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Abstract:

Background:

GSK3 is a serine/threonine kinase that is involved in the storage of glucose into glycogen through the negative regulation of glycogen synthase.
Defects in GSK3 and glycogen synthase function are early stages of the development of insulin resistance, which may cause impaired glycogen
synthesis in Type II diabetes.

Methods:
In this cross-sectional study, the gene expression level of GSK3 from Type II diabetic and non-diabetic participants was compared via real-time
RT-PCR.  To  investigate  the  relationships  between  GSK3  expression  and  indicators  of  insulin  resistance,  Pearson's  correlation  analysis  was
performed. To compare the differences between GSK3 expression levels based on BMI categories, one-way ANOVA was used.

Results:
Gene expression of GSK3 was slightly higher in diabetic participants compared to non-diabetics, but it was statistically insignificant. Also, no
significant difference was found based on BMI categories in the two groups. No significant association between GSK3 expression and indicators of
insulin resistance was observed in non-diabetic participants. There was only a positive significant correlation between GSK3 expression and FBS in
diabetic participants.

Conclusion:
These results indicate that the regulation of GSK3 may occur at the translation level, as gene expression level was unaltered between diabetic and
non-diabetic participants. Also, since circulating levels of both glucose and insulin regulate GSK3 activity, tissue specificity for the expression and
post-translation regulations of GSK3 may exist, which cause hyperactivation or overexpression in some target tissues in diabetes. Furthermore, it is
probable that glycogen synthase activity is also regulated by non-insulin mediated mechanisms like exercise or allosteric changes, independent of
GSK3 expression.
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1. INTRODUCTION

Impaired  insulin  regulation  of  glucose  transport  and
utilization is associated with insulin-resistance and diabetes [1].
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Insulin-induced  glycogen  synthesis  in  elevated  postprandial
blood  glucose  levels  is  necessary  to  maintain  glucose
homeostasis and defective regulation of glycogen synthesis by
insulin is an additional feature of the insulin-resistant condition
[2].  Insulin  receptors  in  target  tissues  stimulate  a  signaling
cascade leading to phosphorylation/activation of insulin recep-
tor  substrates  (IRS1  and  IRS2)  and  subsequent  activation  of
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phosphatidylinositol-3  kinase  (PI3K)  cascade,  which  is  the
main  pathway  involved  in  glucose  transport  and  glycogen
synthesis [3].  By this signaling axis,  insulin stimulates phos-
phorylation  of  phosphoinositide-dependent  serine-threonine
protein kinase (AKT) and Glycogen synthase kinase-3 (GSK3),
which increases and decreases their activities, respectively [4].
The  PI3K/AKT  pathway  is  antagonized  by  various  factors,
including  phosphatase  and  tensin  homolog  (PTEN)  [5].
Glycogen  synthase  (GS)  activity  is  activated  by  PI3K/AKT
signaling  cascade  and  inhibited  by  GSK3  through  phos-
phorylation. AKT phosphorylates/inactivates GSK3 and increa-
ses GS activity [3]. GSK3 is a serine/threonine-protein kinase
and a negative regulator of glycogen synthesis and lipogenesis
[6].  Previous  in  vitro  studies  have  demonstrated  the  role  of
GSK3 in the regulation of glycogen synthase phosphorylation
and its function [7]. A specificity of GSK3 regulation is that it
is constitutively activated [8]; thus, the negative regulation of
GSK3 through the PI3K/AKT pathway keeps GSK3 activity at
low  stages  [9].  Several  disease  conditions,  such  as  insulin
resistance, can break cellular homeostasis and lead to increased
GSK3  activity  [10].  Overly  activated  GSK3  in  disease

