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Abstract. Cohort Change Ratios (CCRs) have a long history of use in demography. In spite of their history of use, they 
appear, however, to have been overlooked in regard to the major canon of formal demography, stable population theory. 
In this paper, CCRs are explored as a tool for examining the idea of a stable population. In comparing the approach using 
CCRs to the traditional analytical approach, benefits and drawbacks are noted. The paper also introduces an Index of Sta-
bility, which is used in a regression model to estimate the number of years before the population in question becomes (ap-
proximately) stable. The regression model works reasonably well and, as such, provides something not available in the 
traditional analytical approach, which is an estimate of the time to (approximate) stability for a given population.  
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1. INTRODUCTION 

What is a stable population? It is a population with an in-
variable relative age structure and a constant rate of growth.  
That is, the proportion of people in each age group remains 
constant over time (Swanson and Stephan, 2004: 775). When 
the absolute number of people in each group is also constant 
over time, a stationary population exists, which is a special 
case of a stable population in which the growth rate is zero 
[1]. 

An important feature of the stable population model is 
that over time a population “forgets” its past age distribution 
when it is subject to constant rates regarding the components 
of change [2, 3]. This property is known as ergodicity. It 
implies that if one applies a constant set of fertility, mortal-
ity, and migration rates to two arbitrarily chosen age distri-
bution, no matter how different, the two age distributions 
will ultimately converge to the same age distribution.  

Alfred J. Lotka is generally credited with formulating the 
idea of a stable population and exploring many of its impor-
tant features, including the finding that in the absence of 
migration, a population subject to constant fertility and mor-
tality rates would eventually have a constant rate of natural 
increase [4, 5]. Continuing the analytical tradition estab-
lished by Lotka, many researchers have examined the idea of 
a stable population and refined its underlying theory and 
extended its applications [2, 3, 6-14]. Most of this research 
has, however, been confined to examining a population not 
affected by migration. However, his is an un-necessarily 
restrictive assumption [3]. Nonetheless, other than the simple 
migration rates employed by Rogers [13, 15] and subsequent  
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investigations of more refined model migration schedules 
[16], this restriction appears to remain a governing force in 
the examination of stable population ideas.  

Another “unnecessarily restrictive” assumption that has 
governed much of the work on stable populations is defined 
by the so-called “two-sex” problem [12, 17, 18]. In this 
problem (which evidently stems from Lotka’s 1907 formula-
tion of a stable population), only one sex (virtually always 
women) was examined in the context of a stable population 
because of problems reconciling the numbers of births result-
ing from including both sexes. However, as Preston et al. 
show a “female-dominant” approach to fertility offers a con-
venient way around this problem [12].  

The un-necessarily restrictive assumptions regarding mi-
gration and the inclusion of both sexes serve as primary mo-
tivations for the current paper. A secondary motivation is 
incorporating migration into examinations of the idea of a 
stable population in an easy-to-follow manner. To this end, 
the concept of a stable population is examined from the per-
spective of “Cohort Change Ratios.” 

2. COHORT CHANGE RATIOS 

What are Cohort Change Ratios (CCRs)? They have a 
long history of use in demography. Under the rubric of 
“Census Survival Ratios,” they have been used to estimate 
adult mortality [19, 20] and under the rubric of the “Hamil-
ton-Perry” method, they are used to make population projec-
tions [21-23]. However, they appear to have been overlooked 
in regard to examining the concept of a stable population. 

In this paper, CCRs are used to project a population to 
stability. Thus, the general ideas associated with CCRs are 
described in conjunction with the Hamilton-Perry method. 
The Hamilton-Perry Method is a variant of the cohort-
component method that has far less intensive input data re-
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quirements. Instead of mortality, fertility, migration, and 
total population data, which are required by the full-blown 
cohort-component method, the Hamilton-Perry method re-
quires data only from the two most recent censuses [21-23]. 
The Hamilton-Perry method moves a population by age (and 
sex) from time t to time t+k using CCRs computed from data 
in the two most recent censuses. It consists of two steps. The 
first uses existing data to develop CCRs and the second ap-
plies the CCRs to the cohorts of the launch year population 
to move them into the future. The second step can be re-
peated infinitely, with the projected population serving as the 
launch population for the next projection cycle. The formula 
for the first step, the development of a CCR is: 

nCCRx,i = nPx,i,t / nPx-k,i,t-k  
where  

nPx,i,t is the population aged x to x+n in area i at the most 
recent census (t), 

nPx-k,i,t-k is the population aged x-k to x-k+n in area i at 
the 2nd most recent  

 census (t-k), 
 k is the number of years between the most recent census 

at time t  
 for area i and the one preceding it for area i at time t-k. 
The basic formula for the second step, moving the co-

horts of a population into the future is: 

nPx+k,i,t+k = (nCCRx,i )*( nPx,i,t) 
where  

nPx+k,i,t+k is the population aged x+k to x+k+n in area i at 
time t+k 

 nCCRx,i = nPx,i,t / nPx-k,i,t-k  

nPx,i,t is the population aged x to x+n in area i at the most 
recent census (t), 

 k is the number of years between the most recent census 
at time t  

 for area i and the one preceding it for area i at time t-k. 
Given the nature of the CCRs, 10-14 is the youngest age 

group for which projections can be made if there are 10 
years between censuses. To project the population aged 0-4 
and 5-9, one can use the Child Woman Ratio (CWR), or 
more generally a “Child Adult Ratio” (CAR). It does not 
require any data beyond what is available in the decennial 
census. For projecting the population aged 0-4, CAR is de-
fined as the population aged 0-4 divided by the population 
aged 15-44. For projecting the population aged 5-9, CAR is 
defined as the population aged 5-9 divided by the population 
aged 20-49. Here are the CAR equations for projecting the 
population aged 0-4 and 5-9, respectively.  

