

The Open Dentistry Journal

Content list available at: https://opendentistryjournal.com

SYSTEMATIC REVIEW

The Safety and Efficacy of Pre- and Post-Medication for Postoperative Endodontic Pain: A Systematic Review and Network Meta-analysis

Muthhin Almuthhin¹, Marwa Afify^{2,*}, Yasmeen Alshammari³, Nasser Alkatheeri⁴, Sahar Maziad Altuwaijri⁵, Bader Alhussain⁶, Sadun Mohammed Alageel Albaij, Fisal Alanazi⁸ and Yousef Alsheri⁹

Abstract:

Background:

Postoperative Endodontic Pain is a major concern for dentists and their patients, with pain having been reported to occur in 25%–40% of patients treated. Therefore, the aim of this systematic review and Network Meta-analysis (NMA) was to identify the safety and efficacy of pre- and post-medication for reducing postoperative endodontic pain.

Methods:

A literature search was performed in the SCOPUS, MEDLINE, and ScienceDirect, and Cochrane Central databases until December 2019 with no language restriction. Randomized controlled trials evaluating the efficacy of pre- or post-medications compared with other agents, placebo, or no treatment in adult patients who underwent endodontic surgery for postoperative pain were included. The mean difference of postoperative pain was measured using the Standardized Mean Difference (SMD) with its 95% confidence interval (95% CI).

Results:

This Systematic Review included 62 Articles. Of them, 50 studies were included in the NMA. Among all medications, corticosteroids were ranked as the best treatment for the reduction of postoperative pain at 6 and 12 hours with a significant reduction in postoperative pain scores [SMD=-1.18, 95% CI (-1.51: -0.85)] and [SMD=-1.39, 95% CI (-1.77: -1.02)], respectively. Cyclooxygenase-2 (COX-2) inhibitors were ranked as the best treatment for the reduction of postoperative pain at 8 and 24 hours with a significant reduction in postoperative pain scores [SMD=-2.86, 95% CI (-6.05: -1.66)] and [SMD=-1.27, 95% CI (-2.10: -0.43)], respectively. Non-steroidal anti-inflammatory drugs (NSAIDs) significantly reduced the postoperative pain scores in all durations. For postoperative pain at 6 hours, Indomethacin, Novafen, Naproxen, Prednisolone, Ketorolac, Betamethasone, Deflazacort, Rofecoxib, Piroxicam, and Ibuprofen significantly reduced the pain score when compared with a placebo. All of these drugs demonstrated a significant reduction at 12 hours except Ketorolac.

Conclusion:

The current evidence suggests that pre- and post-medication can reduce postoperative pain after nonsurgical root canal treatment. Corticosteroids and COX-2 inhibitors showed significant control of the pain up to 12 hours after administration. However, NSAIDs demonstrated a high efficacy from administration and until two days after treatment. Indomethacin, Novafen, prednisolone, and Naproxen were ranked first in most analyzed durations.

Keywords: Non-steroidal anti-inflammatory drugs, Corticosteroids, Opioids, COX-2 inhibitors, Postendodontic pain, Premedication.

A	D : 1.14 07 2020	D : 1 4 +26 2020	4 + 1 0 + 1 11 2020
Article History	Received: May 07 2020	Revised: August 26, 2020	Accepted: September 11, 2020

¹Department of Endodontic, NGHA Ministry of Health, Riyadh, Saudi Arabia

²Department of Clinical Research, Potion CRO, Riyadh, Saudi Arabia

³Department of Dentistry, Ministry of Health, Riyadh, Saudi Arabia

⁴Department of Endodontic, King Abdulaziz Medical City, Ministry of National Guard, Riyadh, Saudi Arabia

⁵Department of Endodontic, or / KADC/ Ministry of National Guard, Riyadh, Saudi Arabia

⁶Department of Restorative Dentistry, Dental Services, Prince Sultan Medical City, Military Hospital, Riyadh, Saudi Arabia

⁷Department of Endodontic, Dental Center, MOH, Hafer Albatin, Saudi Arabia

⁸Department of Endodontic, SBE Program Director Arar Specialist Dental Centre, Arar, Saudi Arabia

⁹Department of Endodontic, Tabouk Specialist Dental Center Tabuk, Saudi Arabia

1. INTRODUCTION

Postoperative pain during root canal therapy is a major undesirable complication for dentists and their patients. Anxiety and fear of pain during root canal treatment are the main reasons that prevent patients from attending dental offices [1]. It was estimated that the prevalence of post-endodontic pain ranges from 3% to 58% [2 - 4]. This condition is linked with the exacerbation of inflammatory response and the activation of inflammatory mediators such as prostaglandins. which cause the periapical activation of sensitive nociceptors [5]. Preoperative and procedural factors such as intracanal medicaments, mechanical instrumentation, microbial effects, and chemical irritants may cause periradicular tissue injury, which in turn causes post-endodontic pain [5, 6]. Endodontic treatment consists of restoring the form and function of teeth and controlling symptoms that address the primary concern of the patient as well as long-term possible complications, such as chronic pain [7]. Therefore, it is highly important to manage discomfort during and after root canal treatment.

In this regard, many drugs have been used to relieve postendodontic pain, such as Non-steroidal Anti-inflammatory Drugs (NSAIDs), corticosteroids, opioids, cyclooxygenase-2 enzymes (COX-2) inhibitors, and combinations of drugs [8]. Today, the most common types of pharmacological agents prescribed for pain relief in dentistry are NSAIDs and paracetamol (acetaminophen) [9]. NSAIDs decrease inflammation, inhibit cyclooxygenase enzymes, and prevent new prostaglandin molecules, but have no effect on circulating molecules [10]. Moreover, corticosteroids have demonstrated significant efficacy in dentistry pain management [11]. Many randomized control trials were conducted to evaluate the efficacy of various oral pre- and post-medications such as prednisolone [12], ibuprofen [13], lornoxicam [14], indomethacin [15], gabapentin [14], and celecoxib [16]. They reported that premedication is effective for postoperative pain after nonsurgical root canal treatment. However, the best painreducing agent is yet to be identified, as these drugs were not to be ranked regarding their efficacy. A recent network metaanalysis was conducted by Nagendrababu and his colleagues, who aimed to identify the most effective oral premedication in reducing pain in adults after nonsurgical root canal therapy [17]. Nevertheless, their study failed to include all available evidence, which eventually affected their conclusion. In this systematic review and network meta-analysis, we aimed to summarize current evidence on the efficacy of pre- and postmedication for the treatment of postoperative endodontic pain and rank the available drugs according to their efficacy.

2. METHODS

This systematic review and network meta-analysis was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) extension statement for Network Meta-analyses of Health Care Interventions [18].

2.1. Search Strategy

A computerized search of Medline *via* PubMed, the Cochrane Library, Scopus, and Science direct was conducted using the following keywords "endodontic", "root canal treatment", "root canal therapy", "NSAIDs", "Non-Steroidal Anti Inflammatory Drugs", "analgesics", "paracetamol", "Steroids", "corticosteroids", "Opioid", "narcotic", and "postoperative pain". There was no language or publication date restriction. Additionally, the references of the retrieved trial were hand searched for further relevant articles.

2.2. Inclusion and Exclusion Criteria

We included studies that were eligible according to the following criteria:

- (1) Population: studies that enrolled patients who presented with endodontic pain and received a diagnosis of pulpal pathosis necessitating initial nonsurgical endodontic treatment.
- (2) Intervention: studies that used oral, intramuscular, supraperiosteal, intraligamentary injection, intracanal or systemic use of NSAIDs, corticosteroids, COX-2 inhibitors, or opioids.
 - (3) Comparison: placebo-controlled studies.
- (4) Outcome: Management of postoperative pain assessed by Visual Analogue Scale (VAS).
 - (5) Study design: Randomized control trials.

Literature reviews, Opinion papers, systematic reviews, case reports, animal studies, preclinical studies, and clinical guidelines were excluded.

2.3. Study Selection

Eligibility screening was conducted in two steps, each by two independent reviewers: a) title and abstract screening for matching the inclusion criteria, and b) full-text screening for eligibility to meta-analysis. Disagreements were resolved upon the opinion of a third reviewer.

2.4. Data Extraction

Relevant data were abstracted using a standardized extraction form. The form consisted of

- (1) Study characteristics (name of the first author, year, country, intervention groups, study sample size, and main findings),
 - (2) Participant characteristics (age, sex, and VAS score),
- (3) Types of intervention and comparator(s) (i.e., drugs NSAIDs, COX-2, Opioids, and corticosteroids) and dosage,
- (4) Outcome measures (*i.e.*, the primary outcome: pain scores at different time intervals; immediately after treatment, 6, 8, 12, 24, and 48 hours). Missing information was obtained by contacting the authors of the study. When the means and standard deviations were not mentioned in the text of the published study, values were extracted from the graphs using WebPlotDigitizer (Ankit Rohatgi, Austin, TX, https://automeris.io/WebPlotDigitizer/).

All extracted data were cross-checked by two reviewers, and discrepancies were resolved by consensus.

^{*} Address correspondence to this author at the Department of Clinical Research, Potion CRO, Riyadh, Saudi Arabia; E-mail: marwa@potion.sa

2.5. Risk of Bias Assessment

The revised Cochrane Collaboration's risk of Bias Assessment Tool (ROB) was used to assess the risk of bias among the included studies [19]. Studies were evaluated for bias and categorized as having low, unknown, or a high risk of bias. The overall quality of the study was based on the 5 domains evaluated for bias: randomization, deviation from intended interventions, missing outcome data, outcome measurement, and selection of results. The overall score was low bias when all five domains were scored as low bias. The presence of at least two concerns in one of the domains rendered the study as having some concerns in bias. A study was evaluated as having high bias when at least one domain was scored to have high bias.

2.6. Data Synthesis and Statistical Analysis

The Standardized Mean Differences (SMD) in postoperative pain scores were calculated as the summary measures in MA. We chose SMD because changes in pain intensity scores were reported by different scales in trials, and the SMD can compare pain intensity scores in a uniform manner. In the case where variance data were not reported as standard deviation, it was estimated with algebraic recalculations or various approximation methods. Means and standard deviations were calculated from the reported medians, ranges, or Confidence Intervals (CIs) when not available. The presence of heterogeneity among the selected studies warranted the use of a random-effects model for the calculation of

weighted Mean Differences (MDs) and 95% CIs in MA. The heterogeneity between trials was evaluated using I² statistics. Random effects NMA using a consistency model was applied to synthesize the available evidence by combining direct and indirect evidence from different studies.

The global inconsistency test using a fitting design-by-treatment model was used to identify the disagreement between the direct and indirect estimates as a measure of inconsistency. Frequentist method to rank treatments in network "netrank" function was used to rank the various interventions (the higher the P-score, the better the intervention). Moreover, the split direct and indirect evidence in network meta-analysis "netsplit" function was used. Publication bias was assessed using a comparison-adjusted funnel plot. All analyses were performed with R version 1.2.5019 (© 2009-2019 RStudio, Inc.) using the "netmeta" and "meta" packages for NMA [20].

3. RESULTS

3.1. Search Strategy Results

Our search retrieved 1512 unique citations. Following title and abstract screening, 107 full-text articles were retrieved and screened for eligibility. Of them, 45 articles were excluded, and 62 RCTs articles (n= 5412 patients) were included in the systematic review, and 50 articles were included in the final analysis. The flow diagram of study selection for our systematic review and meta-analysis is shown in PRISMA diagram (Fig. 1). A summary of included studies and baseline characteristics of the populations is shown in Table 1.

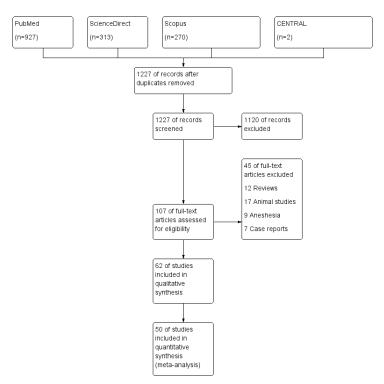


Fig. (1). PRISMA flow diagram.

Table 1. Summary of the included studies.

Study	Year	Country	Sex (M,F)	Age	Treatment Groups	Dose (mg)	Sample Size	Follow-up Period (h)	VAS Scale	Conclusion
					Etodolac	400 mg	12			Prophylactic ibuprofen significantly reduced post-endodontic pain at
Menke <i>et al</i> . [1]	1999	USA	14,22	>18	Ibuprofen	600 mg	12	0, 4, 8, 12, 24, 48, 72	100 mm	four and eight hours after initiation of treatment,
					Placebo		12			when compared to etodolac and a placebo
Gopikrishna and			29,		Ibuprofen	600 mg	15	4, 8, 12, 24,	100	Rofecoxib administration provides an effective
Parameswaran	2003	India	16	18–64	Rofecoxib	50 mg	15	4, 8, 12, 24, 48, 72	mm	reduction in post-
[2]					Placebo		15			endodontic pain
			7, 7	44.9±4	Ibuprofen tablets	600 mg	15			Single-dose pretreatment analgesia alone in endodontic pain patients did not significantly
Attar et al. [3]	2008	USA	7, 6	41.6±4.3	Ibuprofen liqui-gels	600 mg	15	0, 6, 12, 18, 24	100 mm	reduce postoperative pain below the level of reduction in pain from
			9, 3	45.8±5.1	Placebo		15			endodontic treatment of ibuprofen 600 mg and the placebo group
					Ibuprofen	400 mg	30	0.0.0.10.10		Diclofenac sodium continuous-release single dose pre-treatment of root
Saatchi <i>et al</i> . [4]	2009	Iran	NR	NR	Diclofenac sodium	100 mg	30	0, 2, 6, 10, 18, 36, 44, 54, 66, 72	0–10	canals compared to ibuprofen can prolong pain relief after root canal
					Placebo		30			treatment for a longer period of time.
Jalalzadeh <i>et</i>	2010	Iran	14, 6	18–59	Prednisolone	30 mg	20	6, 12, 24	10 cm	Postendodontic pain was substantially reduced by preoperative
al. [5]	2010	nan	14, 6	10-37	Placebo		20	0, 12, 24	TO CIII	administration of a single oral dose of prednisolone compared with placebo
					Tenoxicam	20 mg	16			A prophylactic single dose of 20 mg tenoxicam or 200 mg Ibuprofen
Arslan <i>et al</i> . [6]	2011	Turkey	16, 32	18–52	Ibuprofen	200 mg	16	6, 12, 24, 48, 72	100 mm	administration before RCT provides effective
					Placebo		16			reduction of post- operative pain at 6 h
Ashraf et al.	2013	Iran	7,7	18-57	celecoxib	400mg	15	4, 8, 12, 24,	170mm	Prophylactic Celecoxib is not recommended for post-endodontic pain reduction especially in
[7]	2013		8, 6	10 0 7	Placebo		15	48	.,	cases with gastrointestinal (GI) problems
Atbaei et al.	2010	Iran	36,	14-65	piroxicam	8mg	35	4, 8, 12, 24,	10mm	Piroxicam is highly effective for reducing post-endodontic pain in vital teeth with irreversible pulpitis during the first 48 h. It
[8]	2010	nan	29	14-03	Placebo		30	48	1 VIIIIII	was found to be much more effective than a similar lidocaine injection in reducing postoperative endodontic pain

