. A common problem in an industrial process is to 
find an operating condition that achieves the target value for 
the mean of a process characteristic, and simultaneously 
minimizes the process variability. If 

2
 is not constant, i.e., 

i is not IID with a common E(log i), parameter estimates 
from one model may have no correspondence with the other 
model. Thus, in the analysis of the data from quality-
improvement experiments, 

2
 is often non-constant. For 

these situations, some scholars [18, 19] have proposed using 
joint GLMs (JGLMs) that allow for structured dispersion. A 
detailed discussion on JGLMs is given in Das and Lee [20, 
14], Lee et al. [21], and Lesperance and Park [22].  

Consider a JGLM for the multiplicative model (1)  

E(Yi) = μYi,  and Var (Yi) = 
2

Yiμ
2

Yi,  

where  

i = log(μYi) = x
t
i Y , and i = log(

2
Yi) = g

t
i Y ,           (3) 

where gi is the row vector in the constant dispersion. The ML 
estimators for Y are obtained by maximizing the log-
likelihood  

lg( )  =  log f (yi, )                      (4) 

and restricted ML (REML) estimators for Y are estimated 
by maximizing the (log) adjusted profile likelihood below 
(see Cox and Reid [23]; Lee and Nelder [18]): 

p Y (lg( )) = {lg( ) – {log det(E(- l
2

g( )/ 

 
2

Y)/2 )}/2}| Y = .                                                            (5) 

The whole estimation process is done iteratively by using 
two interconnected iterative weighted least squares [21].  

Consider a JGLM for the log-normal model (2)  

E(Zi) = μZi , and Var(Zi) = 
2

Zi , 

where 

μZi = x
t
i Z , and i = log(

2
Zi) = g

t
i z.                          (6) 

The ML estimators for Z under the log-normal model 
are obtained by maximizing the log-likelihood  

ll( )=  {log f(zi,  ) - zi}                                               (7) 

and REML estimators for Z are estimated by maximizing 
the adjusted profile likelihood--  

p z (ll ( )) = { ll ( ) – {log det (E(-  l
2

l ( )  

/
2

z )/2 )}/2}| z = ,                                                                                             (8)  

where -zi = log |dzi/dyi| = - log yi is the log Jacobian of the 
transformation.  

For the Gamma model the Akaike information criteria 
(AIC) is  

AIC = - 2lg( ) + 2pg, 

where pg is the number of parameters in the gamma JGLM, 
and for the log-normal model the AIC is 

AIC = - 2ll( ) + 2pl,  

where pl is the number of parameters in the log-normal 
JGLM. If we compare models with the same number of pa-
rameters (pg = pl), we need to compare only the maximized 
likelihoods. To compare models with different scales of re-
sponse variables (y for the gamma model and log y for the 
log-normal model) the Jacobian term in (7) is needed.  

III. METHODS 

A. Data 

The National Family Health Survey, Bihar 1998-99: In-
dia's first National Family Health Survey (NFHS-1) was 
conducted in 1992-93. The Ministry of Health and Family 
Welfare (MOHFW) subsequently designated the Interna-
tional Institute for Population Sciences (IIPS) in Mumbai, as 
the agency to initiate a second survey (NFHS-2), which was 
conducted in 1998-99. An important objective of (NFHS-2) 
was to provide State-level and National-level information on 
fertility, family planning, infant and child mortality, repro-
ductive health, child health, nutrition of women and children, 
and the quality of health and family welfare services.  
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Another important objective of the NFHS-2 was to exam-

ine the above information in the context of socioeconomic 

and cultural factors. NFHS-2 used three types of question-

naires: the Household questionnaire, the Woman Question-

naire, the Village Questionnaire. The Woman Questionnaire 

collected information from ever-married women belonging 

to the age cohort 15-49 who were residents of the sampled 

household. Female respondents were asked about their back-

ground, the details of births of their children during the pre-

ceding three years, and whether they practiced contraception. 

The Child Questionnaire was designed to record details of 

antenatal care, details of delivery, breastfeeding, and post 

partum amenorrhoea, immunization and health care for the 

two most recent births during the three years preceding the 

survey. In our analysis, we have taken a random sample 

(from NFSH-2 data, India) of 139 ever-married women, aged 

between 15 and 49 who resided in the state of Bihar, India.  

