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Abstract: Radon (Rn) is a chemically inert, naturally occurring radioactive gas. It is one of the main causes of lung can-

cer second to smoking, and accounts for about 25,000 deaths every year in the US alone according to the National Cancer 

Institute. In order to initiate preventive measures to reduce the deaths caused by radon inhalation, it is helpful to have ra-

don concentration data for each locality, e.g. zip code. However, such data are not available for each and every zip code in 

Ohio, owing to several reasons including inapproachability. In places where data is unavailable, radon concentrations 

must be estimated using interpolation techniques. 

This paper presents a new interpolation technique based on Artificial Neural Networks (ANNs) for modeling and predict-

ing radon concentrations in Ohio, US. Several ANNs were first trained and then validated using available data. From the 

resulting models, the model with lowest validation error was identified. Model accuracies using the proposed approach 

was found to be significantly better compared to conventional interpolation techniques such as Kriging and Radial Basis 

Functions. 
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1. INTRODUCTION 

Radon, which is an invisible, colorless, odorless gas, is a 
daughter element in the radioactive decay series of uranium. 
Uranium is widespread in small quantities in rocks and 
sediments. Both radon and its decay products are radioactive. 
Radon can cause lung cancer in people exposed to high lev-
els over a long period of time [1], a health issue that many 
homeowners unknowingly face. Radon is responsible for 
about 25,000 lung cancer deaths every year in the US. About 
2,900 of these deaths occur among people who never 
smoked [2]. Radon is classified as a Class A carcinogen by 
the U.S. Environmental Protection Agency [3]. The USEPA 
and other organizations have launched research efforts to 
help assess risks and remedial options. In this context, some 
of the questions worth investigation include: (i) What is the 
statistical and spatial distribution of indoor radon; (ii) What 
methods can be used to reduce radon concentrations in 
homes; (iii) What is the risk as a function of exposure; etc. 
There have been ongoing efforts, including those at the Uni-
versity of Toledo, in terms of maintaining radon concentra-
tion databases for states with high radon levels, e.g. Ohio. 
Although Ohio’s radon concentrations are not as high as 
those in some other states, they are well above the U.S. na-
tional average. 

With an objective of providing a healthy living environ-
ment, the USEPA continues to support preventive actions for  
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all homes with higher radon activity. For instance, Ohio De-

partment of Health (ODH) runs a campaign aimed at measur-

ing radon concentrations across Ohio. Health authorities, in 

conjunction with county health departments, commercial 

testing services, and university researchers have so far gath-

ered information for more than 130,000 homes/schools 

across Ohio [4-8]. Data management has been carried out 

using different database management systems [9-13]. 

Radon data is unavailable for some locations or zip 

codes, owing to several reasons including inapproachability. 

Fig. (1) shows the geometric mean of concentrations across 

Ohio (based on the Ohio Radon Information System at the 

University of Toledo). The regions marked in white color 

correspond to the regions of Ohio, for which, no data are 

available. For zip codes where multiple data are available, a 

general practice has been to compute the Geometric Mean 

(GM) of all available data to account for random data collec-

tion by homeowners. The current database has radon concen-

trations available for 1261 zip codes out of 1492 zip codes in 

Ohio. For regions with no data availability, radon concentra-

tions need to be estimated using interpolation techniques. In 

this work, we propose a new ANN based scheme for model-

ing and predicting radon concentrations. Neural networks 

employed in this work are 3-layer multi-layer perceptrons 

often referred to as 3-layer MLP or simply MLP3. 

The distribution of radon concentrations depicted in Fig. 

(1) compares well with the general distribution of uranium 

across Ohio. As well, the results are in line with the general 

geology observed by Harrell et al. [4, 5]. 
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2. PRIOR ART 

Conventional interpolation techniques such as Inverse 

Distance Weighting (IDW), Kriging, Radial Basis Functions 

(RBF), Global Polynomial Interpolation (GPI), and Local 

Polynomial Interpolation (LPI) have already been employed 

for estimating the missing radon concentrations [14, 15]. 

Each of these techniques has some advantages and disadvan-

tages [16-18]. For the purpose of illustration, estimations of 

radon concentrations using Kriging, IDW, GPI, and LPI are 

shown in Fig. (2). 

ANNs are being regarded as accurate and fast vehicles to 
computer aided modeling in comparison to empirical and 
polynomial models [19]. With their remarkable ability to 
abstract or derive inherent functional relationships from 
complicated or imprecise data samples, ANNs are gaining 
attention for modeling complicated patterns/trends that fail 
other conventional interpolation techniques.  