(Table 1) contd			Sex				Sample	Follow-up	VAS	
Study	Year	Country	(M,F)	Age	Treatment Groups	Dose (mg)	Size	Period (h)	Scale	Conclusion
Baradaran <i>et</i>			26,		ibuprofen	400mg	15	4, 6, 12, 24,		Alprazolam may enhance the analgesic efficacy of
al. [9]	2014	Iran	19	20-45	Ibuprofen+alprazolam	400mg+0.5mg	15	48, 72	10mm	ibuprofen in post-
					Placebo		15			endodontic pain
			3,17		Rofecoxib	50mg	20			Single dose of COX-2 inhibitors maybe
Douglas [10]	2004		4,16		Diclofenac sodium	50mg	20			sufficient to prevent post-
		Portugal	5,15	16-61	Placebo		20	4,8,10,12,24	10mm	endodontic pain
					NAC	400mg	20			The prophylactic ibuprofen and NAC failed to clearly reflect
Ehsani <i>et al</i> .	2012	Iran	NA	NA	Ibuprofen	400mg	20	6, 8, 12, 24	10mm	their effect on cytokines levels in exudates of chronic periapical
[11]					NAC + Ibuprofen	400 + 200mg	20			lesions. On the other hand, it seems that NAC can be a substitute for ibuprofen in the
					placebo		20			management of post endodontic pain
Elkhadem <i>et</i>			78, 122		Prednisolone	40mg	200			A single dose of prednisolone was beneficial to control short-term post-obturation pain in patients with
al. [12]	2017	Egypt	63, 137	18-35	placebo		200	6, 12, 24	100mm	symptomatic irreversible pulpitis reducing pain incidence after 24 h by approximately 30% and postoperative analgesic intake by approximately 55%
Flath et al.	1987	USA	116,	20-80	Placebo		29	3, 7, 24	100mm	Endodontic treatment significantly reduced post-operative pain in preoperatively
[13]	1967	USA	4	20-80	Flurbiprofen	100mg	87	3, 7, 24	TOOMIN	symptomatic patients. Doses of 100 or 200 mg of flurbiprofen resulted in minimal side effects
					Gabapentin	600mg	30			Prophylactic lornoxicam controlled post- endodontic treatment
Isik <i>et al</i> . [14]	2014	Turkey	7, 23	18-45	lornoxicam	8mg	30	4, 8, 12, 24	100mm	pain more effectively than did the placebo drugs, and gabapentin was more effective in
					placebo		30			controlling the pain than either lornoxicam or the placebo.
Joshi <i>et al</i> .	2016	India	11, 11	18-65	piroxicam	40mg	22	4, 8, 12, 24,	10 cm	Peroxicam group perceived less post- endodontic pain as
[15]			12, 10		Placebo		22	48		compared to placebo at all the time intervals
Kaviani <i>et al</i> .	2011	Iran	NA	15-45	Ketamine	10mg	18	24	10mm	A low dose of ketamine might be beneficial for
[16]					Placebo		18			enhancing the effect of local anesthetics
			8, 8		ibuprofen	400mg	16			Prophylactic use of Ibuprofen and sulindac
Khorasani <i>et</i> al. [17]	2011	Iran	9, 7	25-50	sulindac	200mg	16	6 12 24 48	100mm	
			6, 10		placebo		16	- /2		suggested

(Table 1) contd.....

Study	Year	Country	Sex (M,F)	Age	Treatment Groups	Dose (mg)	Sample Size	Follow-up Period (h)	VAS Scale	Conclusion
			9, 11	32+4.6	placebo		20			Pretreatment PDL injection of
Mehrvarzfar et al. [18]	2016	Iran	10, 10	26.1+9.8	lidocaine	0.2ml	20	6, 12, 24	170mm	dexamethasone can significantly reduce the post-treatment endodontic pain in
			8, 12	30.3+4.2	dexamethasone	8 mg	20			patients with symptomatic irreversible pulpitis.
				31.4+10.7	placebo		24			
			13, 11	29.5+6.9	tramadol	100mg	24			A single oral dose of Naproxen, Novafen and
Mehrvarzfar et al. [19]	2012	Iran	11, 12	29.6+8.1	Novafen	325 mg of paracetamol, 200 mg ibuprofen and 40 mg caffeine anhydrous)	23	6, 12, 24	10mm	Tramadol taken immediately after treatment reduced postoperative pain following pulpectomy and root canal preparation of teeth with
			14, 10	28.4+7.6	naproxen	500mg	24			irreversible pulpitis.
			8, 11	24-80	placebo		19			The results demonstrate that the combination of ibuprofen with
Menhinick et al. [20]	2004	USA	6, 14	21-61	ibuprofen	600	20	4, 8	100mm	acetaminophen may be more effective than
. ,			2, 16	19-58	ibuprofen + paracetamol	600mg + 1000mg	18			ibuprofen alone for the management of postoperative endodontic pain.
					Celecoxib	200mg	30			Use of Gelofen or Celecoxib before treatment reduces post-
Mirzaie <i>et al.</i> [21]	2011	Iran	56, 34	18-65	Gelofen	400mg	30	4, 8, 12, 24, 100 48 mm		endodontic pain. These drugs can be prescribed before initiation of
					Placebo		30			treatment as effective agents for the reduction of post-endodontic pain.
			9, 13		Ibuprofen	400mg	22			Premedication with ibuprofen and indomethacin can
Mokhtari <i>et</i> al. [22]	2016	Turkey	7, 15	19-0	Indomethacin	25mg	22	8, 12, 24	100mm	effectively control short term post-operative pain; the lower incidence of
			13, 9		Placebo		22			side effects and greater analgesic power of ibuprofen make it a superior choice.
					Piroxicam	20mg	48	32		Piroxicam was more effective than diclofenac
Negm 1st group [23]					Diclofenac sodium	50mg	52			or the placebo.
510up [23]	1000	F .	N	16.71	Placebo		43		1, 4	Diclofenac required a longer time to reach
	1989 Egg	Egypt	NA	16-71	Piroxicam	20mg	45	2, 4, 8	1 to 4	maximum effectiveness. Piroxicam's superiority
Negm 2nd group [23]					diclofenac sodium	50mg	40			was greater at the first and second days after the
					placebo		40			initial dose of medication was taken.

Study	Year	Country	Sex (M,F)	Age	Treatment Groups	Dose (mg)	Sample Size	Follow-up Period (h)	VAS Scale	Conclusion							
					diclofenac	75mg	65^			Post-endodontic pain occurred with less							
					diclofenac-hyaluronidase	75mg + 1500 iu	63^			frequency when the teeth were treated with diclofenac, but							
Negm 1st					Ketoprofen	100mg	60^			diclofenac-treated and ketoprofen-treated cases were not significantly							
group [24]					Ketoprofen-hyaluronidase	100mg + 1500 iu	70^			different in controlling post-endodontic pain. An increase in the number of							
					Placebo		58^			patients who reported a complete absence of pain was recorded when							
	1994	Egypt	NA	18-78	Placebo-hyaluronidase	1500 iu	51^	2, 4, 8, 12	1 to 4	hyaluronidase was added to the study medications.							
	1994	Egypt	INA	18-78	diclofenac	75mg	73^	2, 4, 0, 12	1104	However, the difference between the medications							
					diclofenac-hyaluronidase	75mg + 1500 iu	70^			and medication- hyaluronidase was not of statistical significance.							
Negm 2nd					Ketoprofen	100mg	66^										
group [24]												Ketoprofen-hyaluronidase	100mg + 1500 iu	60^			
					Placebo		60^										
					Placebo-hyaluronidase	1500 iu	64^										
					meloxicam	15mg	17			Based on the two-way repeated measures ANOVA, the reduction in pain with meloxicam, piroxicam, and placebo							
Nekoofar et al. [25]	2003	USA	NA	>15	piroxicam	20mg	17	8, 24	9cm	was not significantly different (p=0.058), although the mean change							
					placebo		17			of pain was greater with meloxicam over piroxicam and greater with piroxicam than placebo.							
			15, 14		Ketorolac	20mg	31			Single pre-treatment dose of prednisolone has a							
Praveen et al. [26]	2017	India	16, 14	18-50	prednisolone	30mg	31	0, 6, 12, 24, 48	10 cm	more sustained effect in reducing post-endodontic							
			13, 14		placebo		31			pain compared with placebo or ketorolac.							
			15, 12		ibuprofen	400mg	30			The obtained results of the trial revealed that							
Ramazani et al. [27]	l. [27] 2013 Iran 11	18-65	zintoma	2000mg	30	4, 8, 12, 24, 48, 72	100mm	prophylactic use of 2 g Zintoma is not an									
			10, 11	•	placebo		30			effective pain-relieving agent.							
Rashka et al.	2013	India	NA	NA	diclofenac sodium	30mg	26	4, 8, 12, 24,	10mm	Diclofenac Sodium was found to be highly effective in reducing post-endodontic pain of							
[28]	[28] 2013 India N		NA ·	placebo		26	48		vital teeth with irreversible pulpitis during the first 48 h.								

(Table 1) contd.....

Study	Year	Country	Sex (M,F)	Age	Treatment Groups	Dose (mg)	Sample Size	Follow-up Period (h)	VAS Scale	Conclusion
			6, 8		placebo		14			Statistical analysis of the data showed that ibuprofen 600 mg provided statistically significantly greater
Ryan <i>et al.</i> [29]	2008	USA	8, 7	NA	ibuprofen	600mg	15	0, 6, 12, 18, 24	NA	analgesic effect than placebo at 6 and 12 hours (P=0.0014 and 0.0024), and pentazocine/naloxone
			6, 8		talwin	50mg	14			provided statistically significantly greater analgesic effect than placebo at 12 hours (P =0.0084).
			6, 13	31.3	ibuprofen	400mg	19			The results demonstrate that betamethasone and indomethacin may be
Salarpoor <i>et</i>	2012	,	4, 17	24.5	betamethasone	2mg	21	6 12 24 40	10	more effective than ibuprofen for the management of post-
al. [30]	2013	Iran	7, 15	28	indomethacin	75mg	22	6, 12, 24, 48	10mm	operative pain after nonsurgical endodontic treatment
			6, 14	29	placebo		20			when patients present with moderate to severe pain
					Tapentadol	100mg	20			Single oral dose of 10 mg of ketorolac and 100mg of tapentadol as a
Sethi <i>et al</i> . [31]	2014	India	12, 6	18-60	Etodolac	400mg	20	0, 6, 12, 18, 24	10cm	pretreatment analgesic significantly reduced postoperative endodontic
					Ketorolac	10mg	20			pain in patients with symptomatic irreversible pulpitis when compared to 400 mg of etodolac
					paracetamol	1000mg	34			The combination of
					Ibuprofen + paracetamol	600 + 1000mg	33			ibuprofen/paracetamol, taken
					Mefenamic acid + paracetamol	500mg + 1000mg	34			immediately after initial endodontic therapy and root canal preparation in
					Diclofenac K + paracetamol	50mg + 1000mg	35			teeth with irreversible pulpitis,
Elzaki <i>et al.</i> [32]	2016	Sudan	66, 104	33+10.5	Placebo	Tooonig	34	1, 2, 3, 4, 6, 8	NA	reduced post-endodontic pain
[52]	2010	Suduii	10.	33 10.0	1140000		J.	1, 2, 3, 1, 0, 0	- 1,12	Preoperative
										administration of Ibuprofen or
			7, 12		Placebo		20			dexamethasone reduces post-endodontic pain and
										discomfort in comparison with a placebo.
			7, 12		Ibuprofen	400mg	20			Premedication with anti-
					•					inflammatory drugs could contribute to control of
Jorge-Araújo					_			4, 8, 12, 24,		the post-endodontic pain, mainly in patients more
et al. [33]	2018	Brazil	7, 11	18-66	Dexamethasone	8mg	20	48	NA	sensitive towards pain In patients with low pain
			7,3	30±6	Oral diclofenac sodium	75mg	10			threshold, intra- ligamentary route of
Jenarthanan <i>et</i>			5,5	26±9	Intraligamentary route of diclofenac sodium	NA	10			administration is effective in controlling
al. [34]	2018	India	6,4	28±7	Placebo		10	6,12,24,48	10cm	pain of endodontic origin postoperatively.

(Table 1) contd Study	Year	Country	Sex (M,F)	Age	Treatment Groups	Dose (mg)	Sample Size	Follow-up Period (h)	VAS Scale	Conclusion
			(7 0710 a (II)	Seme	Infiltration of long-acting betamethasone and dexamethasone resulted in decreased postoperative pain experience.
					Placebo		64			Dexamethasone was more effective in
										alleviating pain within the first 24-hour period after treatment. Infiltration of long-acting betamethasone and
					Betamethasone	0.7 mL	66			dexamethasone exhibited the same efficacy in 48 hours. The efficacy of
Yavari <i>et al.</i> [35]	2019	Iran	NA	20-50	Dexamethasone	4mg	64	6, 12, 24, 48, 72	0-10	long-acting betamethasone in pain relief lasted for 7 days. The QOL in the 2 groups receiving corticosteroids was higher than that in the placebo group.
			7,3	39.6 yrs	Ibuprofen and paracetamol	400 mg,325 mg	10			A single oral dose of diclofenac sodium and paracetamol and ibuprofen and
			6,4	41.3 yrs	Diclofenac sodium and paracetamol	50 mg, 500mg	10			paracetamol combination reduced postoperative pain following pulpectomy and root canal
Makkar <i>et al</i> . [36]	2012	India	6,4	37.9 yrs	Placebo		10	6,12,24	10 cm	preparation of teeth with irreversible pulpitis.
					Tramadol	100 mg	12			NSAID/opiate combination, together
					Flurbiprofen	100 mg	12			with endodontic therapy,
Doroschak et					Tramadol/Flurbiprofen	100 mg	13		100	may be useful in the management of
al. [37]	1999	USA	NA	18-65	Placebo		12	1,2,3	mm	endodontic pain.
					Piroxicam	20 mg	30			Preoperative single oral dose of piroxicam or
					dexamethasone	4 mg	30			dexamethasone or
Konagala et					deflazacort	30 mg	30		100	deflazacort is equally effective in controlling
al. [38]	2019	India	62,70	18-50	Placebo		30	6,12,24,48,72	mm	post-endodontic pain.
					Rofecoxib	NA	-			
Ashraf [39]	2002	Iran	NA	NA	Ibuprofen Placebo		60	12	100mm	NA
25 [27]					prednisolone	NA	158			The corticosteroid was effective in significantly reducing the incidence of postoperative pain in
Chance <i>et al</i> . [40]	1987	USA	NA	NA	Placebo		142	NA	NA	teeth where vital pulp was present.
					Dexamethasone	4 mg	19			oral dexamethasone is sufficient to significantly reduce endodontic
Glassman <i>et</i> <i>al</i> . [41]	1989	USA	NA	NA	Placebo		18	NA	NA	interappointment pain for teeth with asymptomatic vital-inflamed pulps.

