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Abstract: The Spontaneously Diabetic Torii (SDT) rat is a useful animal model of type 2 diabetes mellitus without 

obesity. The diabetes in this model manifests as severe hyperglycemia and hypoinsulinemia. However, insulin treatment is 

not required for survival despite marked hyperglycemia. Pancreatic islets display unique pathologic changes such as 

hemorrhage and fibrosis before the onset of hyperglycemia as well as marked atrophy. Islet injury is associated with 

macrophage infiltration of the islets and excess production of nitric oxide. Impaired glucose tolerance results from 

impaired insulin secretion following by decrease in beta cell mass and glucose-stimulated insulin release from beta cells. 

Beta cells in these animals have low insulin-secreting capacity in response to glucose stimulation, but retain normal 

responses to sulfonylurea and incretin. Although insulin resistance is less presented by body composition without obesity, 

the SDT rat has the potential contributions of hepatic insulin resistance and low energy expenditure to the development of 

diabetes. This article provides an overview of the pathologic features of pancreatic islets such as beta cell function and 

possible insulin resistance in SDT rats. 
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INTRODUCTION 

 Type 2 diabetes is a complex disease that results either 
from decreased insulin secretion from the pancreas or 
ineffective insulin function and metabolism in the body, and 
affects millions of people worldwide [1]. Appropriate 
experimental models are essential for understanding 
genetics, molecular basis, and pathogenesis of this disease as 
well as functioning of therapeutic agents. Because available 
animal models develop type 2 diabetes spontaneously, 
numerous rat models have been reported and utilized in 
diabetes research. Spontaneously Diabetic Torii (SDT) rats 
are animal models of type 2 diabetes mellitus without 
obesity, and develop diabetic complications such as 
proliferative retinopathy [2, 3]. The diabetes in this model 
manifests as severe hyperglycemia and hypoinsulinemia, but 
does not require insulin treatment for survival despite the 
marked hyperglycemia. Interestingly, pancreatic islets in this 
model display unique pathologic changes such as 
hemorrhage and fibrosis before the onset of hyperglycemia 
as well as marked atrophy [4]. No findings suggestive of 
autoimmunity, such as infiltration of lymphocytes into the 
islets, have been reported. Since there are patients with type 
1 diabetes without apparent evidence for autoimmune 
mechanism, the SDT rat might be considered as a model 
animal for diabetes mellitus, not only for type 2, but possibly 
for type 1 and other types of diabetes such as called 
maturity-onset diabetes of the young (MODY). This article 
provides an overview of the available information on the 
pathologic features of diabetes in SDT rats. 
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CLINICAL PATHOLOGY 

 SDT rats develop hyperglycemia spontaneously in both 
sexes. Males demonstrate higher incidence and earlier age at 
onset. In males, hyperglycemia and glucosuria are noted by 
20 weeks of age, and the cumulative incidence of diabetes 
reaches 100% at 40 weeks of age under normal nutritional 
conditions [2]. In contrast, females display signs of diabetes 
by 45 weeks of age, and the cumulative incidence of diabetes 
is 33% at 65 weeks of age [2]. This gender difference in the 
development of diabetes is believed to be partially associated 
with suppressive effects of the female steroid hormone 
estrogen on the onset of diabetes [5]. It is interesting that 
diabetic SDT rats can survive for a long period without 
insulin treatment despite marked hyperglycemia. The 
survival rate up to 65 weeks of age was high, and was 92% 
in males and 97% in females [2]. Body weight and body 
mass index of prediabetic SDT rats are comparable to those 
of normal Sprague-Dawley rats; both values reduce in SDT 
rats after the onset of diabetes [6]. 

 Blood glucose levels, either in fasting or nonfasting 
conditions, are markedly elevated by 20 weeks of age in 
male SDT rats, and reach 700 mg/dL or higher at around 30 
weeks of age [4]. Diabetic SDT rats display not only 
hyperglycemia but also hyperphagia, polyposia, and polyuria 
with glycosuria [2]. Before acquiring hyperglycemia, plasma 
insulin levels in SDT rats were similar to or tended to be 
lower than those in age-matched normal Sprague–Dawley 
rats. SDT rats with hyperglycemia showed marked 
hypoinsulinemia [4]. 

