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Abstract: To aid in the study of diabetes and its complications, many diabetic animal models have been reported. 

Although most diabetic patients suffer type 2 diabetes, studies using type 2 diabetic animal models have been carried out 

less frequently. Spontaneously Diabetic Torii (SDT) rat, a non-obese type 2 diabetes model, shows neuropathies and 

severe ocular complications. Decreased nerve conduction velocity and thermal hypoalgesia were improved by insulin 

treatment, indicating that the peripheral neuropathies in SDT rats are caused by sustained hyperglycemia. Autonomic 

nerve dysfunctions such as decreased coefficients of variance of R-R intervals (CVR-R) in electrocardiogram, functional 

gastrointestinal disorders, and voiding dysfunction are also observed in SDT rats. Therefore, SDT rat is a useful diabetic 

animal model for studies of diabetic neuropathies in type 2 diabetes and development of new drugs and therapies for 

diabetic neuropathies. 
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INTRODUCTION 

 Diabetes mellitus (DM) is one of the most common 
diseases, and more than half of all DM patients have diabetic 
complications such as diabetic retinopathy, diabetic 
nephropathy, or diabetic neuropathy. Among these 
complications, diabetic neuropathy is the most frequent and 
up to 50% of diabetics suffer some form of nerve damage 
[1]. Moreover, diabetic neuropathy causes foot ulceration 
and may lead to amputation, and may also lead to chronic 
pain with reduced quality of life. Most common among the 
diabetic neuropathies are diabetic peripheral neuropathy 
(DPN) and the diabetic autonomic neuropathy (DAN). Large 
clinical trials have indicated that strict control of blood 
glucose level in both type 1 and type 2 diabetes patients can 
delay the onset and progression of these diabetic 
neuropathies [2, 3]. 

 To study DM and its complications, many diabetic 
animal models have been reportedly tested [4-8]. These 
animal models showing hyperglycemia were followed by 
complications in several tissues, including kidneys, nerves, 
and eyes. Spontaneously Diabetic Torii (SDT) rat is a new 
model for non-obese type 2 diabetes [9, 10]. Although most 
DM patients suffer type 2 diabetes, studies using type 2 
diabetic animal models have been carried out less frequently 
[11, 12]. Therefore basic research using type 2 diabetic 
animal models is necessary for the development of new 
drugs and treatments for diabetic neuropathy. SDT rat shows 
marked hyperglycemia (Fig. 1A) and subsequent severe 
ocular complications [9, 10, 13-15] and nephropathy [16]. 
On the other hand, although SDT rats show all three major 
diabetic complications, only a few reports on neuropathies 
have been published [17-20]. Therefore in this article, 
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characteristics of diabetic neuropathies in SDT rats are 
overviewed. 

DIABETIC PERIPHERAL NEUROPATHY 

 Peripheral nerve fibers are classified as large or small 
fibers. Motor nerve conduction velocity (MNCV) and 
sensory nerve conduction velocity (SNCV) defects in 
diabetic animals are markers of large myelinated fiber 
dysfunction [21, 22]. Wada et al. first reported the MNCV in 
SDT rats [19, 20]. In their report, SDT rats showed 
decreased MNCV around 30 weeks of age. MNCV was 
decreased to 82% that of normal rats at 40 weeks of age and 
to 76% at 48 weeks of age (Fig. 1B). When the blood 
glucose levels were strictly controlled by insulin for 24 
weeks, disorder in tail MNCV was significantly prevented 
(Fig. 2A, B). Therefore, it is clear that the decreased MNCV 
was caused by sustained hyperglycemia [18]. 

 Small fibers (e.g. A  and C-fiber) mediate sensation of 
temperature and pain as well as autonomic functions. Both 
hyper- and hypoalgesia are found in diabetic state. Duration 
of hyperglycemia, the severity of diabetic state, sex or 
species may affect progression to diabetic hyper- or 
hypoalgesia. While thermal hypoalgesia is reported in 
diabetic animals using tail-flick test or hot plate test [23-25], 
others have found hyperalgesia [26-28]. At 32 weeks of age, 
marked thermal hypoalgesia was observed in SDT rats by 
tail-flick test [17]. 

DIABETIC AUTONOMIC NEUROPATHY 

 Autonomic nerve functions are also impaired in diabetes. 
Coefficient of variance of R-R intervals (CVR-R) in 
electrocardiogram, a marker of autonomic nerve function, 
was significantly lower in diabetic SDT rats (44 weeks of 
age) compared to age-matched normal Sprague-Dawley (SD) 
rats (SDT rats have the SD rats as their background), 
indicating disorder of autonomic nerve function [17]. 
Twenty-four week administration of insulin prevented 
worsening of CVR-R in SDT rats (Fig. 2C) [18]. The 



Diabetic Neuropathy in Spontaneously Diabetic Torii Rat The Open Diabetes Journal, 2011, Volume 4    51 

impaired autonomic nerve is deeply associated with diabetic 
gastroenteropathy. Functional gastrointestinal disorders such 
as rapid gastrointestinal transit and diarrhea are observed in 
SDT rats [29]. As several reports on DAN have shown [30, 
31], insulin therapy is effective on these diabetic 
gastrointestinal abnormalities in SDT rats [29]. Voiding 
dysfunction is also observed as a result of DAN. Bladder 
dysfunctions such as diabetic cystopathy are common 
symptoms among diabetic patients [32] and diabetic animal 
models [33] with DAN. Reduced production of nerve growth 
factor (NGF) in the bladder and dorsal root ganglia (DRG) 
was associated with voiding dysfunction attributable to 
defects in A  and C-fiber bladder afferents in streptozotocin 
(STZ)-induced diabetic rats [34]. In SDT rats, increase in 
voided volume and inter-micturition interval related to the 
afferent limb neuropathy and the increase in voiding pressure 
related to urethral dysfunction were observed as diabetic 
bladder dysfunction [35]. 