conditions  may  occur  when  the  PI3K/AKT  pathway  is  either
over-stimulated (e.g., chronic over-nutrition) or repressed as a
result  of  inhibitors  or  lack of  stimuli.  This  “overstimulation-
induced  insensitivity”  phenomenon  is  commonly  present  in
almost  all  of  the  metabolic  disorders  [11].  Serine  phos-
phorylation of GSK3 by AKT results in inhibition of its kinase
activity, whereas tyrosine phosphorylation of GSK3 promotes
the  activity  of  the  enzyme  [11].  Also,  GSK3  phosphorylates
IRS  on  serine  residues  and  causes  its  proteolytic  breakdown
[12], which is one of the negative-feedback loops implicated in
the PI3K/AKT  signaling pathway that  down-regulates insulin
signal transduction. Furthermore, GSK3 plays the main role in
PTEN  phosphorylation, which acts as an antagonist  factor of
insulin  signal  transduction  [13].  In  addition,  it  has  been
demonstrated  that  GSK3  is  suppressed  by  physiological
concentrations of insulin in human skeletal muscle [14, 15] as
well as different cell lines [16 - 18]. As GSK3 is inhibited by
insulin  (to  stimulate  the  PI3K/AKT  signalling  pathway),
phosphorylation and deactivation of PTEN by GSK3 might be
part of a negative feedback loop for the PI3K/AKT pathway [4]
(Fig. 1).

Fig. (1). Proposed negative feedback loop to regulate the PI3K/AKT pathway.
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Administration  of  GSK3  inhibitor  increased  glucose
tolerance in diabetic mice [19, 20] and reduced blood glucose
levels  in  patients  with  Type  II  diabetes  as  well  as  in  Zucker
diabetic  fatty  rats  [21 -  24].  These  findings  demonstrate  that
inhibition  of  GSK3  improves  glucose  regulation  in  diabetic
animals.  Consistent  with  this,  overexpression  of  GSK3  is
enough  to  cause  glucose  intolerance  [19,  25].

Since  it  has  been  suggested  that  GSK3  is  a  ubiquitous
kinase  implicated  in  insulin  function  that  induces  insulin
resistance  and  diabetes  through  different  pathways,  it  was
considered in the present study. The aim of this study was to
investigate  the  relationships  between  GSK3  gene  expression
levels and indicators of insulin resistance and compare those
between diabetic and non-diabetic individuals.

In this schematic, insulin activates the insulin receptor and
PI3K.  The resulting increase in PIP3 level activates the AKT
kinase  that  phosphorylates  and  inhibits  GSK3.  The  loss  of
GSK3 activity enhances PTEN activity, resulting in a negative
feedback loop.

2. MATERIALS AND METHODS

2.1. Experimental Participants

The present work is a cross-sectional study that included
50 Type II diabetic and 50 non-diabetic individuals in the age
group of 35-60 recruited from University Putra Malaysia and
Serdang Hospital. The number of men and women were equal
in  each  group  and  there  was  no  statistically  significant
difference  between  the  two  groups  with  respect  to  age
(P>0.05). Diabetic and non-diabetic participants were divided
into two groups on the basis of body mass index (BMI<30 and
BMI>30).  In  diabetic  and  non-diabetic  groups,  50%  were
normal/overweight  (BMI  <30  kg/m2)  and  50%  were  obese
(BMI  of  >30  kg/m2).  This  weight  distribution  was  not
significantly different between the groups. All diabetic patients
were administered to the anti-diabetic drug Metformin without
insulin  injection.  Participants  who  had  cancers,  diabetic
patients  with  diabetes  complications,  and  pregnant  women
were excluded from this study. Ethical approval was obtained
from the University Putra Malaysia Research Ethics Commi-
ttee and the National Medical Research Register (Ministry of
Health). The study was monitored according to the Declaration
of Helsinki  in its  currently applicable version and the guide-
lines  of  the  International  Conference  on  Harmonization  of
Good Clinical Practice. Informed written consent was obtained
from all participants.

2.2. Assessment of Clinical and Metabolic Characteristics
of Subjects

FBS  (Cat.No:04657527)  was  tested  by  the  colorimetric
enzymatic  method  using  Roche  Diagnostics  GmbH  Cobas-c
311 Germany machine. HbA1c analysis was performed by the
colorimetric method (Diazyme; cat.  No.  DZ168A, USA) and
the  C-peptide  level  was  determined  by  ELISA  Kit  (Cloud
Clone  Corp;  cat.  no.  CEA447Hu,  UK).