Akkala et al. [18] has shown that ANNs have previously 
been employed on a limited basis for the purpose of interpo-
lating concentration data. Some such applications are given 
in Table 1. Typically, ANN models provide a better alterna-

 

Fig. (1). Map of Ohio showing the geometric mean (GM) of radon concentrations (http://aprg.utoledo.edu/radon/).  

 

Fig. (2). Estimated radon concentrations obtained for Ohio by using four conventional interpolation techniques. 
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tive to statistical models owing to their computational effi-
ciency and generalization ability. It is observed that the 
number of studies based on the use of ANN techniques for 
predicting atmospheric pollutant concentrations are con-
stantly increasing. 

3. BRIEF INTRODUCTION TO ANNS 

ANNs have been applied to an increasing number of real-
world problems of varying complexities. They are known for 
their ability to model highly complicated input-output rela-
tionships that are difficult for conventional techniques [34]. 
After learning and abstracting from either measured or simu-
lated data, referred to as training data, through a process 
called training, neural models provide instant answers to the 
task learnt [35, 36]. Theoretically, neural models can be con-
sidered as black-box models, whose accuracy depends on the 
training data presented. A good collection of training data, 
i.e., data that is well-distributed, sufficient, and accurately 
measured/simulated, is suggested for obtaining an accurate 
neural model [35-37]. 

An ANN operates by creating connections between many 
different processing elements called neurons. Each neuron 
takes many input signals and produces a single output signal 
that is typically sent as input to other neurons. The neurons 
are tightly interconnected and organized into different layers. 
While the input layer receives the input, the output layer 
produces the final output. One or more hidden layers are 
sandwiched in between the input and output layers. 

Let x be an n-vector containing the model inputs. In the 
case of radon modeling, the inputs are latitude and longitude. 
Let y be an m-vector containing the model outputs, e.g. ra-
don concentration corresponding to x. The relationship be-

tween x and y is multi-dimensional and nonlinear, and is 
given by 

y = f ( x ) .     (1) 

In (1), f represents the functional relationship between x 
and y. In this work, f is a neural network (see Fig. 3), which 
is derived or modeled through a training process using a set 
of sample pairs given by 

{( xp , dp ), p = 1,...,N} .    (2) 

In (2), dp represents the desired output corresponding to 

p
th

 training input vector xp, N is the number of data samples 

available for training, and p is simply a sample index. Since 

our work involves modeling of radon data alone, ANN has 

only one output, i.e. m = 1 , and y and d are vectors of size 

one (or scalars). 

In reality, the neural network also contains model pa-
rameters w, referred to as weights, which are first initialized 
and then adjusted during the training process. As such, (1) 
can be re-written as 

y = f ( x,w ) .     (3) 

In the case of a 3-layer MLP, weight vector w contains 
two sets of weights u (weights between input layer and hid-
den layer) and v (weights between hidden layer and output 
layer). Size of w depends upon the size of the neural net-
work, e.g. number of hidden neurons. From a theoretical 
perspective, the definition of w, and how y is computed 
through x and w, determine the structure of the neural net-
work. It is important to note that the neural network in (3) 
does not represent the original problem (i.e. radon concentra-
tion in this particular case), unless the ANN is trained using 
the available data. 

Table 1. Applications of ANNs for Interpolation of Environmental Data 

Author Purpose of Interpolation ANNs Employed 

Ruiz-Suarez et al. [20] Short-term forecasting of Ozone in Mexico City Heteroassociative neural networks 

Yi and Prybutok [21] Prediction of ambient ozone MLP3 

Boznar et al. [22] Predictions of ambient SO2 Concentrations in complex topography MLP3 

Rigol, et al. [23] Prediction of daily minimum temperature MLP3 

Chelani et al. [24] Prediction of SO2 concentrations in Delhi, India MLP3 

Chelani et al. [25] Prediction of ambient PM10 and toxic metals in Jaipur, India MLP3 

Bryan et al. [26] Annual mean precipitation and temperature Rprop feed-forward, back-

propagation neural network 

Gardner and Dorling [27] Prediction of hourly NOx concentrations in London MLP3-MLP10 

Hernandez et al. [28] Forecasting of daily air particulate iron and lead concentrations in Madrid, Spain MLP3 

Hooyberghs et al. [29] Forecasting daily average PM10 concentrations in Belgium MLP3 

Siqueira et al. [30] Spatial interpolation of daily solar irradiation in northeastern region of Brazil MLP3 

Snell et al. [31] Interpolation of surface air temperatures MLP3 

Chowdhury et al. [32] Estimation of arsenic contamination in ground water in Bangladesh Kriging, MLP4 