 Impaired glucose tolerance (IGT) often precedes 
clinically overt hyperglycemia and glucosuria [7]. SDT rats 
also exhibit IGT around 8 weeks of ages, which is much 
earlier than the onset of overt hyperglycemia [6]. In an oral 
glucose tolerance test (OGTT), marked elevation in postload  
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plasma glucose concentration further increased concomitantly 
with age in SDT rats, although fasting plasma glucose 
concentrations were indistinguishable between SDT and age-
matched control Sprague–Dawley rats. When SDT rats 
developed diabetes at 24 weeks of age, they exhibited 
marked fasting hyperglycemia, and plasma glucose 
concentrations were further elevated and sustained during the 
2-h postload study period (Fig. 1). The area under the curve 
of blood glucose concentration following an oral glucose 
load at an age before the onset of diabetes correlated 
positively to the age at onset of diabetes [6], indicating that 
the magnitude of IGT in prediabetic conditions in SDT rats 
is a biomarker for estimating the age at onset of diabetes. 
Female as well as male SDT rats also developed IGT at 16 
weeks of age, well before the appearance of diabetes [8]. 

INSULIN SECRETION 

 The IGT that occurs in SDT rats is believed to be 
associated with an impaired insulin response to glucose 
stimulation. Indeed, the OGTT revealed lower plasma 
insulin levels before and after glucose loading in prediabetic 
SDT rats at a young age compared to age-matched Sprague–
Dawley control rats [4]. The plasma insulin concentration in  
 

the OGTT was lower in SDT rats than in age-matched 
Sprague–Dawley control rats 30 min after the load at 18 
weeks of age (Fig. 1). At 24 weeks, SDT rats exhibited 
significant fasting hypoinsulinemia on becoming diabetic, 
and hardly any increase was observed in the plasma insulin 
level after a glucose challenge (Fig. 1). 

 As mentioned, SDT rats exhibited significant fasting 
hypoinsulinemia and vanishingly low response in insulin 
secretion to an oral glucose load on developing diabetes [4]. 
Matsui et al. [9] investigated the in vivo response to insulin 
secretagogues other than glucose. Arginine, tolbutamide, and 
a dipeptidyl peptidase IV inhibitor increased the amount of 
insulin released after glucose loading and improved GT. In 
addition, in vitro studies using isolated islets from SDT rats 
revealed that glucose-stimulated insulin secretion was 
markedly lower in isolated islets from prediabetic SDT rats 
compared with those from age-matched normal Sprague–
Dawley rats. However, when the islets were treated with 
tolbutamide or glucagon-like peptide-1 (7-36) amide in the 
presence of 11.2 mM glucose, the insulin level normalized. 
This indicated that beta cells of SDT rats have low insulin 
secretory capacity in response to glucose stimulation, but 
retain normal responses to sulfonylurea and incretin. 

 

Fig. (1). Plasma glucose and insulin responses in the OGTT. Fasted animals were orally administered 20% glucose solution at a dose level 

2 g/kg body weight. Plasma concentrations for glucose (upper panels) and insulin (lower panels) during the OGTT performed at 14, 18 and 

24 weeks of age are plotted. Open and closed circles indicate control Sprague–Dawley and SDT rats, respectively. Data are expressed as 

mean ± S.D. (n = 6). Asterisks indicate statistically significant differences (*P < 0.05, **P < 0.01) between SDT and age-matched control 

rats. The SDT rats were nondiabetic at 14 and 18 weeks of age and diabetic at 24 weeks of age. 
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INSULIN RESISTANCE 

 Insulin resistance and obesity are key factors influencing 
the development of type 2 diabetes mellitus. Because 
prediabetic SDT rats have a normal body composition and 
lower plasma insulin levels than normal Sprague–Dawley 
rats [2, 4], the contribution of peripheral insulin resistance to 
the development of diabetes is presumably small. In contrast, 
homeostasis model assessment of insulin resistance index 
tended to be higher in SDT rats than in normal Sprague–
Dawley rats as reported by Matsui et al. In addition, 
Morinaga et al. [10] reported decreased hepatic glucokinase 
mRNA levels and activity, glycogen synthase activity, and 
glycogen content in prediabetic SDT. Sasase et al. [11] 
reported impaired lipid catabolism preceding 
hypoinsulinemia/hyperglycemia in SDT rats. One 
interpretation of these reports is that SDT rats may have the 
potential to develop hepatic insulin resistance and 
abnormalities in hepatic glucose and lipid metabolism, 
leading to the onset of diabetes. In another approach, 
Ookawa et al. [12] reported clearly lower locomotor activity 
and higher food efficiency in SDT rats compared with 
Sprague–Dawley rats. A repeated water immersion–restraint 
stress burden during the prediabetic period improved GT and 

delayed the development of diabetes [12]. These results 
imply that SDT rats inherently have poor energy 
expenditure. Further investigations are needed to estimate 
insulin resistance in SDT rats. 