(Table 1) contd			Sex				Sample	Follow-up	VAS	
Study	Year	Country	Sex (M,F)	Age	Treatment Groups	Dose (mg)	Sample	Period (h)	VAS Scale	Conclusion
					Methylprednisolone	8 mg	18			The tested drug significantly reduced the
					Mepivacaine	NA	17			frequency and intensity of postoperative pain
Kaufman <i>et</i> al. [42]	1994	Israel	16,29	19-71	Placebo	NA	10	24	NA	sequelae in the experimental set-up.
					Dexamethasone	5.25mg	25			Post-treatment endodontic pain was substantially reduced by administration of oral dexamethasone. The risks to the otherwise healthy
Krasner <i>et al</i> . [43]	1986	USA	NA	NA	Placebo		25	8,24	100 mm	patient seem to be minimal and acceptable
					Dexamethasone	8 mg	106			Patients who received dexamethasone took significantly fewer
Liesinger et al. [44]	1993	USA	NA	NA	Placebo			1,4,8,24,48,72	9 cm	posttreatment pain medications than those who received the placebo Injection of the steroid
					Dexamethasone	4 mg				(dexamethasone, 4 mg) significantly reduced both the incidence and severity of pain at 4 h post-treatment and
Marshall <i>et al</i> . [45]	1984	USA	NA	NA	Placebo		50	4,24	NA	reduced pain at 24 h post- treatment.
					Dexamethasone	4 mg	50			Dexamethasone was considerably effective in controlling the severity of pain during the first 24 h; in contrast, there was no
Mehrvarzfar et al. [46]	2008	Iran	34,66	21-58	Placebo		50	6,12,24,48	NA	difference between dexamethasone and placebo groups 48 h after the first appointment.
					Dexamethasone	4 mg	25			Preoperative single oral dose of dexamethasone
Pochapski <i>et</i> al. [47]	2009	Brazil	26,24	18-67	Placebo		23	4,6,12,24	NA	substantially reduced post-endodontic pain
					Dexamethasone	4mg	12			At the 12-h period, both dexamethasone and ketorolac provided
					Ketorolac tromethamine	30 mg	12			statistically significant better pain relief than placebo. At the 24-h period, only ketorolac
					Ibuprofen	600 mg	12			demonstrated better pain relief than the placebo. There were no
Rogers et al. [48]	1999	USA	NA	NA	placebo		12	6,12,24,48	100 mm	statistically significant differences among the groups at 6 and 48 h.
					Dexamethasone	4 mg	30			Periapical infiltration of dexamethasone and morphine led to a considerable decrease in
					Morphine	1 mg	30			postoperative endodontic pain during the first 24 h after operation. Dexamethasone was
Shantiaee <i>et</i> al. [49]	2012	Iran	30,60	18-42	Placebo		30	4,8,24,48	9cm	more effective than morphine in pain reduction.

(Table 1) contd						I		1		T
Study	Year	Country	Sex (M,F)	Age	Treatment Groups	Dose (mg)	Sample Size	Follow-up Period (h)	VAS Scale	Conclusion
					betamethasone	4 mg	50			
Zarrabi	2003	Iran	NA	NA	Placebo		50	6,12,24	NA	NA
Zarrabi et al.					betamethasone	2 mg	20			
[50]	2007	Iran	NA	NA	Placebo		20	6,12,24	NA	NA
					dexamethasone	4 mg	20			NSAID resulted in significantly less post- operative endodontic pair at all time-intervals. Preoperative oral administration of
Sharma <i>et al</i> . [51]	2015	India	NA	NA	Placebo		20	6,12,24	100 mm	Dexamethasone performed best in reducing pain post operatively.
Eftekhar et al.					Triamcinolone	1 mg	40			
[52]	2013	NA	NA	NA	Placebo		40	NA	NA	NA
Moradi <i>et al.</i> [53]	2013	Iran	NA	NA	dexamethasone Placebo	4 mg	15	6,12,24,48	10 cm	Administration of dexamethasone did not reduce post-operative pain severity in the first 12hours after endodontic treatment
					dexamethasone	0.5 mg	20			
Ahangari	2009	Iran	NA	NA	Placebo	8	20	6,12,24	10 cm	NA
					Otosporin	NA	30	-, ,		No difference was observed in the incidence of post-operative pain
Fava [54]	1998	NA	NA	28-64	Placebo		30	48 h/1 w	NA	between the two groups.
Ehrmann et al. [55]	2003	Australia	NA	NA	Triamcinolone acetonide Placebo		58	4,24,48,72	100 mm	Ledermix is an effective intracanal medicament for the control of postoperative pain associated with acute apical periodontitis, with a rapid onset of pain reduction.
					Kenacomb	NA	245			intracanal use of corticosteroid-antibiotic combination for
Negm <i>et al</i> . [56]	2001	Egypt	NA	15-75	Placebo		230	24	100 mm	controlling posttreatment endodontic pain.
			17,16	34.3±14.0	Ibuprofen/acetaminophen	600 mg/1000 mg	35			There were decreases in pain levels and analgesic use over time in the ibuprofen and
Wells <i>et al</i> . [57]	2011	USA	20,15	37.3± 14.7	Ibuprofen	600 mg	36	24,48,72	100 mm	ibuprofen/acetaminophen groups.
					Ketorolac	10 mg	10			There was no significant difference in pain relief between the two groups
Battrum <i>et al.</i> [58]	1996	USA	NA	NA	Placebo		10	6,24	100mm	treated with different drug regimens
					Salicylic acid	650 mg	50			Ibuprofen, ketoprofen,
					Acetaminophen	650 mg	57			erythromycin base, penicillin, and
					Ibuprofen	400 mg	57			methylprednisolone plus penicillin were more
					Ketoprofen 50 mg	50 mg	53			effective than placebo
Torabinejad <i>et</i> al. [59]	1994	NA	NA	NA	Acetaminophen + codeine	325 mg/60 mg		30, 36, 42, 48, 54, 60, 66, 72	90mm	within the first 48 h following complete instrumentation.

(Table 1) contd.....

Study	Year	Country	Sex (M,F)	Age	Treatment Groups	Dose (mg)	Sample Size	Follow-up Period (h)	VAS Scale	Conclusion
										A statistically significant decreased incidence of
					Dexamethasone	4 mg	26			pain was reported for the corticosteroid cases as compared to the control
Moskow et al. [60]	1984	NA	NA	NA	Placebo		24	24,48,72	100 mm	at the 24-hour time period (p<0.05)

3.2. Characteristics and Quality of the Included Studies

A total of 5412 patients, including males and females between the ages of 15 and 80 years, from the included studies, formed the sample size for the NMA. The origin countries of included studies were Iran (n=21), USA (n=15), India (n=9), Egypt (n=3), Turkey (n=3), Brazil (n=2), Israel (n=1), Portugal

(n=1), Sudan (n=1), and Australia (n=1), and four studies were found to be non-reported. Negm study consists of two trials; therefore, each one is considered as a separate study. The quality of the 62 included studies is described in Table 2. Thirty-seven studies had a low risk of bias, 10 studies had a high risk of bias, and 15 studies had some concerns.

Table 2. Risk of bias of included studies.

Study	Year	Randomization	Allocation Concealment	Blinding of Participants and Personnel	blinding of Outcome Assessors	Attrition Bias	Selection Bias	Other Bias	Overall
Arslan et al.	2011	low	unclear	low	low	low	low	low	Low
Ashraf et al.	2013	low	unclear	low	low	low	low	low	Low
Atbaei et al.	2010	low	unclear	low	unclear	low	low	low	Some concerns
Attar et al.	2008	low	unclear	low	low	low	low	low	Low
Baradaran	2014	low	unclear	low	low	low	low	low	Low
Douglas	2004	low	unclear	low	low	low	low	low	Low
Ehsani	2012	low	unclear	low	low	low	low	low	Low
Elkhadem	2017	low	low	low	low	low	low	low	Low
Elzaki	2016	low	unclear	low	low	low	low	low	Low
Flath	1987	low	unclear	low	low	low	low	low	Low
Gopikrishna and Parameswaran	2003	low	unclear	low	low	low	low	low	Low
Isik	2014	low	unclear	low	low	low	low	low	Low
Jalalzadeh <i>et al</i> .	2010	low	unclear	low	low	low	low	low	Low
Jorge-Araújo	2018	low	low	low	low	low	low	low	Low
Joshi	2016	low	unclear	low	low	low	low	low	Low
Kaviani	2011	low	unclear	low	low	low	low	low	Low
Khorasani	2011	low	unclear	low	low	low	low	low	Low
Mehrvarzfar	2012	low	unclear	low	low	low	low	low	Low
Mehrvarzfar	2016	low	unclear	low	low	low	low	low	Low
Menhinick	2004	low	unclear	low	low	low	low	low	Low
Menke et al.	1999	low	unclear	low	unclear	low	low	low	Some concerns
Mirzaie	2011	low	unclear	low	low	low	low	low	Low
mokhtari	2016	low	unclear	low	low	low	low	low	Low
Negm	1989	low	unclear	low	unclear	low	low	low	Some concerns
Negm	1994	low	unclear	low	unclear	low	low	low	Some concerns
Nekoofar	2003	low	unclear	low	low	low	low	low	Low
Praveen	2017	low	low	low	low	low	low	low	Low
Ramazani	2013	low	unclear	low	low	low	low	low	Low
Rashka	2013	low	unclear	unclear	low	low	low	low	Some concerns
Ryan	2008	low	unclear	low	low	low	low	low	Low
Saatchi et al.	2009	low	unclear	low	low	low	low	low	Low

Study	Year	Randomization	Allocation Concealment	Blinding of Participants and Personnel	blinding of Outcome Assessors	Attrition Bias	Selection Bias	Other Bias	Overall
Salarpoor	2013	low	unclear	low	low	low	low	low	Low
Sethi	2014	low	unclear	low	low	low	low	low	Low
Yavari	2019	low	low	low	low	low	low	low	Low
Makkar	2012	low	unclear	low	low	low	low	low	Low
Doroschak	1999	low	unclear	low	low	low	low	low	Low
Konagala	2019	low	low	low	low	low	low	unclear	Low
Jenarthanan	2018	low	unclear	unclear	unclear	low	low	low	Some concerns
Ashraf et al.	2002	low	unclear	low	low	low	low	low	Low
Chance	1987	unclear	low	unclear	low	low	unclear	unclear	Some concerns
Glassman	1989	unclear	low	unclear	unclear	low	unclear	unclear	Some concerns
Kaufman	1994	low	unclear	unclear	unclear	low	unclear	unclear	Some concerns
Krasner	1986	low	low	low	unclear	low	low	unclear	Some concerns
Liesinger	1993	unclear	unclear	low	low	low	low	low	Some concerns
Marshall	1984	low	unclear	low	low	low	low	low	Low
Mehrvarzfar et al.	2008	low	unclear	low	low	low	unclear	low	Some concerns
Pochapski	2009	low	unclear	low	low	low	unclear	low	Some concerns
Rogers	1999	low	unclear	unclear	unclear	low	low	low	Some concerns
Shantiaee	2012	low	unclear	low	low	low	low	low	Low
Zarrabi	2003	low	unclear	low	high	low	low	high	High
Zarrabi	2007	low	unclear	low	low	high	low	low	High
Sharma	2015	low	unclear	low	low	high	low	low	High
Eftekhar	2013	low	unclear	low	low	high	low	low	High
Moradi	2013	low	unclear	low	low	high	low	low	High
Ahangari	2009	low	unclear	low	low	high	unclear	low	High
Fava	1998	low	unclear	high	high	high	unclear	low	High
Ehrmann	2003	unclear	unclear	unclear	unclear	low	low	low	Some concerns
Negm	2001	low	low	low	low	low	low	low	Low
Wells	2011	low	unclear	low	low	low	low	low	Low
Battrum	1996	unclear	unclear	high	high	high	low	low	High
Torabinejad	1994	high	high	low	unclear	low	low	low	High
Moskow	1984	low	high	high	unclear	low	low	low	High

3.3. Effects on the Primary Outcomes

3.3.1. Postoperative Pain for Treatment Intervention Categorized by Pharmacologic Group

Immediately after procedure: Among all medications, opioids were ranked as the best treatment for the reduction of postoperative pain [SMD= -1.16, 95% CI (-1.96: -0.36), P-score= 0.91]. Moreover, NSAIDs showed a significant reduction in pain after endodontic treatment [SMD= -0.63, 95% CI (-0.89: -0.36), P-score= 0.61]. On the other hand, there

was no significant difference between corticosteroids, COX-2 inhibitors, and placebo in this period. Pooled analysis was heterogeneous (Q=373.01; I²=84.7%; P<0.0001) due to the significant variation among the analyzed categories (Fig. 2a). Publication bias analysis showed that there was no detected bias according to the Egger test (p=0.07). Split analysis demonstrated that there was no significant difference between corticosteroid vs. placebo or NSAIDs (Appendix Fig. 1). Network ranking graph showed the rank of categories immediately after the procedure (Fig. 3a). League table is presented in Appendix Table 1.

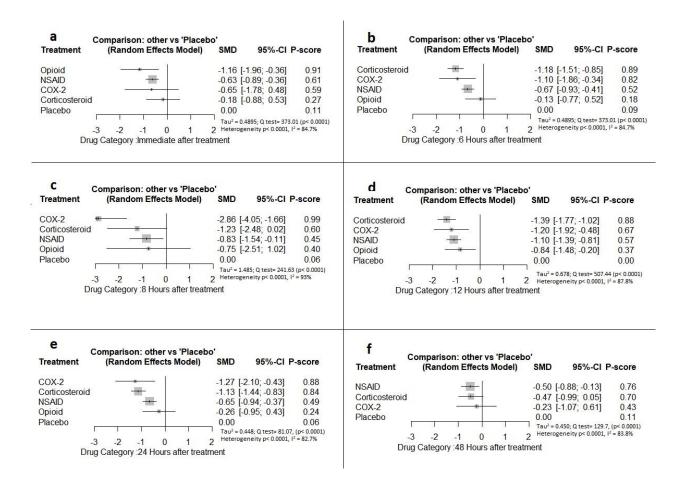


Fig. (2). Forest plot of the effect of Treatment Intervention Categorized by Pharmacologic Group on Postoperative Pain: a) Immediately after Procedure, b) Six Hours after Procedure, c) Eight Hours after Procedure. d) Twelve Hours after Procedure, e) Twenty-four Hours after Procedure, f) Forty-eight Hours after Procedure.