B. VARIABLES 

1. Dependent Variable 

The dependent variable for our study is the age at which 
an infant died. Age is measured in months.  

2. Independent Variables 

There are three categories of independent variables to be 

used in our analysis: proximate, maternal, and house-

hold/community. Table 1 presents a description of each set 

of items and how they are operationalized for our study. 

IV. FINDINGS 

A. Descriptive Statistics 

Table 2 presents means and standard deviations for all 

variables to be used in our models. In terms of House-

hold/Community items, these data suggest that the vast ma-

jority of the sample live in rural areas (96.4%), and are of the 

lower caste (50.4%). Moreover, it appears that respondents 

are mostly not Muslim (15%). Finally, note that about 40 

percent of the infants that died are female.   

In terms of Proximate items for infants, most infants do 

not appear to have received their vaccinations. Only about 4 

percent received their first BCG, and 5% their first DPT; 4% 

their second DPT; and 10% their first polio shot, and 9% 

their second polio shot. In contrast, about 52 percent have 

Table 1. Operationalization of Variables in the Analysis 

Domain/Variable Name Operationalization 

Proximate  

Tetanus1. First tetanus shot. 1 = At least once, 0 = No 

BCG1. Calmette-Guérin bacillus (tuberculosis) 1 = Yes, 0 = No 

Polio1. First Polio shot. 1 = Yes, 0 = No 

Polio2. Second Polio shot.  1 = Yes, 0 =No 

Deliver. Where child was delivered.  1 = Hospital or equivalent, 0 = Home 

DPT1. First Diphtheria shot.  1 = Yes, 0 = No 

DPT2 .  Second Diphtheria shot.  1 = Yes, 0 =No 

Measles. Measles shot.  1 = Yes, 0 =No 

  

Maternal  

Breast (breast feeding)  1 = Yes, 0 = No 

Mage (mother’s age)  Age in years. 

  

  

Household/Community  

Urban/Rural. Urban or rural residence.  1 = urban, 0 = rural 

Caste1 (caste is low) 1 = Scheduled, 0 = otherwise 

Caste2 (middle caste) 1 = Backward, 0 =otherwise 

Religion.  Muslim or not.   1 = Muslim, 0 = Other 

Cfem (gender of infant)  1 = Female, 0 = Male 

  

Dependent Variable  

Cdeath (Age at death of child) Age in months 
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actually been vaccinated for tetanus, and only about two per-

cent of infants received their measles vaccinations.   

There are two Maternal items in our study: breast feed-
ing, and mother’s age. A majority of women breast feed their 
infants (55%), and the average age of mothers in our study is 
26.65 years. We should also point out that the average age of 
death among infants, in months, was 3.21 months.  

B. Comparing Log-Gaussian and Gamma Models 

Table 3 presents GLM results from the Log-Gaussian 
Model (LGM) and Gamma Model (GM) with log-link of 
infant mortality in Bihar, India.  

There are three criteria we apply in conducting our com-
parison: We look at the Akaike information criterion (AICs) 
for the best fitting model; we look at the standard errors; and 
we also examine graphical analysis. First, we look to see if 
the coefficients appear to be statistically different. Contrary 
to what we had expected, the models are generally not dif-

ferent in their effects on infant mortality in Bihar, India. The 
three exceptions are mother’s age (Mage), place of delivery 
(Deliver) and Polio1, where the Gamma model exhibits sig-
nificant effects whereas the Log-Gaussian model does not.  

How well do each of the models fit the data? Apparently, 
from the information in Table 3, the better fit is the Log-
Gaussian model (LGM). The LGM has an AIC of 499.1, 
while the Gamma Model’s (GM) AIC is 532.128.  

We also note that the standard errors in the Log-Gaussian 
model are only slightly smaller than the Gamma model. The 
implication is that the Log-Gaussian model is only slightly 
more efficient and bolsters our confidence in using it rather 
than the Gamma model. 