2.3. RNA Extraction and Real-time PCR
Real-time  RT-PCR  method  was  employed  to  investigate

the  variability  within  non-diabetic  and  Type  II  diabetic
participants  in  gene  expression  of  GSK3  with  a  set  of  two
housekeeping genes (GAPDH and β-ACTIN). The analysis was
performed  using  the  three  technical  replicate  samples  from
each of the participants. Briefly, RNA was extracted from 2.5
ml blood by using PAXgene Blood RNA Tubes (Qiagen; cat.
no.  762165).  RNA  concentration  and  purity  were  measured
using a NanoDrop ND1000 spectrophotometer at A260: A280
ratio  (Thermo  Fisher  Scientific;  USA).  RNA  quality  and
integrity were determined via agarose gel electrophoresis. The
purified  RNA  sample  was  converted  to  cDNA,  using  the
Qiagen cDNA Synthesis Kit, according to the manufacturer’s
instructions  (Qiagen;  cat.  no.  205313),  and  then  cDNA  was
used to perform RT-PCR via SYBR green technology with the
QuantiTect  Reverse  Transcription  Kit  (Qiagen;  cat.  no.
204054).  The  final  volume  of  the  RT-PCR  reaction  mixture
was 20 µl and contained 2 µl cDNA, 1 µM of each primer, 10
µl Master Mix, and RNase-free water up to 20 µl. GAPDH and
β-ACTIN were chosen as suitable reference genes to normalize
the  mRNA  expression.  The  specificity  of  the  product  was
assessed  from  the  melting  curve  analysis.  According  to
manufacturer  recommendation,  real-time  PCR  quantification
experiments should include a positive control containing all the
components of the reaction except for the template (NTC) and
negative  control  (template  without  reverse  transcriptase)  to
ensure  the  quality  of  run  and  confirm  the  absence  of
contamination. In this study, primers were designed by Qiagen
and cycling conditions were as follows: 95 ºC for 5 min (PCR
initial activation step); 95 ºC for 10 s (denaturation); 60 ºC for
30  s  (combined  annealing/extension);  followed  by  40  cycles
and it was performed on a Bio-Rad Real-Time PCR detection
system (Bio-Rad; CFX96, USA). Average gene Ct values were
normalized to the average of housekeeping genes Ct values of
the  same  cDNA  sample.  Fold  differences  were  determined
using the comparative ∆∆CT method.

2.4. Statistical Analyses

Data  are  shown  as  means  ±  SE  unless  stated  otherwise.
Before statistical analysis, non-normally distributed parameters
were  logarithmically  transformed  to  approximate  a  normal
distribution. Statistical analysis was performed using indepen-
dent-samples  t-test  with  the  SPSS  21.0  statistical  software
package  (SPSS  Inc.,  Chicago,  IL,  USA).  The  threshold  of
significance was defined as a P<0.05. Pearson's correlation was
used  as  appropriate  to  analyze  the  relationship  between
measured biochemical markers and expression level of GSK3.
One-way ANOVA was used to compare differences of GSK3
expression  between  two  groups  based  on  BMI  categories.
Significance was accepted at a P<0.05. Levene's test was used
to check significant differences revealed by the ANOVA.

3. RESULTS

The  clinical  and  metabolic  characteristic  data  of
participants involved in this study are summarized in Table 1.
Mean  age  and  BMI  were  not  significantly  different  between
non-diabetic  and  diabetic  participants.  Diabetic  participants
displayed  elevated  HbA1c  and  FBS  and  lower  C-peptide
levels.
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Table 1. Serum CP, HbA1c, and glucose levels of the participants.

Biochemical Parameters Non-diabetic Participants
Mean ± SE

Diabetic Participants
Mean ± SE

df t P-value

Glucose (mmol/L) 5.38±0.14 8.45±0.41 52.88 7.10 0.001*
HbA1c (%) 5.40±0.78 7.95±0.85 98 4.57 0.001*

C-peptide (ng/mL) 2.02±0.02 1.96±0.01 83.21 -1.92 0.05*
*P<0.05

Table 2. Relative expression levels for GSK3 between diabetic and non-diabetic participants.

GOI Non-diabetic Participants
Mean ± SE

Diabetic Participants
Mean ± SE

df t P-value

GSK3 0.49±0.03 0.46±0.02 98 -0.722 0.472
*P<0.05

Table 3. Relation between GSK3 and BMI categories in diabetic and non diabetic participants.

- Sum of Squares df Mean Square F Sig.
BMI Categories Between Groups 0.026 3 0.009 0.202 0.895

Within Groups 4.142 96 0.043 - -
Total 4.169 99 - - -

*P<0.05

Table 4. The GSK3 gene expression level in relation to study variables of the diabetic and non-diabetic participants.