HISTOPATHOLOGY 

 The histopathological characteristics of sural nerve in 
SDT rats are described by Wada et al. [19, 20]. Although 

neurologic deficits were not observed in sural nerve, 
incidence of degenerating nerve was increased in SDT rats. 
Morphologically, SDT rats revealed significant atrophy in 
myelinated nerve at 48 weeks of age: cross-sectional area 
was 88% that of normal rats. At this age, the number of 
small fibers was relatively increased in SDT rats. The 
number of endoneural blood vessels in SDT rats was 
comparable with that in normal rats; however, occluded 
vessels were found in SDT rats (Fig. 3). Considering that 
the main pathological findings in human diabetic nerves 
consist of progressive fiber loss and endoneural 
microangiopathy [5], SDT rat is a useful animal model of 
type 2 diabetes. 

TREATMENT OF DIABETIC NEUROPATHY 

 Multiple mechanisms have been implicated in diabetic 
complications including diabetic neuropathies: increased 
polyol pathway, hexosamine pathway, and advanced 
glycation endproducts (AGEs) are well-known factors. 
Activation of protein kinase C beta (PKC ), through the de 
novo synthesis of diacylglycerol (DAG) is also observed 
under diabetic conditions. Although hyperglycemia is a 

 

Fig. (1). Serial changes of (A) blood glucose level and (B) tibial motor nerve conduction velocity (MNCV) in SD rats (open circles) and SDT 

rats (closed circles). Figure B was kindly provided by Dr. Wada (Hirosaki University School of Medicine). Data represent means ± S.E.M. 

(n=4.6). *p<0.05, **p<0.01 (vs age-matched SD rat, unpaired t-test for (A),  Mann-Whitney U-test for (B)). 

 

Fig. (2). Effect of blood glucose control by insulin on (A) HbA1c, (B) tail motor nerve conduction velocity (MNCV) and (C) coefficients of 

variance of R-R intervals (CVR-R) in electrocardiogram. Twenty four-weeks old SDT rats were treated with insulin pellets for 20 weeks. Data 

represent means ± S.E.M. (n=3-6). **p<0.01 (vs age-matched SD rat, unpaired t-test), †p<0.05, ††p<0.01 (vs control SDT rat, unpaired t-

test). 
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major determinant of diabetic complications, current oral 
anti-hyperglycemic drugs have not shown sufficient efficacy 
to prevent the development of diabetic microvascular 
complications. Therefore, novel drugs for diabetic 
complications independent from hypoglycemic effect are 
desperately needed. Aldose reductase inhibitor (ARI) and 
PKC  inhibitor were proven to prevent diabetic retinopathy 
without controlling blood glucose levels in SDT rats [17, 
36]. Long-term treatment of a PKC  selective inhibitor, JTT-

010, prevented diabetic neuropathy in SDT rats [17]. 
Twelve-week administration of JTT-010 prevented delay of 
MNCV, and decreased CVR-R and thermal hypoalgesia in 
SDT rats without affecting blood glucose levels. However, 
JTT-010 did not prevent hyperglycemia-induced retinal 
abnormalities in SDT rats (e.g. abnormal retinal vascular 
formation, protruded optic disc). Therefore, it seems that the 
different factor(s) contribute to progression of diabetic 
neuropathy and diabetic retinopathy in SDT rats. 

 

Fig. (3). Structural changes of the peripheral nerves. (A) Low and (B) high magnification of sural nerve from 12 months old SD rat. (C) Low 

and (D) high magnification of sural nerve from 12 months old SDT rat. Toluidine blue stain. Microphotographs were kindly provided by Dr. 

Wada. 

 

Fig. (4). Effect of benfotiamine on (A) tail MNCV, (B) CVR-R, and (C) thermal hypoalgesia (tail-flick test). Twenty-weeks old SDT rats 

were treated with benfotiamine by food admixture for 12 weeks. Data represent means ± S.E.M. (n=7-8). *p<0.05 (vs SD rat, unpaired t-test), 

†p<0.05, ††p<0.01 (vs untreated SDT rat, Dunnett’s test). 



Diabetic Neuropathy in Spontaneously Diabetic Torii Rat The Open Diabetes Journal, 2011, Volume 4    53 

 Benfotiamine reduces all four major pathways (polyol 
pathway, hexosamine pathway, AGE pathway, and DAG-
PKC pathway) by activating transketolase, a thiamine-
dependent pentose phosphate pathway enzyme. This 
liposoluble prodrug of thiamine exhibits effects on 
peripheral nerve function as well as on diabetic retinopathy 
[37, 38]. Benfotiamine clearly showed blood glucose-
independent effect on DPN/DAN in SDT rats, as well as 
blood glucose control by insulin, indicating that the SDT rat 
is a helpful model for research and development of new 
pharmaceuticals. Twelve-week treatment of benfotiamine 
(20-32 weeks of age) improved MNCV with dose 
dependency. Administration of benfotiamine also tended to 
ameliorate CVR-R and prevented elevation of tail-flick 
threshold significantly (Fig. 4). Biochemical parameters and 
body weight of SDT rats were not affected by benfotiamine. 

CONCLUSION 

 In conclusion, neuropathies in SDT rats are caused by 
sustained hyperglycemia and therefore SDT rat is useful 
diabetic animal model for studies in diabetic neuropathies in 
type 2 diabetes and for the development of new drugs and 
therapies for diabetic neuropathies. 
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