We next examined the model fit based on graphical 
analysis. In Fig. 2(a) and Fig. 2(b), we plot the absolute val-
ues of residuals with respect to fitted values for LGM and 
GM, respectively. Both the figures show that variances in-
crease with the increase in the means, indicating that vari-

Table 2. Means and Standard Deviations for all Items in the Analysis 

Variable Mean Standard Deviation 

Proximate Items   

Tetanus1 .52 .50 

BCG1 .04 .19 

Polio1 .10 .30 

Polio2 .09 .29 

Deliver .25 .43 

DPT1 .05 .22 

DPT2 .04 .19 

Measles .02 .15 

   

Maternal Items   

Breast .55 .50 

Mage 26.65 6.80 

   

Household/Community Items   

Urban   

Caste1 .36 .48 

Caste2 .50 .50 

Religion .15 3.6 

Cfem .40 .49 

   

Dependent Variable   

Cdeath 3.21 5.15 
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ances are non-constant under both the models. The implica-
tion is that GLM fits, for both the distributions, are inappro-
priate. This finding leads us to fit joint GLM for reducing the 
variance.  

Results for fits for the LGM and the GM are displayed in 
Table 4. In this table we limit the model to those items that 
were statistically significant.  

Table 4 shows that joint LGM fit is much better than 
joint GM fit based on AIC and standard errors (mean model 
parameters) as explained above. Indeed, while the GM fit 
remains unchanged (532.128 v. 531.897) the LGM fit is re-
duced by 3.75 percent (480.4 v. 499.1). Fig. 3(a) and Fig. 
3(b) plot the absolute residuals with respect to fitted values 
and the normal probability plot for the mean of the joint GM 

Table 3. Results for mean with constant variance models of infant survival time data from Log-Gaussian & Gamma fits (with all 

covariates) 

 

 
Log Gaussian Model    Gamma Model  

 Covar. estimate s.e t P-value estimate s.e t P-value 

Mean model Const. -1.4819 0.8141 -1.8202 0.07 -1.3345 0.829 -1.61 0.11 

 Mage 0.0284 0.0161 1.763 0.08 0.0403 0.0164 2.454 0.01 

 Rural 0.3560 0.5699 0.6247 0.53 0.2823 0.5807 0.486 0.62 

 Religion -0.0869 0.3509 -0.2475 0.80 0.1074 0.3572 0.301 0.76 

 Caste 1 0.0967 0.4014 0.2408 0.81 0.1543 0.4106 0.376 0.71 

 Caste2 -0.0292 0.3814 -0.0767 0.93 0.0287 0.3930 0.073 0.94 

 Cfem -0.0650 0.2235 -0.2907 0.77 -0.0673 0.2272 -0.296 0.76 

 Tetanus1 0.1310 0.2339 0.5600 0.57 0.1926 0.2368 0.813 0.42 

 Deliver 0.3276 0.2908 1.1267 0.26 0.6070 0.2949 2.059 0.04 

 BCG 1 0.4075 1.2513 0.3257 0.74 1.0759 1.3591 0.792 0.43 

 DPT 1 -0.0015 1.2023 -0.0013 0.99 -0.4947 1.2242 -0.404 0.68 

 POLIO 1 -0.2380 1.2629 -0.1885 0.85 -1.3946 0.7099 -1.965 0.05 

 DPT2 -0.4041 1.2401 -0.3259 0.74 -0.5802 1.3443 -0.432 0.66 

 POLIO 2 -0.2783 1.3566 -0.2051 0.84 0.6248 1.3574 0.689 0.49 

 Measles 0.0659 1.3178 0.0500 0.96 -0.0123 1.3595 -0.009 0.99 

 Breast 0.9742 0.2406 4.0493 0.00 1.2864 0.2437 5.279 0.00 

Constant Dispersion Const. 0.4024 0.1275 3.156 0.00 0.2451 0.1272 1.927 0.06 

AIC  499.100    532.128  

 

(a) (b)
 

Fig. (2). Absolute residual plots with respect to fitted values for constant variance models of (a) Log-Gaussian  & (b) Gamma for infant sur-
vival time in Table 3.  
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fit, respectively. Fig. 3(a) is almost flat with the running 
means, indicating that the variance is constant under joint 
GM fit. Fig. 3(b) does not show any systematic departures, 
confirming our final selected gamma model.  