Study Variables
Non-diabetic Participants Diabetic Participants

Pearson Correlation (r) P-value Pearson Correlation (r) P-value
C-Peptide -0.045 0.762 -0.204 0.155

FBS -0.034 0.817 0.358* 0.012
HbA1c -0.122 0.408 0.181 0.210
Gender 0.159 0.285 0.151 0.299

Age -0.208 0.161 -0.170 0.249
BMI 0.035 0.813 0.047 0.747

Family History -0.139 0.357 0.071 0.640
**Correlation is significant at the 0.01 level (2-tailed).
* Correlation is significant at the 0.05 level (2-tailed).

Gene  expression  level  of  GSK3  was  higher  in  Type  II
diabetic participants compared to the non-diabetics, but it was
not statistically significant (Table 2).

Each diabetic and non-diabetic group of participants was
further  divided  into  two  groups  based  on  the  BMI  (BMI<30
and  BMI>30)  to  find  out  the  possible  role  of  obesity  on  the
regulation  of  GSK3  expression.  Of  the  diabetics,  50%  were
normal/overweight  (BMI  <30  kg/m2)  and  50%  were  obese
(BMI of >30 kg/m2). In non-diabetic participants,  50% were
normal/overweight  and  50%  were  obese.  This  weight
distribution  was  not  significantly  different  between  the  four
groups.  To  compare  differences  between  GSK3  expression
levels  based  on  BMI  categories  in  diabetic  and  non-diabetic
participants,  one-way  ANOVA  was  used  in  which  no
significant  difference  was  found  (Table  3).

Diabetic  and  non-diabetic  participants  were  divided  into
four  groups  based  on  family  history  of  diabetes,  and  it  was
found  that  25  (50%)  non-diabetic  participants  and  29  (58%)
diabetic participants had a family history of Type II diabetes.

Pearson's correlation analysis was performed to investigate the
plausible  relationship  between  GSK3  expression  and  family
history  of  Type  II  diabetes.  No  significant  correlation  was
found  in  the  gene  expression  of  GSK3  based  on  a  family
history  of  diabetes  in  diabetic  and  non-diabetic  participants
(Table 4).

To  investigate  the  relationships  between  GSK3  gene
expression  and  indicators  of  insulin  resistance,  Pearson's
correlation  analysis  was  performed,  which  indicated  no
significant  association  between  GSK3  expression  and
indicators  of  insulin  resistance  in  two  groups  in  except  a
significant positive correlation between GSK3 expression and
FBS in diabetic participants (Table 4).

4. DISCUSSION

GSK3  is  a  serine/threonine kinase that  is  involved in  the
storage  of  glucose  into  glycogen.  Defects  in  GSK3  and  GS
function  are  early  stages  of  the  development  of  insulin
resistance,  which  may  cause  impaired  glycogen  synthesis  in
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T2DM [26].

GSK3 activity has been shown to be increased in skeletal
muscle and adipose tissue of insulin-resistant animals [26, 27].
In  obese  Zucker  rats,  reduced  phosphorylation  of  GSK3  has
been  reported  [27].  Constitutive  activation  of  GSK3  in  vitro
[28] or muscle-specific overexpression of GSK3 [25] resulted
in  insulin  resistance.  Inhibition  of  GSK3  in  Zucker  diabetic
fatty rats leads to improvement in insulin function and glucose
uptake [7]. It has been demonstrated that PI3K/AKT pathway
plays a key role in insulin-stimulated glucose transport [26, 29
- 31].  Reduced insulin stimulated glucose transport  is  one of
the  major  metabolic  defects  of  skeletal  muscles  in  insulin-
resistant  and  type  II  diabetic  individuals  [29  -  31].  Previous
studies have demonstrated that the overexpression of GSK3 in
skeletal  muscle  samples  from  insulin  resistance  states  may
negatively influence insulin signal transduction and cause its
weakness, particularly at IR and IRS [32]. Also, overexpression
of  GSK3  in  either  cultured  cells  [28]  or  mice  [28]  has  been
shown  to  antagonize  insulin  signaling.  One  mechanism
whereby  GSK3  increases  insulin  resistance  is  by  serine
phosphorylation  of  IRS,  resulting  in  reduced  tyrosine
phosphorylation  of  IRS  by  the  insulin  receptor  and  reduced
PI3K/AKT  signaling to downstream components [33]. Others
have found that insulin resistance may be contributed to defects
in glycogen synthesis [34]. GSK3 gene expression levels and
function are increased in muscles of Type II diabetics patients
and are inversely correlated with both GS function and insulin-
stimulated glucose transport [10, 14]. Treatment of both human
muscle cells and insulin-resistant rat with GSK3 inhibitors can
increase  insulin-stimulated  glycogen  synthesis  and  glucose
transport  [35,  36].  Transgenic  mice  with  muscle-specific
overexpression of human GSK3 developed glucose intolerance
and hyperlipidemia [25].