Population 0-4: 5P0,t+k = (5P 0,t / 30P15,t) *( 30P15,t+k) 
Population 5-9: 5P5,t+k = ( 5P5,t / 30P20,t ) * ( 30P20,t+k ) 
where  
P = population,  
t is the year of the most recent census 

and t+k is the estimation year 
There are other “adult” age groups that could be used to 

define CAR. The definitions shown in the two preceding 
equations are designed for a population in which fertility is 
at or below replacement, (i.e., the TFR is less than 2.1 or so), 
which correlates with the fact that first births tend to be 
postponed. 

Projections of the oldest open-ended age group differ 
slightly from the CCR projections for the age groups beyond 
age 10 up to the oldest open-ended age group. If, for exam-
ple, the final closed age group is 80-84, with 85+ as the ter-
minal open-ended age group, then calculations for the 
∞CCR85,i,t require the summation of the three oldest age 
groups to get the population age 75+ at time t-k: 

∞CCR75,i,t = ∞P85,i,t / ∞P75,i,t-k  
 The formula for projecting the population 85+ of area i 

for the year t+k is: 

∞P85,imt+k = (∞CCR75,i,t )* (∞P75,i,t) 
Table 1 provides an example of the Hamilton-Perry 

Method for the state of Alaska. It uses the country’s 2000 
census data and 2010 estimates by age to generate a 2020 
population projection of the population by age. Since the 
population data are ten years apart for Alaska with a final 
open-ended age group of 85+, the conventions described 
above are used in terms of the CCRs, CAR, and the projec-
tion of age group 85+. Important to the subsequent discus-
sion are the CCRs developed for the 2000-2010 period.  

Table 1 shows that launching from a population of 
710,231 in 2010, the Hamilton-Perry Method generates a 
2020 population of 807,401. This projection corresponds to 
the increase in population between 2000 (626,932) and 2010 
(710,231). This increase largely reflects Alaska’s net in-
migration and relatively young population. 

Since this touches on the implicit recognition of the com-
ponents of population change in the Hamilton-Perry projec-
tion for Alaska, it is worthwhile to note here the Hamilton 
Perry method can be described in terms of these components. 
That is, the Hamilton-Perry Method can be expressed in 
terms of the fundamental demographic equation. Since the 
fundamental equation is: 

Pi,t+k = Pi,t + Bi – Di + Ii - Oi 
where 
Pi,t = Population of area i at time t (e.g., the launch date) 
Pi,t+k = Population of area i at time t+k (e.g., the projec-

tion target date) 
Bi = Births in area i between time t and t+k 
Di = Deaths in area i between time t and t+k 
 Ii = In-migrants in area i between time t and t+k 
 Oi = Out-migrants in area i between time t and t+k 
The first equation we showed can be expressed as  

nCCRx,i = nPx,i,t / nPx-k,i,t-k  
since 
 nCCRx,i =( nPx-k,i,t-k + Bi – Di + Ii - Oi )/( nPx-k,i,t-k)  
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The second equation we show can be expressed as 

nPx+k,i,t+k = (nCCRx,i )*( nPx,i,t ) 
since  

nPx+k,i,t+k = (( nPx-k,i,t-k + Bi – Di + Ii - Oi )/( nPx-k,i,t-k))*( nPx,i,t ) 
Where x+k >= 10 then 

nCCRx,i =( nPx-k,i,t-k – Di + Ii - Oi )/( nPx-k,i,t-k)  
and since Ni = Ii - Oi 

nCCRx,i =( nPx-k,i,t-k – Di + Ni )/( nPx-k,i,t-k) 
where x+k >= 10 

These equations clearly reveal that the Hamilton-Perry 
Method expresses the individual components of change 
(birth, deaths, and migration) in terms of Cohort Change 
Ratios and incorporates these components of change in the 
projections made from it.  

Note that the fundamental equation can be generalized to 
include age groups (as well as sex, race, and ethnicity).  

3. A STABLE POPULATION: THE TRADITIONAL 
APPROACH 

Although Preston et al. [3] point out that the assumption 
of no migration is un-necessarily restrictive, stable popula-

tion theory has largely been examined using this restriction. 
It also has largely been examined in terms of a single sex due 
to the so-called “two-sex” problem, which Preston et al. [3] 
also argue is un-necessarily restrictive. 

The Lotka Integral Equation as given by (Preston et al. 
[3] is  

B(t) = 
  0

t

! N(a,t)m(a)da + G(t) 

where  

B(t) = number of births at time t 

N(a,t) = number of persons aged a at time t 

m(a) = rate of bearing female children for women aged a 

G(t) = births to women alive at time 0 

As Preston et al. [3] observe, the N(a,t) function for 
women born after time 0 can be expressed in terms of the 
number of births into their cohort and the probability of sur-
viving to age a, p(a): 

N(a,t) = B(t-a)*p(a),  
where t>0 

Table 1. A Hamilton-Perry Population Projection for Alaska: Base Year Data (2000-2010), Launch Year(2010) and Target Year 
2020) 