Similarly, we plot Fig. 4(a) (absolute residual plot) and 
Fig. 4(b) (normal probability plot for the mean) for the joint 
LGM fit. Fig. 4(a) and Fig. 4(b) show almost the same fea-
tures as Fig. 3(a) and Fig. 3(b). Thus, we conclude that both 
the fits are satisfactory. In addition, the absolute residual plot 
for joint LGM fit is much flatter than the joint GM fit. Thus, 
AIC, standard errors for mean model parameters, the number 
of significant effects, and graphical analysis suggest that the 
joint LGM fit is much better than the joint GM fit. The joint 
LGM fit shows that all the effects are significant (maximum 
at 6%), whereas in the joint GM model, the constant and 
Mother’s age fail to meet the 10 percent level of statistical 
significance (Table 4).  

V. CONCLUSION 

Infant mortality in India is an important social and medi-
cal problem. In attempting to better understand the issues 
surrounding this important problem, researchers have fo-

cused on factors related to pre-and postnatal factors. The 
majority of findings from this body of research suggest that 
medical care trumps economics and social status in reducing 
infant mortality. 

Our research had two purposes. The first was to compare 
our results to those of previous research. A second purpose 
was to evaluate the statistical assumption made by previous 
research regarding the distribution of infant mortality data. 
Previous research estimated models assuming a Log-
Gaussian distribution with constant variance, but infant mor-
tality data appears to be Log-Gaussian or Gamma with non-
constant variance. Our concern was that previous research, 
making the Gaussian assumption and then applying multi-
variate models, would draw important conclusions from er-
roneous assumptions. We therefore estimated and compared 
two models: a Log-Gaussian Model and a Gamma Model.  

Our results, though not completely conclusive, are re-
vealing— 

• Our findings confirm previous research by not-
ing that Proximate and House/Community fac-
tors tend to increase the life span of infants. 

Table 4. Results for mean & constant dispersion of infant survival time data from Log-Gaussian & Gamma fit 

  Log Gaussian Model   Gamma Model  

 Covar. estimate s.e t Pvalue estimate s.e t P-value 

Mean model Const. -1.1103 0.3473 -3.197 0.00 -1.2571 0.4147 -3.031 0.00 

 Mage 0.0248 0.0132 1.878 0.06 0.0456 0.0152 2.995 0.00 

 Deliver 0.5127 0.2368 2.165 0.03 0.9243 0.2630 3.515 0.00 

 Breast 1.0252 0.1839 5.575 0.00 1.4411 0.2026 7.115 0.00 

Constant Dispersion Const. -1.6808 0.6027 -2.789 0.01 -0.9600 0.5968 -1.609 0.11 

 Mage 0.0352 0.0191 1.838 0.06 0.0245 0.0190 1.293 0.19 

 Breast 1.2507 0.2828 4.423 0.00 0.5981 0.2752 2.173 0.03 

 Deliver 0.9851 0.3228 3.052 0.00 0.5997 0.3150 1.904 0.06 

AIC  480.400    531.897  

(a) (b)  

Fig. (3). For final Gamma non-constant variance models (a) The Absolute residual plots with respect to fitted values & (b) The Normal prob-

ability plot for mean of infant survival time in Table 4. 
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• Contrary to what we had expected, the models 
were remarkably similar in their effects on in-
fant mortality.  

• There were two exceptions. The intercept and 
Mage in the joint Log-Gaussian variance model 
were statistically significant, but not in the joint 
Gamma variance model. A second exception 
concerned model fit. The joint Log-Gaussian 
model exhibited a better fit to the data than the 
joint Gamma model. The AICs for the joint 
Log-Gaussian and joint models were: 480.400 
vs. 531.897.  

There are two conclusions that can be drawn from our re-
search. First, in order to reduce infant mortality in India, 
policy and practice should continue to focus on pre-and post 
natal care. Our findings and those of previous research have 
continually shown that such practices reduce infant mortal-
ity.  

A second conclusion has to do with the use of statistical 
models. While further research is called for, we find that a 
joint Log-Gaussian model is much more effective than either 
traditional Log- Gaussian (with constant variance) or joint 
Gamma models because it better fits the data. In short, re-
search should have greater faith in these results than those 
emanating from the joint Gamma and Log-Gaussian (with 
constant variance) models.  
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Fig. (4). For final Log-Gaussian non-constant variance models (a) The Absolute residual plots with respect to fitted values and (b) The Nor-

mal probability plot for mean of infant survival time in Table 4. 
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