In  contrast  to  these  findings,  our  study  demonstrated  no
significant  difference  in  GSK3  gene  expression  between
diabetic and non-diabetic participants. Additionally, there was
no  significant  difference  in  GSK3  gene  expression  based  on
BMI  categories  and  family  history  of  diabetes.  Although
correlations  do  not  prove  causal  relationships,  there  was  an
expected positive correlation between GSK3  gene expression
level  and  FBS  only  in  diabetic  participants.  No  association
between GSK3 gene expression levels and indicators of insulin
resistance  was  observed  in  non-diabetic  participants.  One
possible interpretation of this observation is that higher gene
expression  levels  of  GSK3  in  diabetics  (although  it  was  not
enough to reach a significant amount) may predispose them to
failure  in  glucose  utilization  and  the  development  of  insulin
resistance. To understand more about the involvement of GSK3
in obesity and insulin resistance, the correlation between GSK3
gene  expression  level  and  BMI level  was  considered  and  no
significant  correlation  was  found.  These  results  indicate  that
regulation  of  GSK3  may  occur  at  the  level  of  translation,  as
gene  expression  levels  were  unaltered  between  diabetic  and
non-diabetic  as  well  as  based  on  BMI  categories  or  family
history of diabetes. Whether disturbances in GSK3 expression
or function are a cause of insulin resistance or a consequence
of that, is unknown.

This study is consistent with previous studies which found

no changes in GSK3 activity in samples from diabetic human
or  animals  [20,  35,  37]  and  differ  from  those  that  found
elevated  GSK3  activity  [38  -  40].  Information  about  the
regulation  of  GSK3  in  humans  is  limited.  Acute  bouts  of
exercise have been shown to both increase [15] and decrease
[41] GSK3 activity in muscle. Differences in the duration and
intensity of the exercise may be important variables. Prolonged
treatment of obese individuals with impaired glucose tolerance
with  diet  and  exercise  program  caused  reduced  GSK3  gene
expression in skeletal muscles [42].

Contradictions in literature could be due to the differences
in  experimental  design,  the  method  of  tissue  collection,  and
processing,  which  requires  considerable  optimization  to
overcome.  Since  this  study  merely  considered  the  gene
expression regulation without post-translation modification and
tissue-specific differences, it is difficult to draw conclusions on
the  role  of  defective  GSK3  function  in  the  development  of
insulin resistance.

Our data indicate that it is probable that glycogen synthase
activity is regulated by non-insulin mediated mechanisms such
as  exercise  [43]  or  allosteric  changes  independent  of  GSK3
expression [44].

Since many functions are regulated by GSK3, the activity
of GSK3  must be highly regulated. The main mechanisms of
regulating the actions of GSK3 in a substrate-specific manner
are  [45]:  regulation  by  GSK3  autophosphorylation,
phosphorylation  state  of  GSK3  substrates,  translocation  of
GSK3,  and formation of protein complexes containing GSK3
that direct, or inhibit, its actions toward specific substrates. The
most  well-defined  regulatory  mechanism  is  inhibition  of  the
activity  of  GSK3  by  phosphorylation  of  a  regulatory  serine
[46]. The PI3K/AKT signaling pathway, activated in response
to  insulin,  is  one  of  the  main  regulators  of  GSK3.  AKT  and
protein  kinase  C  phosphorylates/inhibits  GSK3  on  serine
residues  [9].  Conversely,  the  enzymatic  activity  of  GSK3  is
stimulated  by  tyrosine-phosphorylation,  but  the  mechanisms
underlying  this  modification  are  not  well-defined.  This
autoposhorylation  of  the  tyrosine  residue  is  probably
intramolecularly mediated and not under the regulatory control
of upstream modulators [9].