Six Hours after Procedure: Interestingly, the efficacy of corticosteroids dramatically increased, reaching the first rank in terms of the best treatment for the reduction of postoperative pain [SMD= -1.18, 95% CI (-1.51: -0.85), P-score= 0.89], and the efficacy of opioids dramatically decreased, scoring the fourth rank [SMD= -0.13, 95% CI (-0.77: 0.52), P-score= 0.18]. NSAIDs showed a significant reduction in pain after endodontic treatment [SMD= -0.67, 95% CI (-0.93: -0.41), Pscore= 0.52]; however, it scored the third rank after the COX-2 inhibitors [SMD= -1.10, 95% CI (-1.86: -0.34), P-score= 0.82]. Pooled analysis was heterogeneous (Q=373.01; I²=84.7%; P<0.0001) due to the significant variation among the analyzed categories (Fig. 2b). Publication bias analysis showed a detected bias according to the Egger test (p=0.005). Split analysis demonstrated no significant difference between NSAIDs vs. COX-2 inhibitors or vs. Opioids (Appendix Fig. 2). Network ranking graph showed the rank of categories at 6 hours after the procedure (Fig. 3b). League table is presented in Appendix Table 2.

Eight Hours after Procedure: at this period, only COX-2 inhibitors and NSAIDs showed a significant effect in reducing the postoperative pain [SMD= -2.86, 95% CI (-4.05:-1.66), P-score= 0.99] and [SMD= -0.83, 95% CI (-1.54:-0.11), P-score=

0.45], respectively. Pooled analysis was heterogeneous (Q=241.63; I²=93%; P<0.0001) due to the significant variation among the analyzed categories (Fig. 2c). Publication bias analysis showed that there was no detected bias according to the Egger test (p=0.60). Split analysis demonstrated no significant difference between NSAIDs *vs.* corticosteroids or *vs.* Opioids (Appendix Fig. 3). Network ranking graph showed the rank of categories at 8 hours after the procedure (Fig. 3c). League table is presented in Appendix Table 3.

Twelve Hours after Procedure: All medication showed a significant reduction when compared to placebo; Corticosteroids (SMD= -1.39), COX-2 inhibitors (SMD= -1.20), NSAIDs (SMD= -1.10), and Opioids (SMD= -0.84). Pooled analysis was heterogeneous (Q=507.44; I²=87.8%; P<0.0001) due to the significant variation among the analyzed categories (Fig. 2d). Publication bias analysis showed that there was a detected bias according to the Egger test (p=0.0001). Split analysis demonstrated that there was no significant difference between NSAIDs vs. corticosteroids, Opioids, and COX-2 inhibitors (Appendix Fig. 4). Network ranking graph showed the rank of categories at 12 hours after the procedure (Fig. 3d). League table is presented in Appendix Table 4.

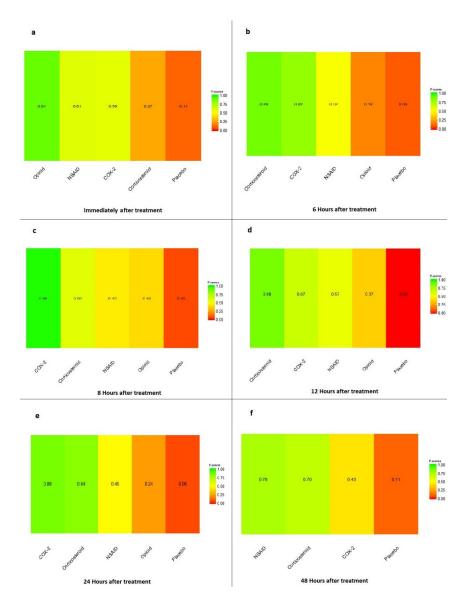


Fig. (3). Network ranking graph showed the rank of categories for the primary analysis Categorized by Pharmacologic Group: a) Immediately after procedure, b) Six Hours after Procedure, c) Eight Hours after Procedure, d) Twelve Hours after Procedure, e) Twenty-four Hours after Procedure, f) Forty-eight Hours after Procedure.

Twenty-four Hours after Procedure: Among all medications, COX-2 inhibitors were ranked as the best treatment for the reduction of postoperative pain when compared to placebo [SMD=-1.27, 95% CI (-2.10: -0.43), P-score=0.88]. Corticosteroids and NSAIDs also showed a significant reduction in pain score (SMD= -1.13 and SMD= -0.65, respectively). Pooled analysis was heterogeneous (Q=81.07; I²=82.7%; P<0.0001) due to the significant variation among the analyzed categories (Fig. 2e). Publication bias analysis showed a detected bias according to the Egger test (p=0.0008). Split analysis demonstrated that there was no significant difference between NSAIDs vs. Opioids and COX-2 inhibitors (Appendix Fig. 5). Network ranking graph showed the rank of categories at 24 hours after the procedure (Fig. 3e).

League table is presented in Appendix Table 5.

Forty-eight Hours after Procedure: Among all medications, only NSAIDs demonstrated a significant reduction in postoperative pain when compared to placebo [SMD=-0.50, 95% CI (-0.88: -0.13), P-score=0.76]. Pooled analysis was heterogeneous (Q=129.7; I²=83.8%; P<0.0001) due to the significant variation among the analyzed categories (Fig. 2f). Publication bias analysis showed that there was no detected bias according to the Egger test (p=0.16). Split analysis demonstrated that there was no significant difference among NSAIDs, Corticosteroids or COX-2 inhibitors (Appendix Fig. 6). Network ranking graph displayed the rank of categories at 24 hours after the procedure (Fig. 3f). League table is presented in Appendix Table 6.

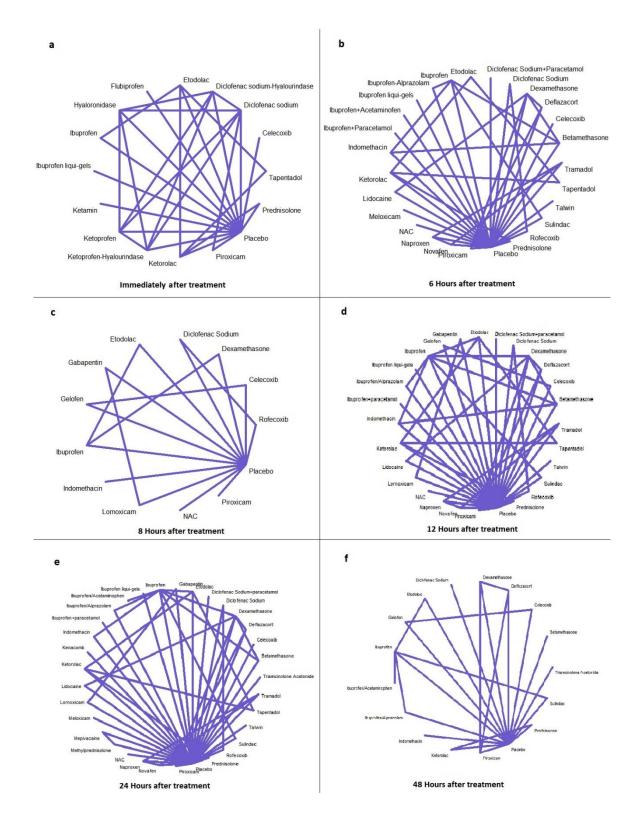


Fig. (4). Network diagrams of all the eligible comparisons for primary outcomes according to the chemical name: a) Immediately after procedure, b) Six Hours after Procedure, c) Eight Hours after Procedure. d) Twelve Hours after Procedure, e) Twenty-four Hours after Procedure, f) Forty-eight Hours after Procedure.

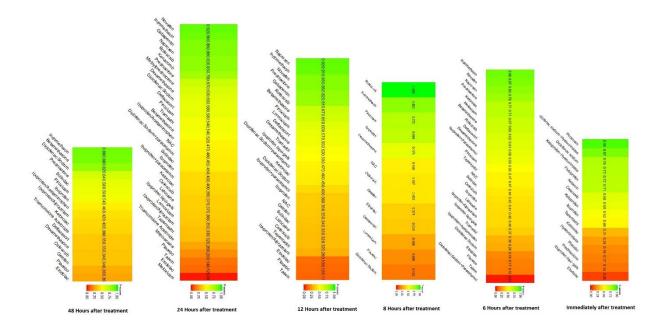


Fig. (5). Network ranking graph showed the rank of categories for the primary analysis Categorized by the chemical name: a) Immediately after procedure, b) Six Hours after Procedure, c) Eight Hours after Procedure. d) Twelve Hours after Procedure, e) Twenty-four Hours after Procedure, f) Forty-eight Hours after Procedure.

3.3.2. Postoperative Pain for Treatment Intervention Categorized by Chemical Name

Network diagrams of all the eligible comparisons for primary outcomes according to the chemical name are presented in Fig. (4a-f).

Immediately after procedure: Among all medications, Piroxicam was ranked as the best treatment for the reduction of postoperative pain [SMD=-1.20, 95% CI (-1.53: -0.86), P-score= 0.95]. Moreover, Diclofenac sodium, Flubiprofen, Ketamin, Ketoprofen, and Ibuprofen showed a significant reduction in pain after endodontic treatment. Pooled analysis was found to be homogenous (Q=23.89; I²=20.5%; P<0.97) (Appendix Fig. 7). Publication bias analysis showed that there was no detected bias according to the Egger test (p=0.66). The split analysis is presented in Appendix Fig. (8). Network ranking graph showed the rank of drugs immediately after the procedure (Fig. 5a).

Six hours after procedure: Indomethacin was ranked as the best treatment for the reduction of postoperative pain [SMD=-1.79, 95% CI (-2.55: -1.02), P-score= 0.89]. Furthermore, Novafen, Naproxen, Prednisolone, Ketorolac, Betamethasone, Dexamethasone, Rofecoxib, Piroxicam, and Ibuprofen showed a significant reduction in pain after 6 hours of endodontic treatment. Pooled analysis was heterogeneous (Q=252.22; I²=82.6%; P<0.0001) due to the significant variation among the analyzed drugs (Appendix Fig. 9). Publication bias analysis showed a detected bias according to the Egger test (p<0.0001). The split analysis is presented in Appendix Fig. (10). Network ranking graph showed the rank of drugs 6 hours after the procedure (Fig. 5b).

Eight hours after procedure: At this period, only four

drugs significantly reduced post-endodontic pain; Rofecoxib [SMD= -6.65, 95% CI (-8.53: -4.78), P-score= 1.00], Indomethacin [SMD= -2.39, 95% CI (-4.36: -0.42), P-score= 0.83], Piroxicam [SMD= -1.61, 95% CI (-2.97: -0.25), P-score= 0.72], and Ibuprofen [SMD= -1.41, 95% CI (-2.42: -0.41), P-score= 0.70]. Pooled analysis was heterogeneous (Q=82.04; I²=87.8%; P<0.0001) due to the significant variation among the analyzed drugs (Appendix Fig. 11). Publication bias analysis showed that there was no detected bias according to Egger test (p<0.15). The split analysis is presented in Appendix Fig. (12). Network ranking graph showed the rank of drugs 8 hours after the procedure (Fig. 5c).

Twelve hours after procedure: Naproxen was ranked as the best treatment for the reduction of postoperative pain [SMD= -2.67, 95% CI (-3.90: -1.44), P-score= 0.92]. Furthermore, Novafen, Indomethacin, Prednisolone, Gabapentin. Betamethasone, Dexamethasone, Rofecoxib, Piroxicam, and Ibuprofen showed a significant reduction in pain after 12 hours of endodontic treatment. Pooled analysis was found to be heterogeneous (Q=377.76; I^2 =86.8%; P<0.0001) due to the significant variation among the analyzed drugs (Appendix Fig. 13). Publication bias analysis showed that there was a detected bias according to the Egger test (p<0.0001). The split analysis is presented in Appendix Fig. (14). Network ranking graph showed the rank of drugs 12 hours after the procedure (Fig.

Twenty-four hours after procedure: Novafen was ranked as the best treatment for the reduction of postoperative pain [SMD= -2.13, 95% CI (-3.18: -1.08), P-score= 0.92]. Furthermore, Naproxen, Indomethacin, Prednisolone, Gabapentin, Diclofenac sodium, Betamethasone, Dexamethasone, Rofecoxib, Kenacomb, Piroxicam, and

Ibuprofen showed a significant reduction in pain after 24 hours of endodontic treatment. Pooled analysis was observed to be heterogeneous (Q=321; I²=84.4%; P<0.0001) due to the significant variation among the analyzed drugs (Appendix Fig. 15). Publication bias analysis showed that there was a detected bias according to the Egger test (p=0.003). The split analysis is presented in Appendix Fig. (16). Network ranking graph showed the rank of drugs 24 hours after the procedure (Fig. 5e).

Forty-eight hours after procedure: Only indomethacin and betamethasone showed a significant reduction in postoperative pain [SMD= -1.66, 95% CI (-3.15: -0.18), P-score= 0.89] and [SMD= -1.64, 95% CI (-3.13: -0.15), P-score= 0.88], respectively. Pooled analysis was heterogeneous (Q=81; I^2 =82.7%; P<0.0001) due to the significant variation among the analyzed drugs (Appendix Fig. 17). Publication bias analysis showed that there was no detected bias according to the Egger test (p=0.32). The split analysis is presented in Appendix Fig. (18). Network ranking graph showed the rank of drugs 48 hours after the procedure (Fig. 5f).

3.4. Secondary Outcome: Adverse Events

3.4.1. Nausea

Our analysis showed that only five studies reported data regarding nausea [21 - 25]. Network graph included the following drugs: Indomethacin, ibuprofen, tramadol, betamethasone, flurbiprofen, and placebo (Appendix Fig. 19). Interestingly, among the tested drugs, no drug showed a significant increase in the risk/incidence of nausea, as shown in Appendix Fig. (20). Moreover, the ranking analysis demonstrated ibuprofen as the lowest drug associated with risk/incidence of nausea (Appendix Fig. 21). The split analysis is presented in Appendix Fig. (22).