 2000  
Population 

2000 Proportion 
by Age 

2010  
Population 

2010 Proportion 
BY AGE 

2000-2010      
CCR 

ABS  
Difference 

Total Population: 0 to 4 years 47,591 0.0759 53,996 0.0760 0.34274 0.0001 

Total Population: 5 to 9 years 53,771 0.0858 50,887 0.0716 0.37033 0.0141 

Total Population: 10 to 14 years 56,661 0.0904 50,816 0.0715 1.06776 0.0188 

Total Population: 15 to 19 years 50,094 0.0799 52,141 0.0734 0.96969 0.0065 

Total Population: 20 to 24 years 39,892 0.0636 54,419 0.0766 0.96043 0.0130 

Total Population: 25 to 29 years 42,987 0.0686 55,419 0.0780 1.10630 0.0095 

Total Population: 30 to 34 years 46,486 0.0741 47,706 0.0672 1.19588 0.0070 

Total Population: 35 to 39 years 55,723 0.0889 45,833 0.0645 1.06621 0.0243 

Total Population: 40 to 44 years 58,326 0.0930 47,141 0.0664 1.01409 0.0267 

Total Population: 45 to 49 years 53,515 0.0854 54,726 0.0771 0.98211 0.0083 

Total Population: 50 to 54 years 41,437 0.0661 56,300 0.0793 0.96526 0.0132 

Total Population: 55 to 59 years 27,423 0.0437 49,971 0.0704 0.93378 0.0266 

Total Population: 60 to 64 years 17,327 0.0276 35,938 0.0506 0.86729 0.0230 

Total Population: 65 to 69 years 12,626 0.0201 22,202 0.0313 0.80961 0.0111 

Total Population: 70 to 74 years 9,881 0.0158 13,148 0.0185 0.75882 0.0028 

Total Population: 75 to 79 years 6,863 0.0109 8,892 0.0125 0.70426 0.0016 

Total Population: 80 to 84 years 3,695 0.0059 5,985 0.0084 0.60571 0.0025 

Total Population: 85 years and over 2,634 0.0042 4,711 0.0066 0.68643 0.0024 

Total Population 626,932 1.0000 710,231 1.0000  0.2115 

S      0.10573 
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Making this substitution into the preceding equation 
yields 

B(t) = 
  0

t

!  B(t-a)*p(a)* m(a)da + G(t) 

And since the value of G(t) goes to zero over time (e.g., 
in about 50 years), the birth sequence can be expressed as 

B(t) = 
  0

t

!  B(t-a)*p(a)* m(a)da 

where t > 50 
The preceding Equation can be solved when an expres-

sion for B(t) is substituted into its left and right hand sides. 
Lotka showed that an exponential birth series would do this. 
Let B(t) = B*ept 

Then  

B*ept = 
  0

t

!  B*ep(t-a) *p(a) *m(a)da 

where t > 50 
and cancelling the common term, B*ept from both sides 
yields 

1 = 
  0

t

!  B*epa *p(a)*m(a)da 

4. A STABLE POPULATION: THE CCR APPROACH 

 The CCR approach simply takes the cohort change ratios 
found at a current point in time and holds them constant until 
the population reaches stability. To determine when a popu-
lation has reached stability, the well-known “Index of Dis-
similarity” is employed as an “Index of Stability” (S). The 
index is defined as: 

S = 100*{0.5* ∑│(npx/∑nPx)t+y - (npx/∑nPx)t │} 

where 
y = number of years between census counts/projection 

cycles  

x = age 
n = width of the age group (in years) 
t = year 
S compares the relative age distribution at one point in 

time (t+y) with the relative age distribution at the preceding 
point in time (t) and measures the percentage that one distri-
bution would have to be re-allocated to match the other. S 
ranges from 0 to 100; a score of zero means that there is no 
allocation error, and 100 means that the maximum allocation 
error exists. This can mean several things, but a common 
interpretation is that half of the numbers at one point in time 
would have to be re-allocated and half of the numbers at the 
preceding point in time would have to be re-allocated.  

S exploits the idea that when a population is stable, the 
sum of the differences between the relative size of corre-
sponding age groups at time t+y and time t is zero. Thus, at a 
point time when the sum of the differences across all of the 
corresponding age groups is zero at that point in time and the 
preceding point in time (or very nearly so), the population 
has reached stability. The advantage of using the Index of 
Dissimilarity as S is that it provides S with a bounded meas-
ure (between 0 and 1) and has a clear interpretation. This 
index could, of course, be used in conjunction with the tradi-
tional approach, but it does not appear in the literature in 
regard to measuring population stability. With S, one has a 
potential tool for examining the length of time to stability for 
given population.  

The examination of the CCR approach to the idea of a 
stable population starts by using the case of Alaska. The 
CCRs (from the 2000-2010 period) are held constant from 
the launch year (2010) to a year where S = 0 (relative to the 
preceding year in the projection cycle). This occurs at the 
year 2470. Table 2 displays this by showing the information 
at for the 2000-2010 launch period and the information at the 
period where stability is reached, 2370-2380. S = .10573 at 
the launch year of 2010; by 2380, S = .0.0000.  

Fig. (1) provides the change in S from 2010 to 2470. As 
it shows, the path to stability is monotonic but not linear. It 
initially declines rapidly to the point where S is approxi-
mately equal to .01, but the change in S slows substantially 
around 2120. From there to 2470, S moves incrementally to 
zero. 

Fig. (1).  Stability Index (S) over time (in Years) as the Alaskan Population moves to Stability. 
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Figs. (2 and 3) show the age distribution of Alaska in 
2010 and in 2470, when it reaches stability 

 As another example, consider the United States. As was 
the case with Alaska, the projection is launched with CCRs 
taken over the 2000-2010 period that are held constant from 
the launch year to a year where S = 0 (relative to the preced-
ing year in the projection cycle). Stability occurs at the year 
2380. Table 3 displays this by showing the information at the 
launch period, 2000-2010, and the information at the period 

where stability is reached, 2330-2340. S = 5.65% at the 
launch year of 2010; by 2380, S = 0.00%. 

