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Abstract: The Spontaneously Diabetic Torii (SDT) rat has recently been established as a novel model of nonobese type 2 

diabetes. SDT rats exhibit inflammation and fibrosis in and around the islets during development of the disease. To clarify 

the genetic basis of the disease, we previously performed quantitative trait locus (QTL) analysis of glucose tolerance at 20 

weeks of age using backcrossed progeny produced from the (BN SDT)F1 SDT cross. The analysis identified three major 

QTLs (Gisdt1, Gisdt2, and Gisdt3) on rat chromosomes 1, 2, and X, respectively. To examine genetic factors for diabetes, 

glucose tolerance, islet inflammation, and fibrosis in the SDT rat, we also performed genetic analysis of these traits at 60 

weeks of age using intercrossed progeny produced from the (F344 SDT)F2 cross. Genetic analysis of diabetes identified 

a major locus, Dmsdt1, on chromosome 3. QTL analysis of blood glucose levels revealed, in addition to Dmsdt1, three 

other loci (Dmsdt2, Dmsdt3, and Dmsdt4) on chromosome 8, 13, and 14, respectively. Analysis of a congenic strain for 

Dmsdt1 (F344.SDT-Dmsdt1) indicates that the dominantly acting SDT allele induces islet inflammation and fibrosis. 

These data clearly demonstrate that development of diabetes in the SDT rat is controlled by the combination of several 

QTLs with considerable effects. Identification of the genes responsible would provide greater understanding of the 

pathogenesis and pathophysiology of diabetes. 
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INTRODUCTION 

 Type 2 diabetes mellitus is a multifactorial disease 
involving interaction of multiple genetic and environmental 
factors. Since the genetic basis of type 2 diabetes has not 
been fully clarified yet, analysis using spontaneous animal 
models would provide useful information on genetic factors 
involved in the development of the disease. There have been 
many obese models of type 2 diabetes such as the Otsuka 
Long-Evans Tokushima fatty (OLETF) rat [1], Wistar fatty 
rat [2], Zucker diabetic fatty (ZDF) rat [3], db/db mouse [4], 
KK-A

y
 mouse [5], Nagoya Shibata Yasuda (NSY) mouse 

[6], New Zealand obese (NZO) mouse [7], TallyHo (TH) 
mouse [8], and the Tsumura Suzuki obese diabetic (TSOD) 
mouse [9], but there is no known model of type 2 diabetes 
without obesity except for the Goto-Kakizaki (GK) rat [10]. 
The GK rat has, therefore, been exclusively utilized as a 
nonobese model of the disease. 

 The Spontaneously Diabetic Torii (SDT) rat was recently 
established as a novel nonobese model of type 2 diabetes 
[11]. Male SDT rats show 100% incidence of diabetes by 40 
weeks of age. Before the onset of diabetes, pathological 
changes such as inflammation and fibrosis in and around the 
islets continue for several months, and are accompanied by a 
decrease in the number of pancreatic -cells [12]. 
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 To clarify the genetic basis of diabetes, glucose 
intolerance, islet inflammation, and fibrosis in SDT rats, we 
performed genetic analysis of these traits using two different 
crosses: the (BN SDT) F1 SDT backcross [13] and the 
(F344 SDT) F2 intercross [14]. Analysis of the former cross 
identified three QTLs (Gisdt1, Gisdt2, and Gisdt3) for 
glucose intolerance on rat chromosomes 1, 2, and X, 
respectively. Analysis of the latter cross revealed four QTLs 
(Dmsdt1, Dmsdt2, Dmsdt3, and Dmsdt4) for blood glucose 
levels on rat chromosome 3, 8, 13, and 14, respectively. 
Further congenic analysis clarified Dmsdt1 as a major locus 
for islet inflammation and fibrosis. 

GENETIC ANALYSIS OF GLUCOSE INTOLERANCE 
USING (BN SDT) F1 SDT BACKCROSSED PROGENY 

 To investigate genetic control of diabetes and glucose 
intolerance in SDT rats, we produced (BN SDT)F1 SDT 
backcrossed (N2) progeny, performed oral glucose tolerance 
test (OGTT) at 20 weeks of age, and phenotyped for the 
onset of diabetes up to 25 weeks of age [13]. The cumulative 
incidence of diabetes in N2 rats was only 1.9% (6/319) at 25 
weeks of age. 

