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Accumulation of AGEs and VEGF in Eyes of SDT Rats 
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Abstract: Background/Aims: The Spontaneously Diabetic Torii (SDT) rat develops advanced diabetic retinopathy (DR). 

The aim of this study was to identify advanced glycation end products (AGEs) related to vascular endothelial growth 

factor (VEGF) expression, a cause of DR in SDT rats. 

Methods: One eye was obtained from six SDT rats (blood glucose, >250 mg/dl) and 10 nondiabetic normal Sprague-

Dawley (SD) rats and prepared for immunohistochemical study of VEGF and AGEs (pyrraline, pentosidine, carboxy 

methyl lysine [CML]). Immunostaining was described as minimal, moderate, and severe. 

Results: In diabetic rats, for CML, five eyes had severe and one moderate immunostaining. For pyrraline, one eye had 

moderate and five eyes minimal immunostaining. For pentosidine, one eye had moderate and five eyes minimal 

immunostaining. For VEGF, three eyes each had moderate and severe immunostaining. In nondiabetic rats, for CML one 

eye had minimal, seven had moderate, and two had severe immunostaining. For pyrraline, four eyes had moderate and six 

eyes minimal immunostaining. For pentosidine, 10 eyes had minimal immunostaining. For VEGF, one eye had moderate 

and nine had minimal immunostaining. The prevalence rates of CML and VEGF were significantly (P<0.05, P<0.001, 

respectively) greater in diabetic than in nondiabetic rats. The prevalence rates of pyrraline and pentosidine were not 

significantly (P=0.35, P=0.38) different between diabetic and nondiabetic rats. 

Conclusion: CML coexists with VEGF and may be involved in the pathogenesis of severe ocular complications in SDT 

rats. 
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INTRODUCTION 

 Diabetic ocular complications, such as diabetic 
retinopathy (DR), cataracts, and rubeotic glaucoma, impair 
vision and quality of life. DR, one of the most serious 
complications of diabetes mellitus, frequently leads to 
blindness [1-3]. Vascular endothelial growth factor (VEGF), 
an important cytokine that induces proliferative DR [4,5], is 
correlated with several metabolic changes, including 
increased polyol pathway activity [6-9], activation of protein 
kinase C (PKC) [10-14], increased oxidative stress 
[13,15,16], and accumulation of advanced glycation end 
products (AGEs) [13,17-19]. These induce retinal vascular 
dysfunction and retinal ischemia. New drugs targeting these 
biochemical changes, such as aldose reductase inhibitors 
[6,20], PKC ß inhibitors [11,12,14,21-23], and AGE 
inhibitors [24,25], are effective in diabetic animal models of 
very early DR, in which pericyte loss occurs. However, to  
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determine whether these drugs effectively prevent DR, an 
animal model of advanced DR is needed. Although 
numerous diabetic animal models have been described, none 
develops DR similar to that in humans. 

 The SDT rat, a substrain of the Sprague-Dawley (SD) rat, 
spontaneously develops diabetes mellitus and exhibits the 
three major diabetic ocular complications, cataracts, 
advanced DR, and rubeotic glaucoma. In 1988, five male rats 
with polyuria and glucosuria were identified among 305 rats 
from an outbred colony of the Crj:CD(SD) strain (Charles 
River Japan, Inc., Kanagawa, Japan) of SD rats. After the 
20th generation of sister-brother matings, the diabetic strain 
was established in 1997. The characteristics of this rat have 
been described previously [26]. Briefly, male rats develop 
marked hyperglycemia (about 700 mg/dl) and glucosuria 
after 20 weeks of age. The cumulative incidence of diabetes 
is almost 100% by 40 weeks of age. Female rats also develop 
diabetes but after 45 weeks of age, and the cumulative 
incidence is only 35% even after 60 weeks of age. The 
survival rates of untreated male and female SDT rats up to 
65 weeks are 93% and 97%, respectively. Mature diabetic 
cataracts are observed after 40 weeks of age in most male 
SDT rats. Large retinal folds mimicking tractional retinal 
detachment with extensive leakage of fluorescein around the 
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optic disc are the most prominent finding of DR in old 
(mostly after 51 weeks of age) SDT rats [27]. Young SDT 
rats (under 50 weeks of age) usually do not exhibit the 
changes of advanced DR. In the current study, we performed 
immunohistochemical studies that focused on AGEs and 
VEGF in SDT rats. 

ANIMALS AND METHODS 

 After 60 weeks of age, one eye was obtained from 10 
nondiabetic normal SD rats and six SDT rats. SDT rats were 
confirmed to be diabetic (blood glucose level, >250 mg/dl). 
The care and handling of all animals were in accordance 
with the Association for Research in Vision and 
Ophthalmology Statement for the Use of Animals in 
Ophthalmic and Vision Research. Under deep anesthesia 
following an intraperitoneal injection of pentobarbital 
sodium (30 mg/kg body weight, Nembutal, Dainihonseiyaku, 
Osaka, Japan), the eyes were enucleated for conventional 
histopathologic and immunohistochemical studies. The eyes 
were fixed in a mixture of 2.5% paraformaldehyde and 1% 
glutaraldehyde in 0.15 M phosphate buffer (pH 7.1) to avoid 
artificial retinal detachment and embedded in paraffin and 
sectioned for immunohistochemical study of VEGF and 
AGEs (pyrraline, pentosidine, carboxy methyl lysine 
[CML]). The immunohistochemical procedures were based 
on the standard avidin-biotin horseradish peroxidase method 
using each antibody and developed with AEC Substrate 
Chromogen (DakoCytomation, Carpinteria, CA, USA). 
VEGF was immunostained with a monoclonal antibody for 
human VEGF (1:25 dilution, Immuno-Biological Laboratories 
Co., Ltd, Fujioka, Japan). Pyrraline, pentosidine, and CML also 
were immunostained with a monoclonal antibody for human 
AGEs (1:50 dilution for pyrraline, 1:50 dilution for 
pentosidine, and 1:50 dilution for CML, Trans Genic Inc., 
Kumamoto, Japan). Bovine serum was used as a primary 
antibody for negative control of the immunostaining. The 
immunostaining grades were divided into three groups, 
minimal, moderate, and severe, according to the degree of 
staining. Minimal staining was characterized by almost no 
retinal staining, moderate staining by light red retinal 
staining, and severe staining by strong dark red retinal 
staining. We evaluated the grade of the immunostaining in 
each sample without knowing whether the eye was obtained 
from a SD or SDT rat. 