Fig. (4) provides the change in S from 2010 to 2340 for 
the United States. Unlike Alaska, the path to stability is nei-
ther monotonic nor linear: It initially increases, “bounces 
around” a bit, then decreases substantially before its decrease 
slows considerably, which starts around 2160. From 2160 to 
2340, S moves incrementally to zero. Fig. (5) shows the 
graph of ln(S) relative to time 

Table 2. The Population of Alaska at Start (2000-10) and at Achieving Stability (2460-70) 

 2000  
Population 

2000  
Proportion 

by Age 

2010  
Population 

2010  
Proportion 

by Age 

2000-2010      
CCR 

ABS  
Difference 

Projected 
2460 

2460  
Proportion 

by Age 

Projected 
2470 

2470  
Proportion 

by Age 

ABS  
Difference 

Total Population: 
0 to 4 years 47,591 0.0759 53,996 0.0760 0.34274 0.0001 1,474,294 0.0698 1,588,233 0.0698 0.0000 

Total Population: 
5 to 9 years 

53,771 0.0858 50,887 0.0716 0.37033 0.0141 1,679,618 0.0796 1,809,411 0.0796 0.0000 

Total Population: 
10 to 14 years 

56,661 0.0904 50,816 0.0715 1.06776 0.0188 1,461,280 0.0692 1,574,200 0.0692 0.0000 

Total Population: 
15 to 19 years 

50,094 0.0799 52,141 0.0734 0.96969 0.0065 1,511,861 0.0716 1,628,702 0.0716 0.0000 

Total Population: 
20 to 24 years 

39,892 0.0636 54,419 0.0766 0.96043 0.0130 1,302,766 0.0617 1,403,460 0.0617 0.0000 

Total Population: 
25 to 29 years 

42,987 0.0686 55,419 0.0780 1.10630 0.0095 1,552,579 0.0735 1,672,572 0.0735 0.0000 

Total Population: 
30 to 34 years 

46,486 0.0741 47,706 0.0672 1.19588 0.0070 1,446,200 0.0685 1,557,951 0.0685 0.0000 

Total Population: 
35 to 39 years 

55,723 0.0889 45,833 0.0645 1.06621 0.0243 1,536,636 0.0728 1,655,369 0.0728 0.0000 

Total Population: 
40 to 44 years 

58,326 0.0930 47,141 0.0664 1.01409 0.0267 1,361,367 0.0645 1,466,578 0.0645 0.0000 

Total Population: 
45 to 49 years 

53,515 0.0854 54,726 0.0771 0.98211 0.0083 1,400,858 0.0663 1,509,142 0.0664 0.0000 

Total Population: 
50 to 54 years 

41,437 0.0661 56,300 0.0793 0.96526 0.0132 1,219,797 0.0578 1,314,079 0.0578 0.0000 

Total Population: 
55 to 59 years 

27,423 0.0437 49,971 0.0704 0.93378 0.0266 1,214,262 0.0575 1,308,087 0.0575 0.0000 

Total Population: 
60 to 64 years 

17,327 0.0276 35,938 0.0506 0.86729 0.0230 982,051 0.0465 1,057,921 0.0465 0.0000 

Total Population: 
65 to 69 years 

12,626 0.0201 22,202 0.0313 0.80961 0.0111 912,560 0.0432 983,082 0.0432 0.0000 

Total Population: 
70 to 74 years 

9,881 0.0158 13,148 0.0185 0.75882 0.0028 691,718 0.0328 745,196 0.0328 0.0000 

Total Population: 
75 to 79 years 

6,863 0.0109 8,892 0.0125 0.70426 0.0016 596,563 0.0283 642,681 0.0283 0.0000 

Total Population: 
80 to 84 years 

3,695 0.0059 5,985 0.0084 0.60571 0.0025 388,930 0.0184 418,979 0.0184 0.0000 

Total Population: 
85 years and over 

2,634 0.0042 4,711 0.0066 0.68643 0.0024 380,140 0.0180 409,501 0.0180 0.0000 

 626,932 1.0000 710,231 1.0000  0.2115 21,113,483 1 22,745,143 1.0000 0.0000 

S      0.10573     0.00000 
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Fig. (2). Age Distribution of Alaska in 2010. 

Fig. (3). Age Distribution of Alaska in 2470. 

 
Fig. (4). Stability Index (S) over time (in Years) as the U.S. Population moves to Stability. 
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Table 3. The Population of the United States at Start (2000-10) and at Achieving Stability (2330-40) 

 
2000  

Population 
2000  

Proportion by Age 
2010  

Population 
2010  

Proportion by Age 
2000-2010 

CCR 
ABS  

Difference 
Projected 

2330 

2330  

Proportion 
By Age 

Projected 
2340 

2340  

Proportion by 
Age 

ABS  
Difference 

Total Popula-
tion: 0 to 4 years 

19,175,798 0.0681 20,201,362 0.0654 0.32245 0.0027 93,530,317 0.0629 98,079,782 0.0629 0.0000 

Total Popula-
tion: 5 to 9 years 

20,549,505 0.0730 20,348,657 0.0659 0.32828 0.0071 95,120,900 0.0640 99,745,952 0.0640 0.0000 

Total Popula-

tion: 10 to 14 
years 

20,528,072 0.0729 20,677,194 0.0670 1.07830 0.0060 96,175,009 0.0647 100,853,404 0.0647 0.0000 

Total Popula-
tion: 15 to 19 

years 
20,219,890 0.0718 22,040,343 0.0714 1.07255 0.0005 97,285,512 0.0654 102,021,789 0.0654 0.0000 

Total Popula-

tion: 20 to 24 
years 

18,964,001 0.0674 21,585,999 0.0699 1.05154 0.0025 96,436,268 0.0649 101,131,448 0.0649 0.0000 

Total Popula-
tion: 25 to 29 

years 
19,381,336 0.0689 21,101,849 0.0683 1.04362 0.0005 96,819,753 0.0651 101,528,949 0.0651 0.0000 

Total Popula-

tion: 30 to 34 
years 

20,510,388 0.0729 19,962,099 0.0647 1.05263 0.0082 96,807,064 0.0651 101,511,824 0.0651 0.0000 

Total Popula-

tion: 35 to 39 
years 

22,706,664 0.0807 20,179,642 0.0654 1.04119 0.0153 96,132,719 0.0646 100,807,703 0.0646 0.0000 

Total Popula-

tion: 40 to 44 
years 

22,441,863 0.0797 20,890,964 0.0677 1.01856 0.0121 94,024,022 0.0632 98,603,346 0.0632 0.0000 

Total Popula-

tion: 45 to 49 
years 

20,092,404 0.0714 22,708,591 0.0736 1.00008 0.0022 91,674,594 0.0617 96,140,877 0.0617 0.0000 
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Table 3. cont…. 