3.4.2. Headache

Only four studies reported data regarding headache [21-24]. Network graph included the following drugs: Indomethacin, ibuprofen, tramadol, betamethasone, flurbiprofen, and placebo (Appendix Fig. 23). Betamethasone and Ibuprofen showed a significant reduction in the risk/incidence of headache [OR= 0.10, 95% CI (0.01: 0.90), P-score= 0.87] and [OR= 0.31, 95% CI (0.11: 0.89), P-score= 0.63], respectively (Appendix Fig. 24). Moreover, the ranking analysis demonstrated that betamethasone was the lowest drug associated with risk/incidence of headache (Appendix Fig. 25). The split analysis is presented in Appendix Fig. 26.

3.4.3. Other Adverse Events

Salapoor *et al.* [24] reported one case and Menhinick *et al.* [21]reported three cases of sweating due to using ibuprofen. Regarding dizziness, Shantiaee *et al.* [24] reported three cases with dexamethasone, and Sethi *et al.* [23]reported four cases with Tapentadol and Etodolac. In terms of vomiting and heartburn, three cases were recorded for each Tapentadol and Etodolac [23].

4. DISCUSSION

To the best of our knowledge, this is the largest and most updated systematic review and network meta-analysis that was conducted to evaluate the current evidence regarding the effect of pre- and postmedication for reducing the postendodontic pain. In this study, we included a total of 62 RCTs in the systematic review. Out of them, 50 studies were included in the network meta-analysis (NMA). NMA was conducted on the basis of pharmacological or chemical name groupings in order to identify the effect of classification of the medications given pre- or postendodontic care on postoperative pain during the following periods: immediately, 6, 8, 12, 24, 48 hours after the procedure. Opioids were ranked first in the pharmacologic group for reducing pain immediately after the procedure. Moreover, it showed a significant reduction at 12 hours after the procedure. Corticosteroids were ranked first as the best treatment for the reduction of postoperative pain at 6 and 12 hours with a significant reduction in postoperative pain scores [SMD= -1.18, 95% CI (-1.51: -0.85)] and [SMD= -1.39, 95% CI (-1.77: -1.02)], respectively. COX-2 were ranked as the best treatment for the reduction of postoperative pain at 8 and 24 hours with a significant reduction in postoperative pain scores [SMD= -2.86, 95% CI (-6.05: -1.66)] and [SMD= -1.27, 95% CI (-2.10: -0.43)], respectively. NSAIDs significantly reduced the postoperative pain scores in all durations. Based on the chemical name, piroxicam was superior immediately after the procedure, whereas indomethacin followed by novafen, naproxen, and prednisolone was found to be effective at 6 hours. At 12 and 24 hours, naproxen and Novafen followed by indomethacin were ranked first. However, at 48 hours, only indomethacin and betamethasone were effective. The safety profile of test drugs was acceptable except for some events of nausea, vomiting, and headache.

Clinically, it has been reported that patients with periapical diagnosis of an Acute Apical Periodontitis (APP) or Phoenix Abscess are more likely to require additional medication to relieve post-endodontic pain compared to a periapical diagnosis of a Normal Periapex, a Chronic Apical Periodontitis (CAP), or a Chronic Apical Abscess (CAA) [26, 27]. Therefore, it seems rational to minimize occlusion after root canal therapy on the tooth, which is harmful to percussion. Occlusal reduction in patients with teeth that initially show pulp vitality, percussion sensitivity, preoperative pain and/or absence of periradicular radiolucency has been recommended to prevent postoperative pain [28]. On the other hand, CAA or CAP consists of a radiolucency at the root apex, a draining fistula (sinus tract), and usually no pain in percussion.

Nagendrababu *et al.* [17] conducted NMA for the same purpose; however, they only included 16 RCTs and reported results for only three durations. In terms of adverse events, they reported a descriptive result and did not conduct a pooled analysis. In conclusion, they stated that the use of piroxicam or prednisolone would be the premedication of choice. We agree that these drugs are promising and show a significant effect; however, we believe that indomethacin, Novafen, naproxen, betamethasone have a better effect and longer duration.

In the NMA of Shirvani and colleagues, they aimed to investigate the efficacy of NSAIDs and paracetamol in

reducing postendodontic pain. They did not include corticosteroids or opioids; therefore, they enrolled only 27 articles. They analyzed the data at four durations immediately, 6, 12, and 24 hours after the procedure. They performed a meta-regression which demonstrated that combination therapy did not reduce the pain significantly (OR= -0.88, 95% CI (-2.05, 0.28), p= 0.1). Moreover, they showed that the systemic administration was more efficient than oral administration (OR = -1.17, 95% CI (-1.93, -0.41), p = 0.004) and (OR = 4.24,95% CI (2.62, 5.86), p<0.001), respectively. Finally, they recommended the use of multiple-dose regimens of NSAIDs during the postoperative period to achieve most efficacy (29). Smith et al. (30) found that the elimination of 6 hours of postendodontic pain with ibuprofen 600 mg and ibuprofen 600 mg + acetaminophen 1000 mg was more effective than placebo. They analyzed studies that evaluated the efficacy of pre- and postmedication for endodontic treatment on pain. They showed that ketoprofen 50 mg and naproxen 500 mg might be more effective than ibuprofen 600 mg at 6 hours postoperative.

5. Limitations

This study possessed some limitations: 1) Heterogeneity was observed in all analyses, which can be explained by the extensive variation in types of drugs, dosage, mechanism of action, and mode of administration. Moreover, the different types of teeth of participants with varied demographics may influence the applicability of our findings. However, all studies were conducted in hospitals, universities or clinics where the numbers and experience of operators were diversified, which could further encourage our findings to be generalized. 2) We could not conduct a subgroup analysis according to the

regimen doses because of insufficient data.

CONCLUSION

In conclusion, the current evidence suggests that pre- and postmedication have the ability to reduce postoperative pain after nonsurgical root canal treatment. Corticosteroids and COX-2 inhibitors showed significant control of the pain up to 12 hours after administration. However, NSAIDs demonstrated a high efficacy from administration and until two days after treatment. Indomethacin, Novafen, prednisolone, and Naproxen were ranked as first in most analyzed durations. The use of narcotic agents before and post-nonsurgical root canal procedures for postoperative pain control and improving the quality of life needs further research.

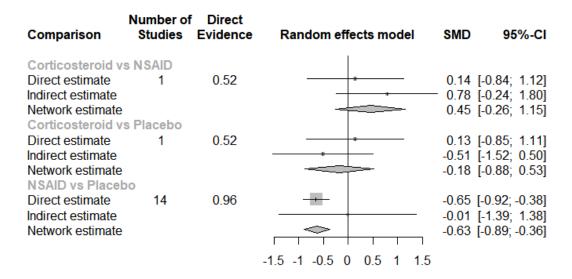
CONSENT FOR PUBLICATION

Not applicable.

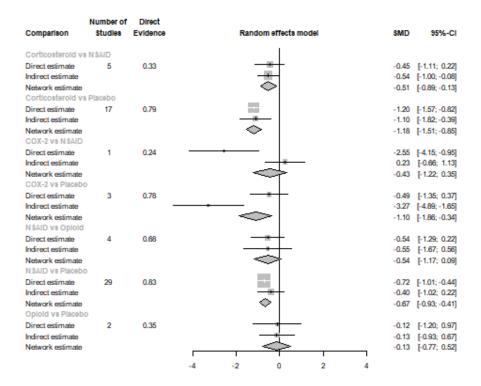
FUNDING

None.

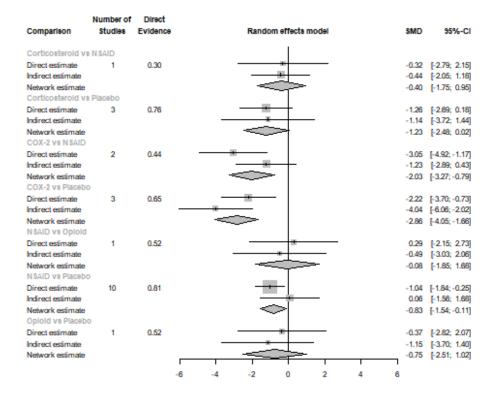
CONFLICT OF INTEREST

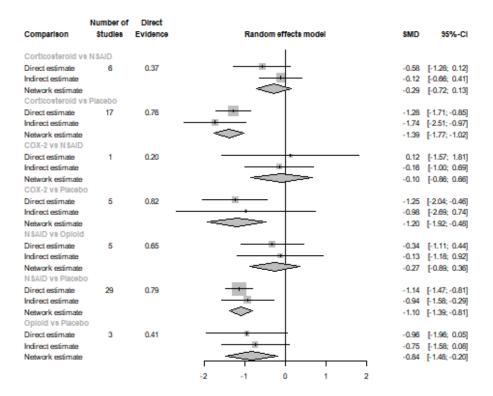

The authors declare no conflict of interest, financial or otherwise.

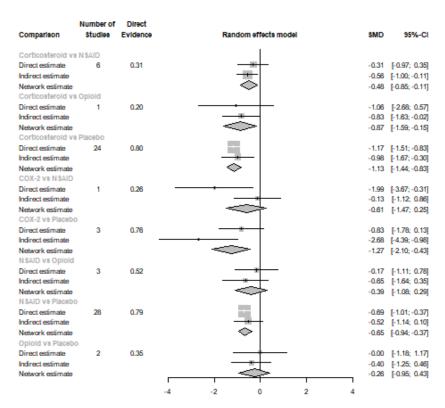
ACKNOWLEDGEMENTS

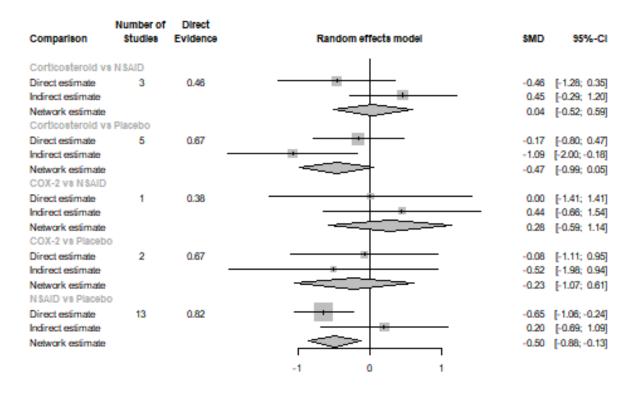

The authors would like to thank Dr. Hussien Ahmed of MRSclin for the editorial and statistical support.

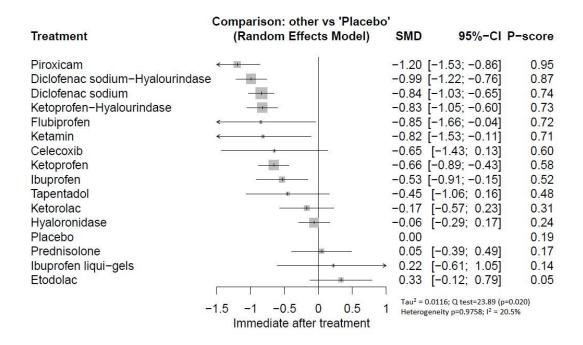
APPENDIX

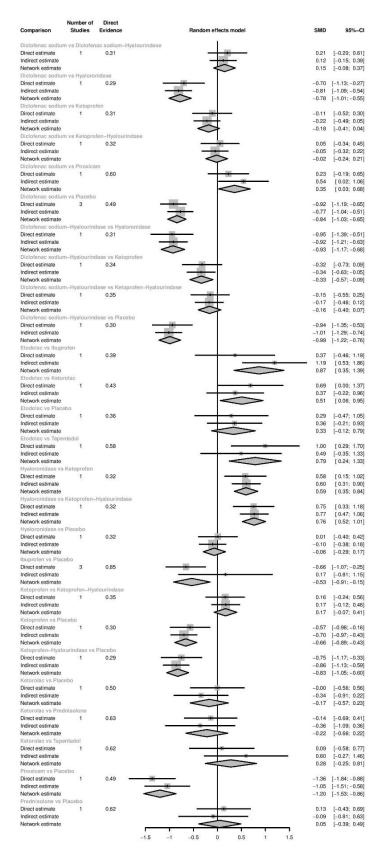

Primary outcome: Postoperative Pain Treatment Intervention Categorized by Pharmacologic Group


Appendix Fig. (1). Split analysis of the effect of Treatment Intervention Categorized by Pharmacologic Group on Postoperative Pain Immediately after the procedure.

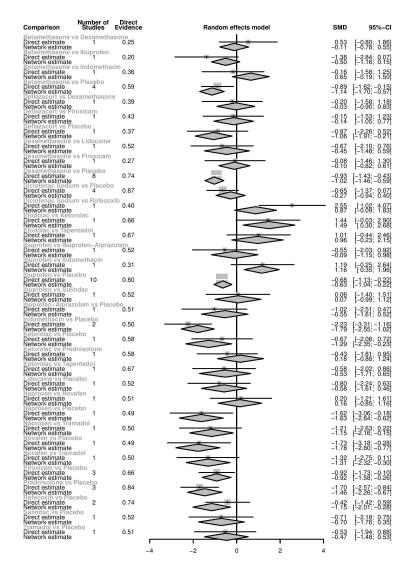

Appendix Fig. (2). Split analysis of the effect of Treatment Intervention Categorized by Pharmacologic Group on Postoperative Pain at 6 hours after the procedure.

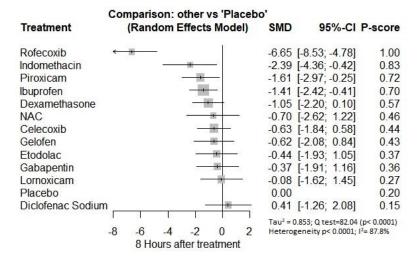

Appendix Fig. (3). Split analysis of the effect of treatment Intervention Categorized by Pharmacologic Group on Postoperative Pain at 8 hours after the procedure.


Appendix Fig. (4). Split analysis of the effect of treatment Intervention Categorized by Pharmacologic Group on Postoperative Pain at 12 hours after the procedure.

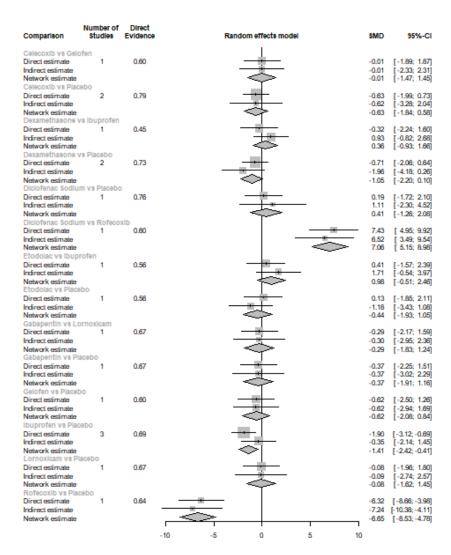

Appendix Fig. (5). Split analysis of the effect of treatment Intervention Categorized by Pharmacologic Group on Postoperative Pain at 24 hours after the procedure.