Since GSK3 is constitutively stimulated and activated [8],
its regulation might be achieved mainly through the inhibitory
serine-phosphorylation. Although normal suppression of GSK3
is controlled by insulin, the overstimulation of receptors may
cause insensitivity of the GSK3 and result in uninhibited GSK3
activity  [11].  Therefore,  the  release  of  GSK3  activity,  a
hallmark  of  PI3K/AKT/GSK3  pathway  insensitivity,  can
happen  under  disease  conditions  as  a  consequence  of
overstimulation  or  inhibition  of  PI3K/AKT.  These  diversity
mechanisms controlling the actions of GSK3 provide substrate-
specific control of its functions, and exclusive capacity for an
enzyme that can regulate numerous cellular functions.

Moreover, it has been found that the circulating levels of
both  glucose  and  insulin  regulate  GSK3  activity.  This
complicated relationship and collaboration between insulin and
glucose may cause contradictions in literature as well. Also, as
insulin  depletion  and  hyperglycemia  lead  to  tissue-specific



Gene Expression of GSK3 in Type II Diabetics The Open Diabetes Journal, 2020, Volume 10   35

changes,  the  activity  of  GSK3  might  vary  among  different
tissues [32, 47]. High fat diet induced-diabetes in mice caused
a  slight  reduction  in  the  activity  of  GSK3  in  the  liver,
enhancement  in  epididymal  fat,  and  no  changes  in  skeletal
muscle  [38],  indicating  that  regulation  of  GSK3  in  insulin
resistance conditions might be different among tissues [32, 48].
Also,  it  has  been  revealed  that  changes  in  GSK3  phospho-
rylation due to insulin deficiency in diabetic mice brain are big
and  opposite  to  changes  in  peripheral  tissues  as  phospho-
rylation level of GSK3 in the brain is increased while reduced
in epididymal fat [49]. This enhanced GSK3 phosphorylation is
ascribed  to  hyperglycemia  associated  with  insulin  depletion.
Hyperglycemia, in the presence of normal or deficient insulin
levels, caused increased GSK3 phosphorylation level, whereas
it  was  reduced  by  hypoglycemia  with  insulin  administration
[49].  Thus,  both  insulin  and  glucose  contribute  to  regulating
the activity of GSK3.

Also, it has been demonstrated that using GSK3 knock-in
mice,  in  which  AKT  phosphorylation  sites  on  GSK3α  and
GSK3β were mutated,  did not  affect  blood glucose level  and
insulin-induced  hepatic  glycogen  accumulation  were  normal
[50].  Also,  a  regulatory  axis  consisting  of  AKT/PPP1R3G/
PPP1R3B  that  controls  glycogen  synthesis  and  glucose
homeostasis in parallel to the GSK3-dependent axis has been
revealed [51]. In that study, the knocking down of PPP1R3G
inhibited insulin response while the wild type PPP1R3G, and
not  phosphorylation-defective  mutants,  increased  glycogen
deposition and insulin sensitivity.  PPP1R3G,  as  a  regulatory
subunit  of  protein  phosphatase1 (PP1),  is  phosphorylated by
AKT,  where  its  phosphorylation  fluctuates  with  the  fasting-
feeding cycle and is necessary for insulin-stimulated glycogen
synthase.  Consequently,  a  GSK3-independent  pathway  has
been  proposed  to  link  insulin  signaling  with  glycogen
synthesis.

CONCLUSION

Even  though  several  lines  of  evidence  support  the
involvement of GSK3 in insulin resistance, the role of GSK3 in
diabetes is currently unknown and requires further investiga-
tions.

Although  increased  serine  phosphorylation  of  GSK3
represents  a  mechanism  for  the  control  of  GSK3  activity  in
response  to  hormones,  such  as  insulin,  it  is  probable  that
glycogen synthase activity is regulated by non-insulin mediated
mechanisms  as  well,  such  as  exercise  or  allosteric  changes
independent  of  GSK3  expression  or  other  insulin-dependent
pathways.  Taken  together,  it  appears  that  there  is  tissue
specificity for the expression and post-translation regulations
of GSK3, which may cause hyperactivation or overexpression
in  some target  tissues  in  diabetes,  since  circulating  levels  of
both glucose and insulin regulate GSK3 activity.
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