 By selective genotyping on N2 rats with marked glucose 
intolerance (n = 26) and normal glucose tolerance (n = 30), 
followed by chi-square test, we found significant differences 
(P < 0.01) in the genotype frequencies at several markers on 
chromosomes 1, 2, 6, 7, 8, 11, 14, 18, and X. These 
chromosomes were then subjected to QTL analysis using all 
of the N2 rats. We found three major QTLs affecting 
postprandial blood glucose levels on chromosomes 1, 2, and 
X, designated Gisdt1 (glucose intolerance in SDT rat 1), 
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Gisdt2, and Gisdt3, respectively. These loci have been 
registered as Gluco13, Gluco14, and Gluco15, respectively 
(Rat Genome Database, RGD). We also found a major QTL 
for body weight at the Gisdt1 region. The recessively acting 
SDT allele at Gisdt1 (Gluco13) on chromosome 1 was 
involved in the higher blood glucose levels and higher body 
weight in N2 rats. The recessively acting SDT allele at 
Gisdt2 (Gluco14) on chromosome 2 and the single SDT 
allele at Gisdt3 (Gluco15) on X chromosome were involved 
in the higher blood glucose levels in N2 rats. The genetic 
analysis using N2 rats revealed that there are at least three 
major QTLs affecting postprandial blood glucose levels in 
SDT rats. 

GENETIC ANALYSIS OF DIABETES AND GLUCOSE 
INTOLERANCE USING (F344 SDT)F2 INTERCROSS-

ED PROGENY 

 To perform genetic analysis of diabetes and glucose 
intolerance in SDT rats, we produced (F344 SDT) F2 rats, 
phenotyped for the onset of diabetes up to 60 weeks of age, 
and performed OGTT at the same age [14]. F2 rats 
developed diabetes at 25 weeks of age or later, and the 
cumulative incidence of diabetes reached 19% (31/167) at 60 
weeks of age. Interestingly, postprandial blood glucose 
levels of (F344 SDT) F1 rats were significantly higher than 
those of control F344 rats, indicating that dominantly acting 
SDT alleles are involved. Although none of the F1 rats 
developed diabetes till 75 weeks of age, F1 rats did show 
pathological inflammatory changes in the pancreas, such as 
inflammation and fibrosis in and around the pancreatic islets. 

 By selective genotyping on diabetic F2 rats (n = 31) and 
non-diabetic F2 rats with the area under the blood glucose 
response curve value of the lowest 20% (n = 33), followed 
by chi-square test, we found highly significant differences (P 
< 0.001) in the genotype frequencies at several markers on 
chromosomes 3, suggesting the presence of a major locus 
responsible for diabetes. The locus was designated Dmsdt1 
(diabetes mellitus locus in the SDT rat No.1), and has been 
registered as Gluco35 (RGD). A dominantly acting SDT 
allele at Dmsdt1 is involved in the development of diabetes 
in F2 rats. 

 By QTL analysis using all of the F2 rats, in addition to 
Dmsdt1 we identified three major QTLs affecting blood 
glucose levels on chromosome 8, 13, and 14, designated 
Dmsdt2, Dmsdt3, and Dmsdt4, respectively, and one major 
QTL affecting body weight on chromosome 3, designated 
Bwsdt1. These loci have been registered as Gluco36, Gluco37, 
Gluco38, and Bw82, respectively (RGD). The dominantly 
acting SDT allele at Dmsdt1 (Gluco35) on chromosome 3 was 
involved in the higher postprandial blood glucose levels in F2 
rats. The recessively acting SDT allele at Dmsdt2 (Gluco36) 
on chromosome 8 was involved in the higher fasting and 
postprandial blood glucose levels in F2 rats. The recessively 
acting SDT allele at Dmsdt3 (Gluco37) on chromosome 13 
was involved in the higher fasting blood glucose levels in F2 
rats. The additively acting SDT allele at Dmsdt4 (Gluco38) on 
chromosome 14 was involved in the higher postprandial blood 
glucose levels in F2 rats. The dominantly acting SDT allele at 
Bwsdt1 (Bw82) on chromosome 3 was involved in the higher 
body weight in F2 rats. 

 By QTL analysis on insulin levels at OGTT, we 
identified three significant QTLs on chromosome 3, 13, and 
14 (Fig. 1). The LOD score plot suggested that the loci on 
chromosome 3 and 14 correspond to Dmsdt1 (Gluco35) and 
Dmsdt4 (Gluco38), respectively, while the locus on 
chromosome 13 is different from Dmsdt3 (Gluco37). 

 To clarify the role of the dominantly acting SDT allele at 
Dmsdt1 (Gluco35) on the development of diabetes, we 
produced a congenic strain carrying an SDT allele on the 
control F344 genetic background (F344.SDT-Dmsdt1) [14]. 
At 35 weeks of age, inflammation in and around the 
pancreatic islets and hemosiderin deposition and fibrosis in 
the islets were frequently found in congenic rats, indicating 
that a dominantly acting SDT allele at Dmsdt1 (Gluco35) 
induces the pathological inflammatory changes in the 
pancreas. 

 Genetic analysis using F2 rats clarified that at least four 
major QTLs are involved in impaired regulation of blood 
glucose levels in SDT rats. These loci are completely 
different from those identified by the analysis using N2 rats, 
except for Dmsdt2 (Gluco36), the recessively acting locus on 
chromosome 8. These data indicates Dmsdt2 (Gluco36) to be 
a common genetic factor to the two different crosses, but 
does not indicate the locus is the most definite one. The 
inconsistency between the two studies is likely due to 
differences in crossing, control strains, and age of 
phenotyping. It is much more straightforward and efficient to 
analyze complex genetic traits through a backcross (N2) 
rather than an F2 intercross, since each backcrossed (N2) 
animal have one of two genotypes at each locus, while each 
F2 animal can have one of three genotypes at each locus. 
Although the backcross (N2) analysis is concentrated on 
detecting recessively-acting genetic factors, the analysis 
using F2 cross makes it possible to detect both recessively- 
and dominantly-acting genetic factors. 