Appendix Fig. (6). Split analysis of the effect of treatment Intervention Categorized by Pharmacologic Group on Postoperative Pain at 48 hours after the procedure.

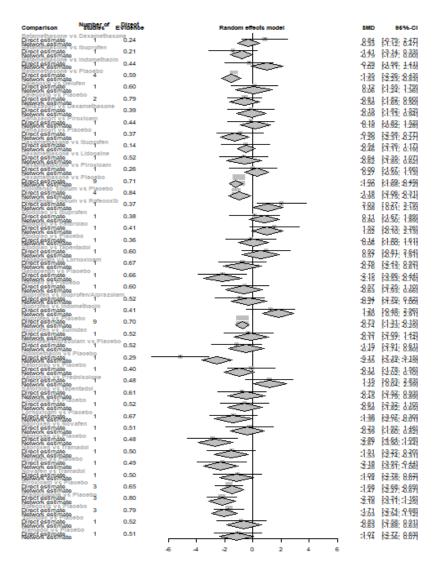

Appendix Fig. (7). Forest plot of the effect of treatment Intervention Categorized by chemical name on Postoperative Pain immediately after the procedure.

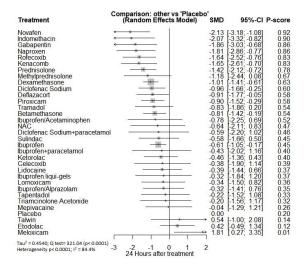

Appendix Fig. (8). Split analysis of the effect of treatment Intervention Categorized by chemical name on Postoperative Pain immediately after procedure.

	omparison: other vs 'Placeb			
Treatment	(Random Effects Model)	SMD	95%-CI	P-score
Indomethacin		-1.79 [-	2.55; -1.02]	0.89
Novafen		-1.78 [-	2.80; -0.77]	0.87
Naproxen		-1.63 [-	2.64; -0.62]	0.83
Prednisolone		-1.46 [-	2.26; -0.67]	0.79
Ketorolac		-1.29 [-	2.35; -0.23]	0.71
Meloxicam		-1.35 [·	-2.84; 0.14]	0.71
Betamethasone		-1.14 [-	1.70; -0.57	0.67
Rofecoxib		-1.15 [-	2.01; -0.28]	0.66
Deflazacort		-1.06 [-	1.91; -0.21]	0.62
Dexamethasone		-1.02 [-	1.46; -0.59]	0.61
Ibuprofen+Paracetamol		-0.99 [-2.57; 0.59]	0.58
Piroxicam		-0.92 [-	1.58; -0.26]	0.56
Tapentadol		-0.76 J	-2.34; 0.83]	0.50
NAC		-0.70 [·	-2.13; 0.73]	0.47
Sulindac		-0.70 [-1.76; 0.35]	0.47
Celecoxib		-0.62 [-2.00; 0.76]	0.44
Ibuprofen	-	-0.63 [-	1.04; -0.22]	0.42
Lidocaine		-0.58 [·	-1.61; 0.46]	0.41
Ibuprofen-Alprazolam		-0.55 [-1.61; 0.52]	0.40
Ibuprofen liqui-gels		-0.50 [-	-1.99; 0.99]	0.40
Tramadol		-0.47 [·	-1.48; 0.53]	0.37
Ibuprofen+Acetaminofen		-0.19 [·	-1.62; 1.24]	0.30
Diclofenac Sodium		-0.27	-0.94; 0.40]	0.28
Etodolac	s . • - s	0.20	-1.39; 1.80]	0.19
Placebo		0.00	1 15	0.17
Talwin		0.35	-1.16; 1.86]	0.16
Diclofenac Sodium+Paracetamol _		→ 2.13	[0.54; 3.72]	0.01
Fau ² = 0.43; Q test= 252.22 (P< 0.0001)	1 -2 -1 0 1 2	0		
Heterogeneity p< 0.0001; I ² = 82.6% -3		3		
	Six Hours after treatment			

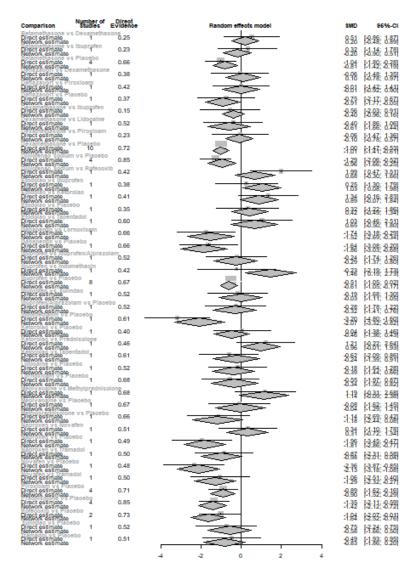

Appendix Fig. (9). Forest plot of the effect of treatment Intervention Categorized by chemical name on Postoperative Pain at 6 hours after the procedure.

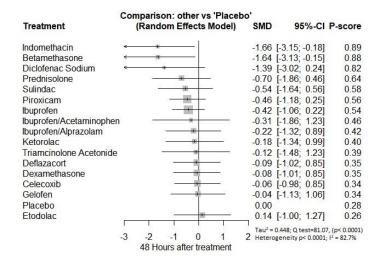
Appendix Fig. (10). Split analysis of the effect of treatment Intervention Categorized by chemical name on Postoperative Pain at 6 hours after the procedure.

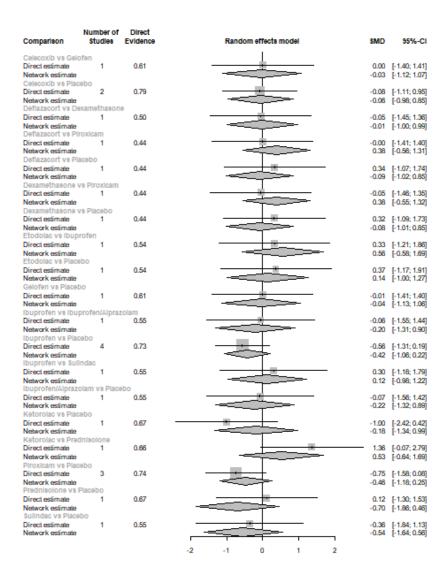

Appendix Fig. (11). Forest plot of the effect of treatment Intervention Categorized by chemical name on Postoperative Pain at 8 hours after the procedure.

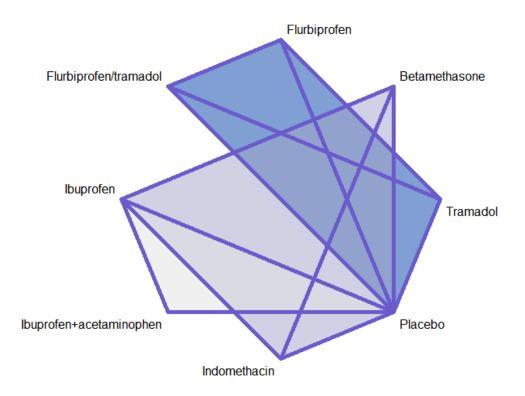

Appendix Fig. (12). Split analysis of the effect of treatment Intervention Categorized by chemical name on Postoperative Pain at 6 hours after the procedure.

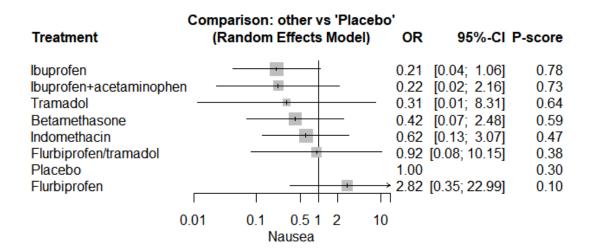
Treatment	(Random Effects Model)	SMD	050/ 01	P-score
Treatment	(Kandom Effects Model)	PMD	95%-CI	r-score
Naproxen	 	-2.67	[-3.90; -1.44]	0.92
Indomethacin	- x	-2.55	[-3.64; -1.45]	0.91
Novafen	← * − −	-2.28	[-3.51; -1.06]	0.85
Prednisolone	· · ·	-2.18	[-3.11; -1.25]	0.85
Gabapentin		-2.15	[-3.53; -0.76]	0.82
Rofecoxib		-2.03	[-2.94; -1.12]	0.81
Betamethasone		-1.53	[-2.23; -0.83]	0.67
Piroxicam		-1.47	[-2.27; -0.67]	0.65
Lornoxicam	-	-1.39	[-2.76; -0.01]	0.60
Deflazacort		-1.29	[-2.31; -0.27]	0.57
Dexamethasone		-1.20	[-1.68; -0.72]	0.55
Tramadol	-	-1.14	[-2.36; 0.07]	0.52
buprofen liqui-gels		-1.08	[-2.85; 0.69]	0.50
Diclofenac Sodium+paracetamol		-1.00	[-2.84; 0.84]	0.47
Ketorolac	-	-0.96	[-2.02: 0.10]	0.46
Diclofenac Sodium		-0.95	[-1.75; -0.14]	0.45
buprofen+paracetamol	-	-0.75	[-2.58; 1.08]	0.40
lbuprofen		-0.74	[-1.23; -0.25]	0.36
NAC		-0.64	[-2.35; 1.07]	0.36
Gelofen		-0.63	[-1.93; 0.66]	0.35
Sulindac		-0.63	[-1.88; 0.63]	0.34
Lidocaine	-	-0.58	[-1.82; 0.65]	0.33
Celecoxib		-0.58	[-1.65; 0.50]	0.32
Tapentadol		-0.51	[-2.03: 1.00]	0.32
buprofen/Alprazolam	-	-0.47	[-1.74: 0.80]	0.29
Etodolac	-	0.06	[-1.00: 1.11]	0.13
Placebo		0.00	Carolines Source	0.12
Talwin		→ 0.42	[-1.33; 2.17]	0.11
Tau ² = 0.658; Q test=377.76 (p< 0.0001)		7		
	-3 -2 -1 0 1	2		
	12 Hours after treatme	nt		

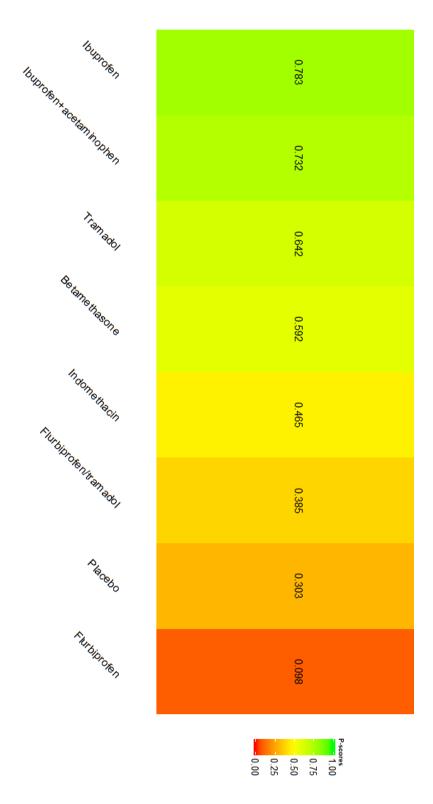

Appendix Fig. (13). Forest plot of the effect of treatment Intervention Categorized by chemical name on Postoperative Pain at 12 hours after the procedure.


Appendix Fig. (14). Split analysis of the effect of treatment Intervention Categorized by chemical name on Postoperative Pain at 12 hours after the procedure.

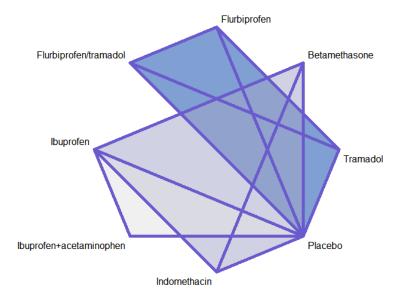

Appendix Fig. (15). Forest plot of the effect of treatment Intervention Categorized by chemical name on Postoperative Pain at 24 hours after the procedure.


Appendix Fig. (16). Split analysis of the effect of treatment Intervention Categorized by chemical name on Postoperative Pain at 24 hours after the procedure.

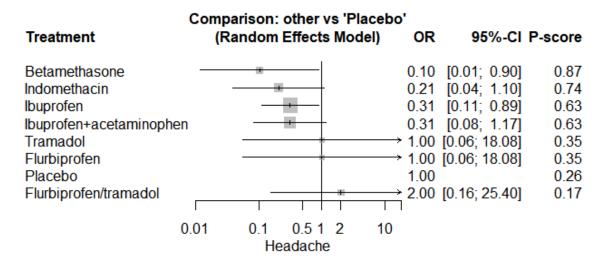

Appendix Fig. (17). Forest plot of the effect of treatment Intervention Categorized by chemical name on Postoperative Pain at 48 hours after the procedure.


Appendix Fig. (18). Split analysis of the effect of treatment Intervention Categorized by chemical name on Postoperative Pain at 48 hours after the procedure.

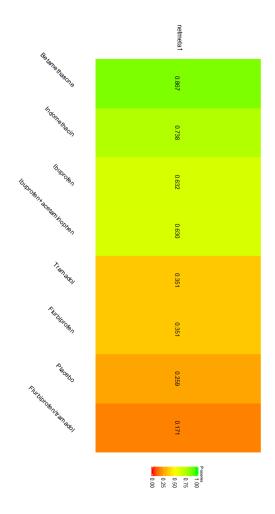
Appendix Fig. (19). Network graph of nausea.

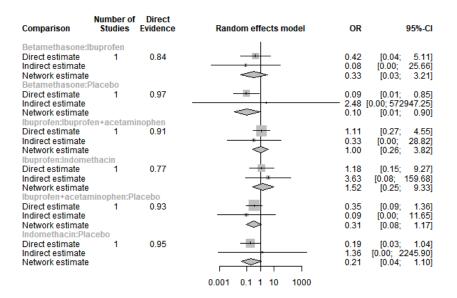


 $\textbf{Appendix Fig. (20).} \ \text{Forest plot of nausea}. \\$



Appendix Fig. (21). Ranking plot of nausea.


Appendix Fig. (22). Split analysis of nausea.


Appendix Fig. (23). Network graph of headache.

Appendix Fig. (24). Forest plot of headache.

Appendix Fig. (25). Ranking plot of headache.

Appendix Fig. (26). Split analysis of headache.

Appendix Table 1. League table of the effect of treatment intervention categorized by pharmacologic group on postoperative pain immediately after the procedure.

Corticosteroid	-	-	-	-
0.47 (-0.86; 1.80)	COX-2	=	=	-
0.45 (-0.26; 1.15)	-0.02 (-1.18; 1.13)	NSAID	=	-
0.98 (-0.05; 2.01)	0.51 (-0.87; 1.89)	0.53 (-0.22; 1.29)	Opioid	-
-0.18 (-0.88; 0.53)	-0.65 (-1.78; 0.48)	-0.63 (-0.89; -0.36)	-1.16 (-1.96; -0.36)	Placebo

Appendix Table 2. League table of the effect of treatment intervention categorized by pharmacologic group on postoperative pain at 6 hours after the procedure.