Coutinho et al. [33] Prediction of maximum daily PM10 concentration near Cincinnati MLP3, RBF 
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The objective of training is to determine w* that mini-
mizes the difference between neural model output y and de-
sired output d, given by 

E( w ) =
1

2
(ypq ( xp , w ) -  dpq )2

q=1

m

p=1

N

.  (4) 

In (4), ypq(xp, w) is the q
th

 output of the neural network 

when presented with input xp. In our case, where m = 1 , 

equation (4) can be simplified as 

E( w ) =
1

2
(yp ( xp , w ) -  dp )2

p=1

N

.   (5) 

Owing to the complexity of E(w), iterative methods are 
typically used to determine w*. In such methods, we begin 
with an initial assumption winitial, referred to as initial 
weights, and then iteratively update w as 

wnext = wnow+ g .    (6) 

In (6),  is a positive step-size and g is the update direc-

tion. In other words, wnext is determined by adjusting the cur-

rent weights wnow along an update direction g. Different 

training algorithms use different update directions g. Experi-

ence helps while choosing the neural network, number of 

hidden layers, number of hidden neurons, and training 

method. Too small a network could lead to under-learning; 

while too large a network could lead to over-learning [35].  

Weights w* of a trained neural network help calcu-
late/estimate the output of the neural network. We define zj 
as the output of the j

th
 hidden sigmoid neuron given by 

z j =
1

1+ exp( ( uij * xi
i=1

n

+ u0j ))

,   (7) 

where xi is the i
th

 input (which is either latitude or longitude 

in our case), uij represents weight of the link between i
th

 in-

put neuron and the j
th

 hidden neuron, and u0j is the bias pa-

rameter of the j
th

 hidden neuron. In this work, y, which is the 

model output or radon concentration, is calculated as 

y = (z j  v j ) +  v0
j=1

h

.     (8) 

In (8), v0 is the bias parameter of the output neuron, vj 
represents the weight of link between j

th
 hidden neuron and 

the output neuron, and h is the total number of hidden neu-
rons. 

4. METHODOLOGY 

4.1. Data Preparation 

Data collected during the radon project as well as that be-
ing collected from homes across Ohio on a regular basis is 
organized into a database (see Table 2). Each row contains 
radon concentration for the corresponding zip code, along 
with other relevant information (e.g. county name, popula-
tion, etc). 

For the zip codes, where data is available, it is to be 
noted that the number of data available varies largely. This 
may affect the final outcome of modeling studies. However, 
for modeling purposes, researchers continue to employ geo-

 

Fig. (3). Proposed 3-layer MLP architecture for modeling radon concentrations. The network has two inputs (latitude and longitude), one 

output (radon concentration), and h hidden neurons. 
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metric mean of radon concentrations available at each zip 
code. In other words, the geometric mean concentrations for 
each zip code were derived using the observed radon concen-
trations in houses located in that zip code. In the conven-
tional GM calculation, a reading of zero present in multiple 
readings would result in GM being zero (although all other 
readings for the zip code are non-zero). To overcome this 
problem, the zero readings are replaced with 0.1, which is 
the minimum detectable radon concentration [9]. The limit is 
still true because the homeowners continue to use the same 
type of instruments that were used in the past and they con-
tinue to follow the USEPA guidelines during testing.  

The indoor radon database presented through the web site 
titled Radon Concentrations Across Ohio (www.radon.uto 
ledo.edu) was developed in the following manner. Govern-
ment agencies, university researchers, and commercial test-
ing companies that made and continue to make indoor radon 
measurements in Ohio are contacted and copies of their data 
are requested. The data sets received are combined to pro-
duce a unified database that includes the zip codes used in 
this study. Most of the data (i.e. greater than 90 percent) 
were provided by companies engaged in radon testing, and 
the rest came from surveys conducted by university re-
searchers and various government agencies. The database 
includes results from several kinds of detectors, which were 
set out by both owners and professional technicians in a va-
riety of buildings and room types during all seasons and with 
test periods of different durations. From yet another perspec-
tive, a vast majority of radon data (i.e. over 95 percent or so) 
comes from houses, where the tests were done by the home-
owners using either charcoal canisters or alpha-track detec-
tors. Despite the eclectic nature of radon data, the measure-
ments for a given county or zip code area seem to provide a 
good estimate of the year-round average radon concentra-
tion. More than 90 percent of the data are received through 
computer disks/files and transferred without transcription 
errors. The remaining data are provided as printed tables. 
Most of these are read directly into ASCII computer files 
using a text scanner and so transcription errors are avoided. 
Only less than 2 percent of radon data had to be typed into 
the database manually. Finally, the data is always triple-
checked for accuracy and is hence believed to be free of 
transcription errors. 