PANCREATIC ISLETS 

 The first histologic change seen in pancreatic islets in 
male SDT rats was dilatation of the microvasculature, which 
occurred sporadically by approximately 8 weeks of age, 
when the animals were normoglycemic with normal glucose 
tolerance [4]. Congestion or hemorrhage is often observed in 
islets, and these phenomena are regarded as consecutive 
events in intraislet microcirculation. Inflammatory cells and 
fibroblasts subsequently infiltrate the pancreatic islets after 
the intraislet microcirculation followed by connective tissue 
invasion, and eventual fibrosis [4]. Deposition of 
hemosiderin is also observed in peri-islet areas and within 
the islets. These islets are irregular in shape, enlarged with 
fibrous tissue proliferation, and divide into small pseudo-
lobules by 10–20 weeks (Fig. 2). Fibrosis in islets was also 
reported in humans with type 2 diabetes [13]. The 
inflammation observed in SDT rat islets was qualitatively 
different from autoimmune-mediated inflammation, such as 
the typical lymphocyte infiltration that is consistently 

 

Fig. (2). Fibrosis in pancreatic islets. Fibrosis and hemosiderin deposition in and around the islets were seen at nondiabetic 16 weeks of age 

(A: Masson’s trichrome staining, B: Immunohistochemistry for insulin (brown), glucagons (red) and somatostatin and pancreatic polypeptide 

(blue)). The islets are divided into pseudolobules by connective tissue and are irregular in shape. An islet at 38 weeks of age is atrophied and 

replaced by connective tissues with advanced fibrosis (C: Masson’s trichrome staining, D: Immunohistochemistry for insulin (brown), 

glucagons (red) and somatostatin and pancreatic polypeptide (blue)). Insulin positive cells were disappeared. 

16wk (nondiabetic)

A

B

C

D

38wk (diabetic)



Characteristics of Diabetes in the SDT Rat The Open Diabetes Journal, 2011, Volume 4    29 

observed in autoimmune diabetes. With regard to 
inflammatory cell infiltration, Inokuchi et al. [14] reported 
marked infiltration of CD68

+
 cells (macrophages) in islets of 

SDT rats. Macrophage infiltration was associated with 
abrupt increases in serum interleukin-18 levels and 
circulating monocyte counts by 9 weeks of age, leading to 
excessive production of interferon-gamma and nitric oxide. 

 Depletion of pancreatic beta cells evokes insulin 
deficiency, and leads to IGT followed by diabetes. Despite 
being normoglycemic, pancreatic islet mass was smaller in 
SDT rats at 6 weeks of age than in age-matched normal 
Sprague–Dawley rats, and further declined progressively 
with age [4, 9]. 

 Almost all beta cells disappeared from the islets of 
mature, diabetic SDT rats [4]. Although the reason for this 
loss is unclear, possible contributory factors are exhaustion 
of surviving beta-cells by overwork and impaired 
proliferation (regeneration) of beta cells. In contrast, Simada 
et al. [15, 16] and Wiao et al. [17, 18] performed syngeneic 
or allogeneic pancreas transplantation to diabetic SDT rats. 
Interestingly, pancreas transplantation to diabetic SDT rats 
was beneficial in preventing glucose toxicity, and induced 
pancreatic duodenal homeobox-1 expression close to ductal 
structures in the recipient native pancreas. This resulted in 
regeneration of beta cells in the native pancreas. 

 Studies using an angiotensin II blocker (telmisartan or 
candesartan cilexetil) revealed the preventive effect of 
angiotensin II blockers on the development of diabetes in 
SDT rats [19, 20]. Hasegawa et al. [19] reported 
upregulation of local renin–angiotensin system (RAS) in the 
islets of SDT rats as well as prevention of islet damage and 
failure with telmisartan treatment, possibly through oxidative 
stress resulting from local RAS activation. Either intraislet 
circulatory dynamics or oxidative stress is believed to 
contribute to the pathologic changes occurring in islets 
including the depletion of beta cells [21]. 

CONCLUSIONS 

 The pathogenesis of hyperglycemia in SDT rats is 
believed to be heterogeneous, involving both a marked 
decrease in insulin-secreting capacity related to dysfunction 
in beta cells and probably hepatic insulin resistance. SDT 
rats have unique and important properties relevant to the 
understanding of type 2 diabetes. Thus, the SDT rat could 
play important role as an animal model for studying diabetes, 
and may yield insights useful in developing new treatments 
for diabetes. 
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