Corticosteroid	-	-	-	-
-0.07 (-0.90; 0.75)	COX-2	=	=	-
-0.51 (-0.89; -0.13)	-0.43 (-1.22; 0.35)	NSAID	=	-
-1.05 (-1.76; -0.34)	-0.98 (-1.96; 0.01)	-0.54 (-1.17; 0.09)	Opioid	-
-1.18 (-1.51; -0.85)	-1.10 (-1.86; -0.34)	-0.67 (-0.93; -0.41)	-0.13 (-0.77; 0.52)	Placebo

Appendix Table 3. League table of the effect of treatment intervention categorized by pharmacologic group on postoperative pain at 8 hours after the procedure.

Corticosteroid	-	-	-	-
1.63 (-0.07; 3.33)	COX-2	=	=	-
-0.40 (-1.75; 0.95)	-2.03 (-3.27; -0.79)	NSAID	=	-
-0.48 (-2.62; 1.65)	-2.11 (-4.20; -0.03)	-0.08 (-1.85; 1.68)	Opioid	-
-1.23 (-2.48; 0.02)	-2.86 (-4.05; -1.66)	-0.83 (-1.54; -0.11)	-0.75 (-2.51; 1.02)	Placebo

Appendix Table 4. League table of the effect of treatment intervention categorized by pharmacologic group on postoperative pain at 12 hours after the procedure.

Corticosteroid	-	-	-	-
-0.19 (-1.00; 0.62)	COX-2	=	=	-
-0.29 (-0.72; 0.13)	-0.10 (-0.86; 0.66)	NSAID	-	-

(Table 4) contd.....

Corticosteroid	-	-	-	-
-0.56 (-1.28; 0.16)	-0.37 (-1.32; 0.59)	-0.27 (-0.89; 0.36)	Opioid	-
-1.39 (-1.77; -1.02)	-1.20 (-1.92; -0.48)	-1.10 (-1.39; -0.81)	-0.84 (-1.48; -0.20)	Placebo

Appendix Table 5. League table of the effect of treatment intervention categorized by pharmacologic group on postoperative pain at 24 hours after the procedure.

Corticosteroid	-	-	-	-
0.13 (-0.75; 1.01)	COX-2	=	=	-
-0.48 (-0.85; -0.11)	-0.61 (-1.47; 0.25)	NSAID	=	-
-0.87 (-1.59; -0.15)	-1.01 (-2.08; 0.07)	-0.39 (-1.08; 0.29)	Opioid	-
-1.13 (-1.44; -0.83)	-1.27 (-2.10; -0.43)	-0.65 (-0.94; -0.37)	-0.26 (-0.95; 0.43)	Placebo

Appendix Table 6. League table of the effect of treatment intervention categorized by pharmacologic group on postoperative pain at 48 hours after the procedure.

Corticosteroid	-		
-0.24 (-1.21; 0.73)	COX-2		
0.04 (-0.52; 0.59)	0.28 (-0.59; 1.14)	NSAID	
-0.47 (-0.99; 0.05)	-0.23 (-1.07; 0.61)	-0.50 (-0.88; -0.13)	Placebo

REFERENCES

- [1] Alonso-Ezpeleta LO, Gasco-Garcia C, Castellanos-Cosano L, Martín-González J, López-Frías FJ, Segura-Egea JJ. Postoperative pain after one-visit root-canal treatment on teeth with vital pulps: comparison of three different obturation techniques. Med Oral Patol Oral Cir Bucal 2012; 17(4): e721-7.http://www.medicinaoral.com/pubmed/medoralsv17_i4_p721.pdf
 [http://dx.doi.org/10.4317/medoral.17898] [PMID: 22322522]
- [2] Arias A, de la Macorra JC, Hidalgo JJ, Azabal M. Predictive models of pain following root canal treatment: a prospective clinical study. Int Endod J 2013; 46(8): 784-93.http://www.ncbi.nlm.nih.gov/pubmed/ 23402273
 - [http://dx.doi.org/10.1111/iej.12059] [PMID: 23402273]
- [3] Henry M, Reader A, Beck M. Effect of penicillin on postoperative endodontic pain and swelling in symptomatic necrotic teeth. J Endod 2001; 27(2): 117-23.http://www.ncbi.nlm.nih.gov/pubmed/11491635 [Internet].
 - [http://dx.doi.org/10.1097/00004770-200102000-00016] [PMID 11491635]
- [4] Sathorn C, Parashos P, Messer H. The prevalence of postoperative pain and flare-up in single- and multiple-visit endodontic treatment: a systematic review. Int Endod J 2008; 41(2): 91-9.http://www.ncbi. nlm.nih.gov/pubmed/17956561 [Internet].
 [PMID: 17956561]
- [5] Jayakodi H, Kailasam S, Kumaravadivel K, Thangavelu B, Mathew S. Clinical and pharmacological management of endodontic flare-up. J Pharm Bioallied Sci 2012; 4(6)(Suppl. 2): S294-8.http://www.jpbsonline.org/text.asp?2012/4/6/294/100277
 [http://dx.doi.org/10.4103/0975-7406.100277] [PMID: 23066274]
- [6] Siqueira J. Microbial causes of endodontic flare-ups. Int Endod J [Internet] 2003; 1-11. Available from: papers2://publication/uuid/ ABB4849D-37CF-48FF-9CD3-85F64300E114 [http://dx.doi.org/10.1046/j.1365-2591.2003.00671.x]
- [7] Löst C. Quality guidelines for endodontic treatment: consensus report of the European Society of Endodontology. Int Endod J 2006; 39(12): 921-30.http://doi.wiley.com/10.1111/j.1365-2591.2006.01180.x [Internet].
 - [http://dx.doi.org/10.1111/j.1365-2591.2006.01180.x] [PMID 17180780]
- [8] Whitten BH, Gardiner DL, Jeansonne BG, Lemon RR. Current trends in endodontic treatment: report of a national survey. J Am Dent Assoc 1996; 127(9): 1333-41.http://www.ncbi.nlm.nih.gov/pubmed/8854609 [Internet]. [http://dx.doi.org/10.14219/jada.archive.1996.0444] [PMID: 8854609]
- [9] Hargreaves K, Abbott PV. Drugs for pain management in dentistry.

- Aust Dent J 2005; 50(4)(Suppl. 2): S14-22.http://www.ncbi.nlm.nih.gov/pubmed/16416713 [Internet].
- [http://dx.doi.org/10.1111/j.1834-7819.2005.tb00378.x] [PMID: 16416713]
- [10] Gunaydin C, Bilge SS. Effects of Nonsteroidal Anti-Inflammatory Drugs at the Molecular Level. Eurasian J Med 2018; 50(2): 116-21.https://www.eajm.org//en/effects-of-nonsteroidal-anti-inflamm atory-drugs-at-the-molecular-level-133048 [Internet]. [http://dx.doi.org/10.5152/eurasianjmed.2018.0010] [PMID: 30002579]
- [11] Nath R, Daneshmand A, Sizemore D, Guo J, Enciso R. Efficacy of corticosteroids for postoperative endodontic pain: A systematic review and meta-analysis. J Dent Anesth Pain Med 2018; 18(4): 205-21.https://synapse.koreamed.org/DOIx.php?id=10.17245/jdapm.2 018.18.4.205 [Internet]. [http://dx.doi.org/10.17245/jdapm.2018.18.4.205] [PMID: 30186968]
- [12] Praveen R, Thakur S, Kirthiga M. Comparative evaluation of premedication with ketorolac and prednisolone on postendodontic pain: A double-blind randomized controlled trial. J Endod 2017; 43(5): 667-73. [Internet]. [http://dx.doi.org/10.1016/j.joen.2016.12.012] [PMID: 28320541]
- [13] Ramazani M, Hamidi MR, Moghaddamnia AA, Ramazani N, Zarenejad N. The prophylactic effects of Zintoma and Ibuprofen on post-endodontic pain of molars with irreversible pulpitis: A randomized clinical trial. Iran Endod J 2013; 8(3): 129-34. [PMID: 23922575]
- [14] Işik B, Yaman S, Aktuna S, Turan A. Analgesic efficacy of prophylactic gabapentin and lornoxicam in preventing postendodontic pain. Pain Med 2014; 15(12): 2150-5. [http://dx.doi.org/10.1111/pme.12536] [PMID: 25138784]
- [15] Mokhtari F, Yazdi K, Mahabadi AM, Modaresi SJ, Hamzeheil Z. Effect of premedication with indomethacin and ibuprofen on postoperative endodontic pain: A clinical trial. Iran Endod J 2016; 11(1): 57-62. [PMID: 26843879]
- [16] Ashraf H, Naghlachi T, Ketabi M-A. Comparison of the efficacy of prophylactic celecoxib, a cox-2 inhibitor made in iran, and placebo for post-endodontic pain reduction: A clinical double-blind study 2013.http://jds.sbmu.ac.ir/browse.php?a_code=A-10-1-975&slc_lang=en&sid=1
- [17] Nagendrababu V, Pulikkotil SJ, Jinatongthai P, Veettil SK, Teerawattanapong N, Gutmann JL. Efficacy and safety of oral premedication on pain after nonsurgical root canal treatment: A systematic review and network meta-analysis of randomized controlled trials. J Endod 2019; 45(4): 364-71. [Internet]. [http://dx.doi.org/10.1016/j.joen.2018.10.016] [PMID: 30737050]
- [18] Hutton B, Salanti G, Caldwell DM, et al. The PRISMA extension

15230906]

- statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med 2015; 162(11): 777-84.http://www.ncbi.nlm.nih.gov/pubmed/26030634 [Internet]. [http://dx.doi.org/10.7326/M14-2385] [PMID: 26030634]
- [19] Higgins JPT, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials 2011.http://www.bmj.com/cgi/doi/10.1136/bmj.d5928 [http://dx.doi.org/10.1136/bmj.d5928]
- [20] Chaimani A, Salanti G. Using network meta-analysis to evaluate the existence of small-study effects in a network of interventions. In: Research Synthesis Methods. 2012; 20: pp. 161-76. [http://dx.doi.org/10.1002/jrsm.57]
- [21] Menhinick KA, Gutmann JL, Regan JD, Taylor SE, Buschang PH. The efficacy of pain control following nonsurgical root canal treatment using ibuprofen or a combination of ibuprofen and acetaminophen in a randomized, double-blind, placebo-controlled study. Int Endod J 2004; 37(8): 531-41. [http://dx.doi.org/10.1111/j.1365-2591.2004.00836.x] [PMID:
- [22] Doroschak AM, Bowles WR, Hargreaves KM. Evaluation of the combination of flurbiprofen and tramadol for management of endodontic pain. J Endod 1999; 25(10): 660-3. [http://dx.doi.org/10.1016/S0099-2399(99)80350-1] [PMID: 10687523]
- [23] Sethi P, Agarwal M, Chourasia HR, Singh MP. Effect of single dose pretreatment analgesia with three different analgesics on postoperative endodontic pain: A randomized clinical trial. J Conserv Dent 2014; 17(6): 517-21. [http://dx.doi.org/10.4103/0972-0707.144574] [PMID: 25506136]
- [24] Salarpoor M, Shahraki S, Farhad-Molashahi L, Farhad-Molashahi N, Dadgar F. Effectiveness of various medications on post operative pain of vital teeth after root canal therapy. Zahedan J Res Med Sci 2014; 16(7): 15-20
- [25] Shantiaee Y, Mahjour F, Dianat O. Efficacy comparison of periapical infiltration injection of dexamethasone, morphine and placebo for postoperative endodontic pain. Int Dent J 2012; 62(2): 74-8. [http://dx.doi.org/10.1111/j.1875-595X.2011.00092.x] [PMID: 22420475]
- [26] Menke ER, Jackson CR, Bagby MD, Tracy TS. The effectiveness of prophylactic etodolac on postendodontic pain. J Endod 2000; 26(12): 712-5.
 - [http://dx.doi.org/10.1097/00004770-200012000-00010] [PMID: 11471639]
- [27] Gopikrishna V, Parameswaran A. Effectiveness of prophylactic use of rofecoxib in comparison with ibuprofen on postendodontic pain. J Endod 2003; 29(1): 62-4. [http://dx.doi.org/10.1097/00004770-200301000-00017] [PMID: 12540224]
- [28] Rosenberg PA, Babick PJ, Schertzer L, Leung A. The effect of occlusal reduction on pain after endodontic instrumentation. J Endod 1998; 24(7): 492-6.https://linkinghub.elsevier.com/retrieve/pii/S009923999880054 X [Internet]. [http://dx.doi.org/10.1016/S0099-2399(98)80054-X] [PMID: 9693578]
- [29] Shirvani A, Shamszadeh S, Eghbal MJ, Asgary S. The efficacy of non-narcotic analgesics on post-operative endodontic pain: A systematic review and meta-analysis: The efficacy of non-steroidal anti-inflammatory drugs and/or paracetamol on post-operative endodontic pain. J Oral Rehabil 2017; 44(9): 709-21.http://doi.wiley.com/10.1111/joor.12519 [Internet]. [http://dx.doi.org/10.1111/joor.12519] [PMID: 28449307]
- [30] Smith EA, Marshall JG, Selph SS, Barker DR, Sedgley CM. Nonsteroidal Anti-inflammatory Drugs for Managing Postoperative Endodontic Pain in Patients Who Present with Preoperative Pain: A Systematic Review and Meta-analysis. J Endod 2017; 43(1): 7-15. [Internet]. [http://dx.doi.org/10.1016/j.joen.2016.09.010] [PMID: 27939729]
- [31] Attar S, Bowles WR, Baisden MK, Hodges JS, McClanahan SB. Evaluation of pretreatment analgesia and endodontic treatment for postoperative endodontic pain. J Endod 2008; 34(6): 652-5. [http://dx.doi.org/10.1016/j.joen.2008.02.017] [PMID: 18498882]
- [32] Saatchi M, Mosavat F, Razmara F, Soleymani B. Comparison of the effect of Ibuprofen and slow-released Diclofenac Sodium in controlling post endodontic pain. J Dent Med 2010; 22(4): 185-91.