 
2000  

Population 
2000  

Proportion by Age 
2010  

Population 
2010  

Proportion by Age 

2000-
2010 
CCR 

ABS  
Difference 

Projected 
2330 

2330  
Proportion 

By Age 

Projected 
2340 

2340  
Proportion by 

Age 

ABS  
Difference 

Total Popula-
tion: 50 to 54 

years 
17,585,548 0.0625 22,298,125 0.0722 0.99360 0.0097 89,088,708 0.0599 93,421,807 0.0599 0.0000 

Total Popula-
tion: 55 to 59 

years 
13,469,237 0.0479 19,664,805 0.0637 0.97872 0.0158 85,568,496 0.0575 89,723,610 0.0575 0.0000 

Total Popula-
tion: 60 to 64 

years 
10,805,447 0.0384 16,817,924 0.0545 0.95635 0.0161 81,251,010 0.0546 85,199,911 0.0546 0.0000 

Total Popula-
tion: 65 to 69 

years 
9,533,545 0.0339 12,435,263 0.0403 0.92323 0.0064 75,328,846 0.0507 78,999,779 0.0507 0.0000 

Total Popula-
tion: 70 to 74 

years 
8,857,441 0.0315 9,278,166 0.0301 0.85866 0.0014 66,521,921 0.0447 69,766,698 0.0447 0.0000 

Total Popula-
tion: 75 to 79 

years 
7,415,813 0.0264 7,317,795 0.0237 0.76758 0.0026 55,138,893 0.0371 57,821,205 0.0371 0.0000 

Total Popula-
tion: 80 to 84 

years 
4,945,367 0.0176 5,743,327 0.0186 0.64842 0.0010 41,139,168 0.0277 43,134,032 0.0277 0.0000 

Total Popula-
tion: 85 years 

and over 
4,239,587 0.0151 5,493,433 0.0178 0.74077 0.0027 38,954,558 0.0262 40,845,395 0.0262 0.0000 

Total Population 281,421,906 1.0000 308,745,538 1.0000 1.09709 0.1130 
1,486,997,7

59 
1 

1,559,337,51
2 

1.0000 0.0000 

S      0.05648     0.00002 

GROWTH 
RATE 

  0.00927      0.00475   
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Fig. (5). The Natural Logarithm of S over time (in Years) as the U.S. Population moves to Stability. 

 
Fig. (6). Age Distribution of the U.S. in 2000. 

 

Fig. (7). Age Distribution of the U.S. in 2340. 
 

Figs. (6 and 7) show the age distribution of the U.S. in 
2000 and in 2340, when it reaches stability. 

The final case study population is Whitman County, 
Washington. This population is of interest not only because 
it is growing but because it is heavily impacted by a “special 
population, namely students enrolled at Washington State 

University. In 2010, the total population of Whitman County 
was about 45,000. Students at Washington State University 
make up about half of this number. This can be seen in  
Fig. (10). 

As was the case with Alaska and the United States, the 
projection is launched with CCRs taken over the 2000-2010  
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Fig. (8). Stability Index (S) over time (in Years) as the Whitman County Population moves to Stability. 

 
Fig. (9). The Natural Logarithm of S over time (in Years) as the Whitman County Population moves to Stability. 

 
Fig. (10). Age Distribution of Whitman County in 2000. 
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Fig. (11). Age Distribution of Whitman County in 2290. 

Table 4. The Population of Whitman County, Washington at Start (2000-10) and at achieving Stability (2280-90) 

 
2000  

Population 

2000  
Proportion 

by Age 

2010  
Population 

2010  
Proportion 

by Age 

2000-
2010 
CCR 

ABS  
Difference 

Projected 
2280 

2280  
Proportion 

by Age 

Projected 
2290 

2290 
Proportion 

by Age 

ABS  
Difference 

Total 
Popula-

tion: 0 to 4 
years 

940 0.0463 1,978 0.0442 0.11408 0.0021 
1,193,747
,957,429 

0.0366 
2,546,285
,089,708 

0.0366 0.0000 

Total 
Popula-

tion: 5 to 9 
years 

971 0.0478 1,810 0.0404 0.26838 0.0074 
1,874,211
,939,120 

0.0575 
3,997,707
,822,128 

0.0575 0.0000 

Total 
Popula-

tion: 10 to 
14 years 

1,012 0.0498 1,789 0.0400 1.90319 0.0099 
1,065,138
,878,270 

0.0327 
2,271,930
,953,021 

0.0327 0.0000 

Total 
Popula-

tion: 15 to 
19 years 

2,696 0.1327 6,072 0.1356 6.25335 0.0029 
5,494,407
,269,480 

0.1686 
11,720,09
7,728,463 

0.1686 0.0000 

Total 
Popula-

tion: 20 to 
24 years 

4,431 0.2181 11,394 0.2545 
11.2588

9 
0.0364 

5,622,100
,696,861 

0.1725 
11,992,28
4,959,494 

0.1725 0.0000 

Total 
Popula-

tion: 25 to 
29 years 

1,368 0.0673 3,621 0.0809 1.34310 0.0135 
3,459,708
,398,795 

0.1061 
7,379,543
,294,802 

0.1061 0.0000 

Total 
Popula-

tion: 30 to 
34 years 

1,144 0.0563 2,324 0.0519 0.52449 0.0044 
1,382,496
,179,298 

0.0424 
2,948,716
,321,260 

0.0424 0.0000 

0.0000 0.0500 0.1000 0.1500 0.2000

1

3

5

7

9

11

13

15

17
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Table 4. cont…. 