 The prevalence rates of AGEs and VEGF were evaluated 
using the Cochran-Armitage test and Fisher’s exact test for 
independence. P<0.05 was considered statistically 
significant. 

RESULTS 

 Table 1 shows the prevalence rates of immunostaining 
for CML, pyrraline, pentosidine, and VEGF in the retinas of 
the diabetic rats. Fig. (1) shows immunostaining for CML, 
pyrraline, pentosidine, and VEGF in the retinas of SDT rats. 
Table 2 shows the prevalence rates of immunostaining for 
CML, pyrraline, pentosidine, and VEGF in the retinas of 
nondiabetic SD rats. Fig. (2) shows immunostaining for 
CML, pyrraline, pentosidine, and VEGF in the retinas of 
nondiabetic SD rats. The prevalence rates of immunoreacti-
vity for CML and VEGF were significantly greater in the  
 

retinas of diabetic rats than in nondiabetic rats (P<0.05, 
P<0.001, respectively, by the Cochran-Armitage test). There 
was no significant difference in immunoreactivity for 
pyrraline and pentosidine between the diabetic and 
nondiabetic rats (P=0.35, P=0.38, respectively, by Fisher’s 
exact test). 

Table 1. Prevalence Rates of Immunostaining for CML, 

Pyrraline, Pentosidine, and VEGF in the Retinas of 

Diabetic Rats 

 

 CML Pyrraline Pentosidine VEGF 

Minimal  0  5  5  0 

Moderate  1  1  1  3 

Severe  5  0  0  3 

 

Table 2. Prevalence Rates of Immunostaining for CML, 

Pyrraline, Pentosidine, and VEGF in the Retinas of 

Nondiabetic SD Rats 

 

 CML Pyrraline Pentosidine VEGF 

Minimal  1  6  10  9 

Moderate  7  4  0  1 

Severe  2  0  0  0 

 

DISCUSSION 

 The most frequent ocular complications found in 
diabetes, i.e., cataracts, retinopathy, and neovascular 
glaucoma, are thought to be caused by increased polyol 
pathway activity [6-9], activation of PKC [10-14], increased 
oxidative stress [13,15,16], and accumulation of AGEs as a 
result of prolonged hyperglycemia. In advanced cases of 
diabetes, retinal and iris neovascularization may occur, 
resulting in blindness due to proliferative DR, neovascular 
glaucoma, or both. VEGF is necessary for 
neovascularization in diabetic eyes. Increased polyol 
pathway activity, activation of PKC, oxidative stress, and 
AGEs could all induce VEGF. Although these factors can be 
improved with glycemic control, the AGEs are resistant to 
degradation and continue to accumulate in ocular tissues 
even in patients with diabetes with good glycemic control. 
Among the numerous AGEs, CML is thought to be the major 
one that causes ocular complications in diabetes [13,28,29]. 
However, pentosidine is more important than CML in the 
development of diabetic nephropathy [29-31]. Hammes et al. 
reported that accumulation of CML can be identified even in 
early-stage DR, while in the advanced stages of diabetes, 
accumulation of CML accompanies progression of DR [18]. 
Several clinical studies have shown that the level of 
pentosidine is more related to nephropathy than retinopathy 
[29,32]. We found that accumulation of CML was observed 
somewhat in nondiabetic normal SD rats. In SDT rats, 
staining for CML was stronger than in nondiabetic rats, and 
the prevalence of VEGF was greater than in nondiabetic rats. 
However, there was no significant difference in the 
prevalence of pyrraline and pentosidine between diabetic rats  
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Fig. (1). Immunostaining for AGEs and VEGF in the retinas of diabetic SDT rats. CML and VEGF are clearly seen, but pyrraline and 

pentosidine are not (original magnification x10). 

 

Fig. (2). Immunostaining for AGEs and VEGF in the retinas of nondiabetic SD rats. Staining for CML is weaker than in diabetic SDT 

rats. Pyrraline, pentosidine, and VEGF are not clearly seen (original magnification x10). 
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and nondiabetic rats. Therefore, VEGF expression was 
correlated with CML expression but not pentosidine or 
pyrraline. It appears that CML may be the most important 
AGE-inducing neovascularization in the eye, while pyrraline 
and pentosidine are contributory. Since the relationship of 
AGEs to diabetic ocular complications in SDT rats closely 
resembles that in humans, the SDT rat may be a useful 
animal model for investigating the pathogenesis of diabetic 
ocular complications. 
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