In this work, zip codes and the associated GMs of radon 
concentrations are used as the training data. Note that the 
school data are not used in this study. Out of a total of 1492 

zip codes across Ohio, radon concentrations are available 
only for 1261 zip codes. For the remaining 231 zip codes, 
the neural network models developed would predict the ra-
don concentrations. 

It is not meaningful to use zip code information directly 
as the ANN input during training. Appreciating this, we ob-
tained the latitude and longitude for each of the zip codes, 
since such a mapping is one-to-one. In doing so, the loca-
tions of radon concentrations remain the same irrespective of 
the interpolation technique employed. The neural network to 
be trained has two input neurons corresponding to latitude 
and longitude, as shown in Fig. (3). An advantage of this 
approach is that the input space, i.e. spatial regions of Ohio, 
can be viewed as a 2D grid. 

4.2. Typical ANN Error Measures 

The universal approximation theory states that standard 
multilayer feed-forward networks with a single hidden layer 
that contains finite number of hidden neurons are universal 
approximators [38]. Multiple hidden layers have a greater 
likelihood for over-learning, especially in such situations, 
where data patterns are complex [31]. In light of this obser-
vation, neural networks employed in this work are 3-layer 
multi-layer perceptrons or MLP3 networks. This being the 
first attempt to develop ANN models for the radon problem, 
there is no existing knowledge in terms of number of hidden 
layer neurons etc. As such, it became essential to train sev-
eral neural networks with different number of hidden layer 
neurons. 

The available radon data is first randomized and then 
split into two independent sets of data, namely, training data 
and validation data. While the former is used to train the 
neural network, the latter is used to validate the trained 
model. An appropriate ANN structure may fail to yield an 
accurate model, unless trained by a suitable training algo-
rithm [35]. In this work, we used two training algorithms, 
namely, Backpropagation and quasi-Newton. In both the 
cases, the number of hidden neurons is varied to obtain a 
neural model that yields minimal error. A CAD tool [39] is 
used for training and validation. 

The quality of a trained neural model is tested with an in-
dependent set of data (validation data) and the resulting error 
is called validation error. For the case of ANN modeling 
with 1 output, which is the case of this paper, we define a 
relative error k for the k

th
 validation data as 

Table 2. An illustrative Portion of the University of Toledo Radon Database Containing Radon Concentrations in Addition to Other 

Relevant Information. GM Denotes Geometric Mean. NA Indicates Non-Availability 

Zip Code PO Name State 
Population 

(1999) 
County ID County Name GM 

43019 Fredericktown OH 9180 69 Richland NA 

43021 Galena OH 5685 20 Delaware 4.01 

43022 Gambier OH 3649 41 Knox 7.01 

43023 Granville OH 10586 44 Licking 8.85 

43025 Hebron OH 7889 22 Fairfield 0.00 
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k =
yk (xk ,w*) dk
dmax,k dmin,k

,k = 1,...,Nv
.  (9) 

In (9), Nv is the number of validation data, yk(xk, w) is the 

output of the trained ANN model when presented with xk as 

input, and dmax,k and dmin,k are the maximum and minimum 

values of d respectively. In this work, the minimum value of 

radon concentration is 0.1 for zip code 44648, and the 

maximum is 39 for zip code 43930. A quality measure based 

on n
th

-norm is defined as 

M n = k

n

k=1

Nv
1/n

.   (10) 

When n = 1, average test error can be directly calculated 
from M1 as 

Eavg =
M1

Nv

.     (11) 

When n = 2, the n
th

-norm measure is the Euclidean distance 
between the neural model prediction and the test data. When 
n = , the n

th
-norm measure is the maximum test error, 

which is often referred to as worst-case error among the en-
tire validation data, i.e., 

Eworst = M = max k , k = 1,...,Nv    (12) 

Based on the two parameters Eavg and Eworst, the best ANN 
model can be identified. When the training data itself is used 
to validate the model, the resulting Eavg becomes the training 
error. 

4.3. Other Comparative Error Measures 

Research work done during 80’s and 90’s led to the de-
velopment of many performance measures to evaluate the 
air-quality models. EPA has laid some guidelines in order to 
validate and calibrate models in a comprehensive manner. 
Kumar and Gudivaka [40] have discussed in detail the statis-
tics relevant to model evaluation and has applied it to heavy 
gas models. Similarly, Kumar et al. [41] has used statistical 
tools to evaluate the prediction of lower flammability dis-
tances. Patel and Kumar [42], Kumar et al. [43], and Kumar 
et al. [44] have indicated that Mean Absolute Error (MAE), 
Factor of Two (Fa2), Root Mean Square Error (RMSE), 
Fractional Bias (FB), and Normalized Mean Square Error 
(NMSE) are important parameters to assess the performance 
of air-quality models. Here, we re-visit these parameters for 
the purpose of comparison with typically used ANN meas-
ures (section 4.2). To keep the various formulas simple and 
relevant to this work, we assume the number of model out-
puts as 1, which is radon concentration. 