- [33] Jalalzadeh SM, Mamavi A, Shahriari S, Santos FA, Pochapski MT. Effect of pretreatment prednisolone on postendodontic pain: a doubleblind parallel-randomized clinical trial. J Endod 2010; 36(6): 978-81. [http://dx.doi.org/10.1016/j.joen.2010.03.015] [PMID: 20478449]
- [34] Arslan H, Topcuoglu HS, Aladag H. Effectiveness of tenoxicam and ibuprofen for pain prevention following endodontic therapy in comparison to placebo: a randomized double-blind clinical trial. J Oral Sci 2011; 53(2): 157-61. [http://dx.doi.org/10.2334/josnusd.53.157] [PMID: 21712619]
- [35] Atbaei A, Mortazavi N. Prophylactic intraligamentary injection of piroxicam (feldene) for the management of post-endodontic pain in molar teeth with irreversible pulpitis. Aust Endod J 2012; 38(1): 31-5. [http://dx.doi.org/10.1111/j.1747-4477.2010.00274.x] [PMID: 22432824]
- [36] Baradaran M, Hamidi MR, Moghimi Firoozabad MR, Kazemi S, Ashrafpour M, Moghadamnia AA. Alprazolam role in the analgesic effect of ibuprofen on postendodontic pain. Caspian J Intern Med 2014; 5(4): 196-201. [PMID: 25489429]
- [37] Roderjan DA. Estudo clínico comparativo de dose única pré-operatória de 50mg de rofecoxib ou diclofenado sódico no controle da dor após tratamento endodôntico. Univ ESTADUAL PONTA GROSSA [Internet] 2004; 352.http://onlinelibrary.wiley.com/doi/10.1002/cbdv.200490137/abstra
- [38] Ehsani M, Moghadamnia AA, Zahedpasha S, et al. The role of prophylactic ibuprofen and N-acetylcysteine on the level of cytokines in periapical exudates and the post-treatment pain. Daru 2012; 20(1): 30.
 - [http://dx.doi.org/10.1186/2008-2231-20-30] [PMID: 23351387]
- [39] Elkhadem A, Ezzat K, Ramadan M, et al. The effect of preoperative oral administration of prednisolone on postoperative pain in patients with symptomatic irreversible pulpitis: a single-centre randomized controlled trial. Int Endod J 2018; 51(Suppl. 3): e189-96. [http://dx.doi.org/10.1111/iej.12795] [PMID: 28560802]
- [40] Flath RK, Hicks ML, Dionne RA, Pelleu GB Jr. Pain suppression after pulpectomy with preoperative flurbiprofen. J Endod 1987; 13(7): 339-47.
- [http://dx.doi.org/10.1016/S0099-2399(87)80116-4] [PMID: 3327906]
 [41] Joshi N, Mathew S, George JV, Hegde S, Bhandi S, Madhu KS. Comparative evaluation of the efficacy of two modes of delivery of Piroxicam (Dolonex(®)) for the management of postendodontic pain: A randomized control trial. J Conserv Dent 2016; 19(4): 301-5.

[http://dx.doi.org/10.4103/0972-0707.186454] [PMID: 27563175]

- [42] Kaviani N, Khademi A, Ebtehaj I, Mohammadi Z. The effect of orally administered ketamine on requirement for anesthetics and postoperative pain in mandibular molar teeth with irreversible pulpitis. J Oral Sci 2011; 53(4): 461-5. [http://dx.doi.org/10.2334/josnusd.53.461] [PMID: 22167031]
- [43] Khorasani MMY, Mahmudi M. Efficacy of Prophylactic Use of Sulindac in Comparison with Ibuprofen on Post-Operative Endodontic Pain. J Mashhad Dent Sch [Internet] 2011; 35(4): 315-24.http://search.ebscohost.com/login.aspx?direct=true&db=ddh& AN=74292138&site=ehost-live
- [44] Mehrvarzfar P, Esnashari E, Salmanzadeh R, Fazlyab M, Fazlyab M. Effect of dexamethasone intraligamentary injection on post-endodontic pain in patients with symptomatic irreversible pulpitis: A randomized controlled clinical trial. Iran Endod J 2016; 11(4): 261-6.
 [PMID: 27790253]
- [45] Mehrvarzfar P, Abbott PV, Saghiri MA, et al. Effects of three oral analgesics on postoperative pain following root canal preparation: a controlled clinical trial. Int Endod J 2012; 45(1): 76-82. [http://dx.doi.org/10.1111/j.1365-2591.2011.01950.x] [PMID: 21902704]
- [46] Mirzaie M, Kavosi A, Atbaie A, Moazami F, Nooribaiat S. Effect of premedication with Celecoxib and Gelofen on reduction of postendodontic pain. J Dent Med Univ Med Sci 2011; 24(3): 172-80.
- [47] Negm MM. Management of endodontic pain with nonsteroidal antiinflammatory agents: a double-blind, placebo-controlled study. Oral Surg Oral Med Oral Pathol 1989; 67(1): 88-95. [http://dx.doi.org/10.1016/0030-4220(89)90309-5] [PMID: 2911450]
- [48] Negm MM. Effect of intracanal use of nonsteroidal anti-inflammatory agents on posttreatment endodontic pain. Oral Surg Oral Med Oral Pathol 1994; 77(5): 507-13. [http://dx.doi.org/10.1016/0030-4220(94)90233-X] [PMID: 8028874]
- [49] Nekoofar MH, Sadeghipanah M, Dehpour AR. Evaluation of meloxicam (A cox-2 inhibitor) for management of postoperative

- endodontic pain: a double-blind placebo-controlled study. J Endod 2003; $29(10)\colon 634\text{-}7.$
- [http://dx.doi.org/10.1097/00004770-200310000-00005] [PMID: 14606784]
- [50] Bhat R, Bhat G, Shetty A, Bhandary S, Hegde MN. Evaluation of the Efficiency of Intraligamentary Diclofenac Sodium in Reducing Post Operative Endodontic Pain in Patients With Irreversible Pulpitis. Int Res J Pharm 2013; 4(3): 237-9. [http://dx.doi.org/10.7897/2230-8407.04351]
- [51] Ryan JL, Jureidini B, Hodges JS, Baisden M, Swift JQ, Bowles WR. Gender differences in analgesia for endodontic pain. J Endod 2008; 34(5): 552-6. [Internet]. [http://dx.doi.org/10.1016/j.joen.2008.01.021] [PMID: 18436033]
- [52] Elzaki WM, Abubakr NH, Ziada HM, Ibrahim YE. Double-blind Randomized Placebo-controlled Clinical Trial of Efficiency of Nonsteroidal Anti-inflammatory Drugs in the Control of Postendodontic Pain. J Endod 2016; 42(6): 835-42. [Internet]. [http://dx.doi.org/10.1016/j.joen.2016.02.014] [PMID: 27080115]
- [53] Jorge-Araújo ACA, Bortoluzzi MC, Baratto-Filho F, Santos FA, Pochapski MT. Effect of premedication with anti-inflammatory drugs on post-endodontic pain: A randomized clinical trial. Braz Dent J 2018; 29(3): 254-60. [http://dx.doi.org/10.1590/0103-6440201801786] [PMID: 29972451]
- [54] Jenarthanan S, Subbarao C. Comparative evaluation of the efficacy of diclofenac sodium administered using different delivery routes in the management of endodontic pain: A randomized controlled clinical trial. J Conserv Dent 2018; 21(3): 297-301.http://www.jcd.org.in/text.asp?2018/21/3/297/232922 [Internet]. [http://dx.doi.org/10.4103/JCD.JCD 140 17] [PMID: 29899633]
- [55] Yavari HR, Jafari F, Jamloo H, Hallaj-Nezhadi S, Jafari S. The Effect of Submucosal Injection of Corticosteroids on Pain Perception and Quality of Life after Root Canal Treatment of Teeth with Irreversible Pulpitis: A Randomized Clinical Trial. J Endod 2019; 45(5): 477-82. [Internet]. [http://dx.doi.org/10.1016/j.joen.2019.01.005] [PMID: 30910353]
- [56] Kaler N, Makkar S, Mann N, Pasricha S, Dhawan R. Efficacy of ibuprofen and paracetamol and diclofenac sodium and paracetamol combination on postoperative pain following root canal preparation in a randomized placebo-controlled study. Indian J Oral Sci 2012; 3(1): 19.
 - [http://dx.doi.org/10.4103/0976-6944.101671]
- [57] Konagala RK, Mandava J, Pabbati RK, Anupreeta A, Borugadda R, Ravi R. Effect of pretreatment medication on postendodontic pain: A double-blind, placebo-controlled study. J Conserv Dent [Internet] 22(1): 54-8.http://www.ncbi.nlm.nih.gov/pubmed/30820083
- [58] Ashraf R. The Anti-analgesic Effect of Ibuprofen and Rofecoxib following Single visit Endodontic Therapy. Islam Dent Assoc Iran 2002; 14(3): 47-59.
- [59] Chance K, Lin L, Shovlin FE, Skribner J. Clinical trial of intracanal corticosteroid in root canal therapy. J Endod 1987; 13(9): 466-8. [http://dx.doi.org/10.1016/S0099-2399(87)80066-3] [PMID: 3328770]
- [60] Glassman G, Krasner P, Morse DR, Rankow H, Lang J, Furst ML. A prospective randomized double-blind trial on efficacy of dexamethasone for endodontic interappointment pain in teeth with asymptomatic inflamed pulps. Oral Surg Oral Med Oral Pathol 1989; 67(1): 96-100.
- [http://dx.doi.org/10.1016/0030-4220(89)90310-1] [PMID: 2643074]
 [61] Kaufman E, Heling I, Rotstein I, et al. Intraligamentary injection of slow-release methylprednisolone for the prevention of pain after endodontic treatment. Oral Surg Oral Med Oral Pathol 1994; 77(6): 651-4.
- [http://dx.doi.org/10.1016/0030-4220(94)90329-8] [PMID: 8065733]
 [62] Krasner P, Jackson E. Management of posttreatment endodontic pain with oral dexamethasone: a double-blind study. Oral Surg Oral Med Oral Pathol 1986; 62(2): 187-90.
 [http://dx.doi.org/10.1016/0030-4220(86)90044-7] [PMID: 3528979]
- [63] Liesinger A, Marshall FJ, Marshall JG. Effect of variable doses of dexamethasone on posttreatment endodontic pain. J Endod 1993;

- 19(1): 35-9.
- [http://dx.doi.org/10.1016/S0099-2399(06)81039-3] [PMID: 8289025]
 [64] Marshall JG, Walton RE. The effect of intramuscular injection of steroid on posttreatment endodontic pain. J Endod 1984; 10(12): 584-8.
- [http://dx.doi.org/10.1016/S0099-2399(84)80106-5] [PMID: 6596389] [65] Mehrvarzfar P, Shababi B, Sayyad R, Fallahdoost A, Kheradpir K.
- [65] Mehrvarziar P, Shababi B, Sayyad R, Fallahdoost A, Kheradpir K. Effect of supraperiosteal injection of dexamethasone on postoperative pain. Aust Endod J 2008; 34(1): 25-9.

 [http://dx.doi.org/10.1111/j.1747-4477.2007.00076.x] [PMID: 18352900]
- [66] Pochapski MT, Santos FA, de Andrade ED, Sydney GB. Effect of pretreatment dexamethasone on postendodontic pain. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 108(5): 790-5. [http://dx.doi.org/10.1016/j.tripleo.2009.05.014] [PMID: 19748294]
- [67] Rogers MJ, Johnson BR, Remeikis NA, BeGole EA. Comparison of effect of intracanal use of ketorolac tromethamine and dexamethasone with oral ibuprofen on post treatment endodontic pain. J Endod 1999; 25(5): 381-4. [http://dx.doi.org/10.1016/S0099-2399(06)81176-3] [PMID: 10530266]
- [68] Zarrabi M, Ghaziani P, Salarpoor M. Clinical evaluation of different medicament on postoperative endodontic pain in necrotic teeth. J Dent Shool 2007; 25: 174-81.
- [69] Sharma N, Nikhil V, Gupta S. Effect of preoperative administration of steroid with different routes on post endodontic pain: a randomized placebo controlled clinical trial 2015; 1(2): 107-2.
- [70] Eftekhar B, Moghimipour E, Pourakbar Jahandideh P, Jalali S, Mahmoudian M. Analgesic effect of odontopaste and a compound intracanal medicament between root canal therapy appointments. Jundishapur J Nat Pharm Prod 2013; 8(4): 169-74.http://jippp.neoscriber.org/en/articles/18329.html [Internet]. [http://dx.doi.org/10.17795/jjppp-12473] [PMID: 24624209]
- [71] Moradi S, Nagavi N, Banihashemi E, Dastmalchi P. Clinical Study of Effect of Infiltration Injection of Dexamethasone on Post Endodontic Pain of Necrotic Teeth. J Mashhad Dent Sch 2014; 38(2): 159-68.
- [72] Fava LRG. Acute apical periodontitis: incidence of post-operative pain using two different root canal dressings. Int Endod J 1998; 31(5): 343-7.
 [http://dx.doi.org/10.1046/j.1365-2591.1998.00159.x]
 [PMID: 0923127]
- Ehrmann EH, Messer HH, Adams GG. The relationship of intracanal medicaments to postoperative pain in endodontics. Int Endod J 2003; 36(12): 868-75.
 [http://dx.doi.org/10.1111/j.1365-2591.2003.00735.x]
 [PMID:
- [74] Negm MM. Intracanal use of a corticosteroid-antibiotic compound for the management of posttreatment endodontic pain. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2001; 92(4): 435-9. [http://dx.doi.org/10.1067/moe.2001.115975] [PMID: 11598580]

146414271

- [75] Wells LK, Drum M, Nusstein J, Reader A, Beck M. Efficacy of Ibuprofen and ibuprofen/acetaminophen on postoperative pain in symptomatic patients with a pulpal diagnosis of necrosis. J Endod 2011; 37(12): 1608-12. [Internet]. [http://dx.doi.org/10.1016/j.joen.2011.08.026] [PMID: 22099891]
- [76] Battrum D, Gutmann J. Efficacy of ketorolac in the management of pain associated with root canal treatment. J Can Dent Assoc 1996; 62(1): 36-42.http://www.ncbi.nlm.nih.gov/pubmed/8673937 [Internet]. [PMID: 8673937]
- [77] Torabinejad M, Cymerman JJ, Frankson M, Lemon RR, Maggio JD, Schilder H. Effectiveness of various medications on postoperative pain following complete instrumentation. J Endod 1994; 20(7): 345-54.http://www.ncbi.nlm.nih.gov/pubmed/7996097 [Internet]. [http://dx.doi.org/10.1016/S0099-2399(06)80098-1] [PMID: 7996097]
- [78] Moskow A, Morse DR, Krasner P, Furst ML. Intracanal use of a corticosteroid solution as an endodontic anodyne. Oral Surg Oral Med Oral Pathol 1984; 58(5): 600-4.http://www.ncbi.nlm.nih.gov/pubmed/6595622 [Internet]. [http://dx.doi.org/10.1016/0030-4220(84)90086-0] [PMID: 6595622]

© 2020 Almuthhin et al.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.