 
2000  

Population 

2000  
Proportion 

by Age 

2010  
Population 

2010  
Proportion 

by Age 

2000-
2010 
CCR 

ABS  
Difference 

Projected 
2280 

2280  
Proportion 

by Age 

Projected 
2290 

2290 
Proportion 

by Age 

ABS  
Difference 

Total 
Popula-

tion: 35 to 
39 years 

1,106 0.0544 1,806 0.0403 1.32018 0.0141 
2,141,213
,337,187 

0.0657 
4,567,422
,052,795 

0.0657 0.0000 

Total 
Popula-

tion: 40 to 
44 years 

1,140 0.0561 1,864 0.0416 1.62937 0.0145 
1,056,015
,018,418 

0.0324 
2,252,598
,669,765 

0.0324 0.0000 

Total 
Popula-

tion: 45 to 
49 years 

1,013 0.0499 2,003 0.0447 1.81103 0.0051 
1,817,937
,131,839 

0.0558 
3,877,803
,177,565 

0.0558 0.0000 

Total 
Popula-

tion: 50 to 
54 years 

912 0.0449 2,212 0.0494 1.94035 0.0045 
960,723,3

38,343 
0.0295 

2,049,039
,667,317 

0.0295 0.0000 

Total 
Popula-

tion: 55 to 
59 years 

766 0.0377 1,967 0.0439 1.94176 0.0062 
1,654,956
,562,279 

0.0508 
3,529,992
,436,650 

0.0508 0.0000 

Total 
Popula-

tion: 60 to 
64 years 

569 0.0280 1,679 0.0375 1.84101 0.0095 
829,203,7

14,494 
0.0254 

1,768,700
,093,287 

0.0254 0.0000 

Total 
Popula-

tion: 65 to 
69 years 

472 0.0232 1,343 0.0300 1.75326 0.0068 
1,360,103
,723,348 

0.0417 
2,901,575
,278,251 

0.0417 0.0000 

Total 
Popula-

tion: 70 to 
74 years 

432 0.0213 885 0.0198 1.55536 0.0015 
604,664,3

42,911 
0.0186 

1,289,710
,522,544 

0.0185 0.0000 

Total 
Popula-

tion: 75 to 
79 years 

454 0.0223 716 0.0160 1.51695 0.0064 
967,400,1

12,467 
0.0297 

2,063,208
,190,503 

0.0297 0.0000 

Total 
Popula-

tion: 80 to 
84 years 

360 0.0177 584 0.0130 1.35185 0.0047 
383,317,6

32,214 
0.0118 

817,416,6
11,713 

0.0118 0.0000 

Total 
Popula-
tion: 85 

years and 
over 

529 0.0260 729 0.0163 1.60573 0.0098 
728,019,8

32,900 
0.0223 

1,553,380
,356,803 

0.0223 0.0000 

Total 
population 

20,315 1.0000 44,776   0.1595 
32,595,36
6,065,653 

 
69,527,41
3,226,071 

 0.0000 

S      7.98%     0.00% 
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Table 5. The Population of Whitman County, Washington at Start (2000-10) and at Achieving Stability (2410-20) when the USA 
CCRs are Applied 

 
2000  

Population 

2000  

Proportion 

by Age 

2010  

Population 

2010  

Proportion 

by Age 

2000-

2010 

CCR 

ABS 

Difference 

Projected 

2410 

2410  

Proportion 

by Age 

Projected 

2420 

2420  

Proportion 

by Age 

ABS 

Difference 

Total Population: 0 

to 4 years 
940 0.0463 1,978 0.0442 0.11408 0.0021 26,582 0.0629 27,877 0.0629 0.0000 

Total Population: 5 

to 9 years 
971 0.0478 1,810 0.0404 0.26838 0.0074 27,036 0.0640 28,349 0.0640 0.0000 

Total Population: 

10 to 14 years 
1,012 0.0498 1,789 0.0400 1.90319 0.0099 27,338 0.0647 28,663 0.0647 0.0000 

Total Population: 

15 to 19 years 
2,696 0.1327 6,072 0.1356 6.25335 0.0029 27,652 0.0654 28,998 0.0654 0.0000 

Total Population: 

20 to 24 years 
4,431 0.2181 11,394 0.2545 

11.2588

9 
0.0364 27,407 0.0648 28,747 0.0649 0.0000 

Total Population: 

25 to 29 years 
1,368 0.0673 3,621 0.0809 1.34310 0.0135 27,515 0.0651 28,858 0.0651 0.0000 

Total Population: 

30 to 34 years 
1,144 0.0563 2,324 0.0519 0.52449 0.0044 27,515 0.0651 28,850 0.0651 0.0000 

Total Population: 

35 to 39 years 
1,106 0.0544 1,806 0.0403 1.32018 0.0141 27,328 0.0647 28,649 0.0646 0.0000 

Total Population: 

40 to 44 years 
1,140 0.0561 1,864 0.0416 1.62937 0.0145 26,727 0.0632 28,026 0.0632 0.0000 

Total Population: 

45 to 49 years 
1,013 0.0499 2,003 0.0447 1.81103 0.0051 26,053 0.0616 27,330 0.0617 0.0000 

Total Population: 

50 to 54 years 
912 0.0449 2,212 0.0494 1.94035 0.0045 25,316 0.0599 26,556 0.0599 0.0000 

Total Population: 

55 to 59 years 
766 0.0377 1,967 0.0439 1.94176 0.0062 24,320 0.0575 25,498 0.0575 0.0000 

Total Population: 