COMPARISON WITH REPORTED QTLS IN RATS, 
MICE, AND HUMANS 

 There have been reported hundreds of QTLs affecting 
blood glucose levels or body weights in rats, mice, and 
humans. QTLs mapped to the rat genomic regions harboring 
SDT QTLs, or those mapped to the orthologous regions in 
mice and humans are listed (Table 1). Several QTLs, such as 
Niddm40 and Niddm45 affecting postprandial glucose levels 
in OLETF rats [15, 16] have been mapped to the Gisdt1 
(Gluco13) region on rat chromosome 1. In the Gisdt2 
(Gluco14) region on chromosome 2, no QTL has been 
reported in rats and mice. On chromosome X, Niddm16 
affecting glucose levels in OLETF rats has been reported 
[15, 17] on the genomic region overlapped with Gisdt3 
(Gluco15). Dmsdt1 (Gluco35) induces inflammation and 
fibrosis in the pancreatic islets that are the main pathogenic 
features of SDT rats, while uncommon in human type 2 
diabetes. Although Gluco39 affecting glucose levels in 
Wistar Ottawa Karlsburg W (WOKW) rats has been reported 
[18] in the Dmsdt1 (Gluco35) region on chromosome 3, no 
such loci has been reported in the homologous region in 
humans. Dmsdt2 (Gluco33) on chromosome 3 is involved in 
both fasting and postprandial glucose levels in SDT rats. 
Interestingly, Gluco43 affecting fasting glucose levels in 
Wistar Kyoto (WKY) rats [19] and Niddm21 affecting 
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postprandial glucose levels in OLETF rats [20] have been 
mapped to this region. No QTL has been reported in rats and 
mice mapped to the Dmsdt3 (Gluco37) region on 
chromosome 13. In the Dmsdt4 (Gluco38) region on 
chromosome 14, Niddm20 affecting postprandial glucose 
levels in OLETF rats has been reported [21]. 

 In the Bwsdt1 (Bw82) region on chromosome 3, several 
QTLs affecting body weights have been reported, such as 
Bw24 in Dahl Salt Sensitive (SS) rats [22], Bw31 and Bw36 
in Lyon Hypertensive (LH) rats [23], and Bw81 in 
Genetically Hypertensive (GH) rats [24]. There are several 
QTLs thought to be common for SDT and OLETF rats, 

 

Fig. (1). LOD score plots for quantitative traits on chromosome 3 (A), 13 (B), and 14 (C). Ins 0, 15, and 30 min indicate insulin levels at 0 

(fasting), 15, and 30 min during OGTT, respectively. On y-axis, cM shows the map position based on our linkage map. X-axis shows LOD 

score. 
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while there seems to be no such QTL for SDT and GK rats 
[25, 26]. To our surprise, the loss of function polymorphism 
in Prlhr (prolactin releasing hormone receptor, also known 
as Gpr10) affecting hyperphagia, dyslipidaemia, and obesity 
in OLETF rats [27] has been found in SDT and GK rats 
(Yokoi N, unpublished observation). In fact, there was a 
significant association with body weight around the Gpr10 
region on chromosome 1 [13]. Although SDT rat is a non-
obese model of type 2 diabetes, SDT alleles at several other 
loci have also been involved in the higher body weight in the 
N2 or F2 rats. Since SDT rats showed larger body size as 
compared to BN or F344 rats which were used as control 
strains in the genetic studies [13, 14], the SDT alleles 
affecting body weight may well be involved in large body 
size rather than obesity. These data indicate that large body 
size may have some role on the phenotype of SDT rats. 

CONCLUSION 

 So far, we have identified seven QTLs (Gisdt1, Gisdt2, 
Gisdt3, Dmsdt1, Dmsdt2, Dmsdt3, and Dmsdt4) affecting 
blood glucose levels on chromosome 1, 2, X, 3, 8, 13, and 
14, respectively, and one QTL Bwsdt1 affecting body weight 
on chromosome 3 in SDT rats. Among them, Dmsdt1 has 
been found to be involved in islet inflammation and fibrosis, 
the major pathogenic features of this model. Since retinal 
inflammation is among the early pathological changes linked 
causally to the development of retinopathy, Dmsdt1 might 
also be involved in the pathogenesis of retinopathy, the 
major diabetic complication of SDT rats. At present, there is 
no data which suggests the relation of other QTLs to 
retinopathy. Further characterization of Dmsdt1 and other 
QTLs are needed to identify the genes responsible and to 
clarify the mechanism of pathogenesis of diabetes in SDT 
rats. 
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