60 to 64 years 
569 0.0280 1,679 0.0375 1.84101 0.0095 23,100 0.0547 24,210 0.0546 0.0000 

Total Population: 

65 to 69 years 
472 0.0232 1,343 0.0300 1.75326 0.0068 21,415 0.0507 22,453 0.0507 0.0000 

Total Population: 

70 to 74 years 
432 0.0213 885 0.0198 1.55536 0.0015 18,904 0.0447 19,835 0.0448 0.0000 

Total Population: 

75 to 79 years 
454 0.0223 716 0.0160 1.51695 0.0064 15,665 0.0371 16,438 0.0371 0.0000 

Total Population: 

80 to 84 years 
360 0.0177 584 0.0130 1.35185 0.0047 11,692 0.0277 12,257 0.0277 0.0000 

Total Population: 

85 years and over 
529 0.0260 729 0.0163 1.60573 0.0098 11,077 0.0262 11,604 0.0262 0.0000 

 20,315 1.0000 44,776   0.1595 422,642 1.0000 443,199 1.0000 0.0002 

S      7.98% S    0.01% 
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Fig. (12). Age Distribution of Whitman County in 2420 when USA CCRs are applied. 

 
period, which are held constant from the launch year to a 
year where S = 0 (relative to the preceding year in the pro-
jection cycle). This occurs at the year 2290. Table 4 displays 
this by showing the information at the launch period, 2000-
2010, and the information at the period where stability is 
reached, 2330-2340. S = .7.98% at the launch year of 2010; 
by 2290, S = .0.00%. 

Fig. (8) provides the change in S from 2010 to 2290 for 
Whitman County. As was the case for the United States, the 
path to stability is neither monotonic nor linear: It initially 
increases, “bounces around” a bit, then decreases substan-
tially before its decrease slows considerably, which starts 
around 2160. From 2160 to 2290, S moves incrementally to 
zero. Fig. (9) shows the graph of ln(S) relative to time. 

Figs. (10 and 11) show the age distribution of Whitman 
County in 2000 and in 2290, when it reaches stability. 

To examine the question of ergodicity, the 2000-2010 
CCRs for the USA are applied to Whitman County, which 
reaches stability in 2420 using these CCRs. Table 5 contains 
the data while Fig. (12) shows the age distribution of Whit-
man County in 2240 when it reaches stability using the US 
CCRs. In comparing the age distribution found in Fig. (12) 
to that of the US (at stability) in 2340, it is clear that they are 
very similar, if not identical. To test this more rigorously, the 
differences were calculated and found to be essentially zero 
at each age group. In addition, the intrinsic growth rate of 
.00475 matches that of the US when it reaches stability. This 
confirms the idea that using CCRs to generate stable popula-
tions is consistent with ergodic theory. The test results are in 
Table 6. 

5. TIME TO STABILITY 

One of the shortcomings of the analytic approach to a 
stable population is its inability to estimate the time required 
before a given population achieves stability. The CCR ap-
proach may offer a way to solve this problem in that a simple 
bivariate regression model was constructed using a sample of 

18 U.S. states used in a different [24]. These states are 
shown in Exhibit 1. 

EXHIBIT 1  

The 18 Counties Used in the Regression Analysis 

Pima County, AZ Madison County, MS 

Jefferson County, AR Douglas County, NE 

San Francisco County, CA Bronx County, NY 

Tulare County, CA Rockland County, NY 

Broward County, FL Franklin County, OH 

Lake County, IL Multnomah County, OR 

Black Hawk County, IA Schuylkill County, PA 

Calvert County, MD Sevier County, TN 

Hampden County, MA Yakima County, WA 

 
The regression model was constructed using one inde-

pendent variable, the initial value of S. The Dependent vari-
able is time (in years) to “stability.” Of course, there is more 
information available for a population at its time of launch 
(e.g., proportion of the population under 20 years of age, the 
initial rate of population change) that could be examined as 
potential independent variables in a multiple regression 
model. However, it seems obvious that since the larger the S 
score, the farther a population is from stability, the initial S 
score should serve as the starting point in a regression 
model. That is, the hypothesis is that there is an inverse rela-
tionship between initial S score and time to stability. 

Population stability is measured “approximately” by  
selecting the time to stability defined as when S =0.01. That 
is, when only one percent of age distribution, the population 
at the preceding year needs to be re-allocated to match the 
age distribution of the population at the subsequent year. S 
=0.01 was selected because an examination of scatter plots  
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Table 6. Difference in Proportional Population by Age for the US At Stability and Whitman County at Stability using US CCRs 

 Whitman County 2420 Proportion by Age USA 2340 Proportion by Age Difference 

Total Population: 0 to 4 years 0.0629 0.0629 0.0000 

Total Population: 5 to 9 years 0.0640 0.064 0.0000 

Total Population: 10 to 14 years 0.0647 0.0647 0.0000 

Total Population: 15 to 19 years 0.0654 0.0654 0.0000 

Total Population: 20 to 24 years 0.0649 0.0649 0.0000 

Total Population: 25 to 29 years 0.0651 0.0651 0.0000 

Total Population: 30 to 34 years 0.0651 0.0651 0.0000 

Total Population: 35 to 39 years 0.0646 0.0646 0.0000 

Total Population: 40 to 44 years 0.0632 0.0632 0.0000 

Total Population: 45 to 49 years 0.0617 0.0617 0.0000 

Total Population: 50 to 54 years 0.0599 0.0599 0.0000 

Total Population: 55 to 59 years 0.0575 0.0575 0.0000 

Total Population: 60 to 64 years 0.0546 0.0546 0.0000 

Total Population: 65 to 69 years 0.0507 0.0507 0.0000 

Total Population: 70 to 74 years 0.0448 0.0447 0.0001 

Total Population: 75 to 79 years 0.0371 0.0371 0.0000 

Total Population: 80 to 84 years 0.0277 0.0277 0.0000 

Total Population: 85 years and over 0.0262 0.0262 0.0000 

SUM 1.0000 1.0000 0.0005 

Table 7. Input Data For The Regression Model 

Population Initial Stability Index Years to Stability, S=0.01 

PIMA CO, AZ 0.06099 70 

JEFFERSON CO, AR 0.06563 70 

TULARE CO, CA 0.03966 80 

BROWARD CO, FL 0.08147 110 

LAKE CO, IL 0.08442 110 

BLACK HAWK CO, IA 0.06886 100 

CALVERT CO, MD 0.11430 130 

HAMPDEN CO, MA 0.08246 110 

MADISON CO, MS 0.07240 60 

DOUGLAS CO, NE 0.05269 70 

BRONX CO, NY 0.06185 120 

ROCKLAND CO, NY 0.05063 70 

FRANKLIN CO, OH 0.05076 70 

MULTNOMAH CO, OR 0.06130 100 
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Table 7. cont… 

Population Initial Stability Index Years to Stability, S=0.01 

SCHUYLKILL CO, PA 0.06444 70 

SEVIER CO, TN 0.05636 70 

YAKIMA CO, WA 0.04223 60 

Table 8. Estimated and Actual Years to S =0.01 

Population Initial S Actual Years to S = 0.01 
Estimated Years to S =0.01 Using the 

Regression Models 
Difference (Estimate - 

Actual) 
Percent Difference 

Alaska 0.10573 120 123 3 2.50% 

United States 0.0565 60 52 -8 -13.19% 

Whitman County, WA 0.07903 90 71 -19 -20.56% 

 
revealed that a long “tail” exists in going from S =0.01 to S 
=0.00 (see, e.g. Figs. 1, 5, or 9). Because U.S. states are 
used, there are ten years between these two points in time.  

The NCSS statistical system was used to build the regres-
sion model, an overview of which is given below. The input 
data used to build the regression model are found in Table 7. 

(YEARS TO ID =0.01) = 31.42 + 
(861.53*INITITAL_ID_SCORE) 

(p= .047) (p = .0011) 
r2 = .495 
Both the intercept and the partial regression coefficient 

for the initial ID score are statistically significant (! = 0.05) 
and that the coefficient of determination suggests that the 
model explains 50 percent of the variation in years to ap-
proximate stability (S =0.01). Provides a scatter plot of years 
to “approximate stability (S =0.01) by the initial S score.  

To get an idea of the accuracy of the model shown in the 
regression equation, it was used to estimate time to S =0.01 
for the case study populations, Alaska, the United States, and 
Whitman County, Washington. Table 8 provides the results 
of this examination. 

The estimates for the US and Whitman County are rea-
sonably accurate, with error of -8 and -19 years respectively 
and the estimate for Alaska is very accurate in that the time 
to approximate stability at S =0.01 is estimated as 123 years 
and the actual number of years to S =0.01 is 120.  

6. CONCLUSION 

Cohort Change Ratios (CCRs) appear to us to be useful 
as a tool for examining the idea of a stable population, given 
the informal and non-rigorous examination found in this pa-
per. Benefits of the CCR approach include the ability to eas-
ily deal with both sexes and all of the components of change, 
including migration. A drawback of the CCR approach is 
that one cannot easily assess the effect of each component of 
change since they are all effectively rolled into CCRs. How-
ever, we can add a new perspective on a stable population by 
noting that it has an invariant relative age structure and both 
a constant rate of growth and a constant set of Cohort 

Change Ratios. It may seem obvious that a constant set of 
CCRs would eventually yield a stable population, but the 
obvious has not yet been stated [2, 3, 6-11, 14-16, 25- 28]. 

A by-product of this paper is the Index of Stability (S). 
As noted earlier, there is no reason that our Index could not 
be used in the traditional approach, but a search revealed no 
mention of such an index in the literature. Calling upon the 
Index of Dissimilarity for this purpose appears to be a natu-
ral use for it. 

In applying the US CCRs to Whitman County, when this 
population reached stability, its age distribution was the 
same as that found for the US when the latter reached stabil-
ity. That is, as suggested by formal stable population theory, 
this case study shows that when a constant set of rates is ap-
plied to a given population, the initial age distribution is 
“forgotten” as the population becomes stable. This suggests 
that the CCR approach is consistent with theory.  

The CCR approach appears to be sufficiently useful to 
warrant further investigation. In these studies, it appears that 
it would be useful to graph the Stability Index over the time 
it takes a given population to reach stability. The graphs pre-
sented here for the three case studies suggest a non-
monotonic and non-linear path and similar results (not 
shown here) were found for the sample of 18 states. The 
work with the 18 states suggests that regression models may 
provide a way to overcome the major drawback associated 
with the analytic approach that time to stability cannot be 
found. The regression model suggests that for at least US 
states and counties, an initial ID score taken from two suc-
cessive census counts (e.g., 2000 and 2010) can be placed 
into the regression model in order to estimate the number of 
years to approximate stability (S =0.01). This finding sug-
gests that the Index of Stability can be used with other initial 
condition variables and the years to stability as a basis for 
models that potentially could predict the years to stability, 
given an initial S.  

It may be the case that the regression model is accurate 
only within “families” of population dynamics. Here, the 
types of dynamics come to mind that are analogous to the 
Regional Model Life Tables and Stable Populations devel-
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oped by Coale and Demeny [27]. If this is the case, then the 
different families would need to be identified and regression 
models specific to each family would need to be constructed 
using data from the populations with each family. 

Another area for research is the use of CCRs in conjunc-
tion with ideas promulgated by Keyfitz [29] for examining 
stable processes across two (or more) interacting popula-
tions. Because it can deal with both sexes and migration 
quite handily, the CCR approach may be more tractable in 
regard to examining the path to stability in such populations. 
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