1. Mean Absolute Error 

The MAE expressed as  

MAE =

yk ( xk ,w*) dk
k=1

Nv

Nv

   (13) 

measures the average magnitude of the errors in a set of es-
timations. Ideal value of MAE is zero, indicating perfect es-
timation. 

2. Factor of Two 

Fa2 is defined as the percentage of the predictions within 
a factor of two of the observed values. The ideal value for 
Fa2 should be 1 (or 100%). 

Fa2 = Fraction of data satisfying 

0.5
yk ( xk ,w*)

dk
2.0  

3. Root Mean Square Error 

The RMSE given by 

RMSE =

yk ( xk ,w*) dk( )
2

k=1

Nv

Nv

   (14) 

is a quadratic scoring rule that measures the average magni-
tude of the error. It is an indicator of sensitivity of outliers 
(i.e. it indicates the magnitude of extreme errors). The ideal 
value for RMSE is zero. 

4. Fractional Bias 

The FB expressed as 

FB =

yk ( xk ,w*) dk( )
k=1

Nv

1

2
yk ( xk ,w*) + dk( )

k=1

Nv
   (15) 

is a normalized bias. The FB varies between +2 and -2 and 
has an ideal value of zero. 

5. Normalized Mean Square Error 

The NMSE given by 

NMSE =

yk ( xk ,w*) dk( )
2

k=1

Nv

1

Nv

yk ( xk ,w*)
k=1

Nv

* dk
k=1

Nv
   (16) 

emphasizes the scatter in the entire data set. Normalization 
by the denominator term assures that the NMSE will not be 
biased towards models that over predict or under predict. 
Smaller values of NMSE denote better model performance, 
the ideal value being zero. 

5. RESULTS 

Neural networks with 1 hidden layer having different 
number of hidden neurons have been trained using two well-
known training methods, namely, Backpropagation and 
quasi-Newton. Resulting ANN model errors are presented in 
Tables 3 through 6. For instance, Table 3 presents training 
and validation errors for neural models developed using the 
Backpropagation algorithm. 
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Tables 4 and 6 confirm that more the training data, lesser 
the validation error, which is natural. From Tables 3 and 5, it 
can be concluded that training by quasi-Newton leads to rela-
tively more accurate models as compared to that by Back-
propagation. Fig. (4) shows output of the ANN model 
(trained by quasi-Newton algorithm) when presented with 
validation data. 

The best ANN model is evaluated against the conven-
tional models/techniques using the evaluation parameters 
discussed in section 4.3. These comparison details have been 
shown in Table 7. Training and validation sets used to train 
the ANNs have been used to develop the conventional mod-
els as well (i.e. 90% of available data is used for training and 
10% is used for validation). As discussed earlier, the ideal 

Table 3. Training and Validation Errors of ANN Models Trained Using the Backpropagation Algorithm. Available Data is Divided 

into two Sets, i.e. 90% Training Data and 10% Validation Data 

Validation Error No. of 

Hidden Neurons 
Training Error (%) 

Eavg (%) Eworst (%) 

10 4.26 3.57 26.32 

20 4.27 3.55 26.60 

30 4.49 3.81 25.61 

40 4.34 3.62 26.35 

50 4.62 4.02 27.41 

60 5.38 4.85 25.39 

70 5.06 4.39 26.54 

80 4.76 4.14 26.41 

90 4.63 4.00 27.04 

 

Table 4. Training and Validation Errors of ANN Models Trained Using the Backpropagation Algorithm. Based on Table 3, the 

Number of Hidden Neurons is Fixed to be 20 

Validation Error 
% Training Data % Validation Data Training Error (%) 

Eavg (%) Eworst (%) 

90 10 4.27 3.55 26.60 

80 20 4.30 4.47 67.84 

70 30 4.44 4.73 68.57 

60 40 5.02 4.99 65.72 

50 50 5.44 5.43 63.89 

 

Table 5. Training and Validation Errors of ANN Models Trained Using the Quasi-Newton Algorithm. Available Data is Divided into 

two Sets, i.e. 90% Training Data and 10% Validation Data 

Validation Error No. of 

Hidden Neurons 
Training Error (%) 

Eavg (%) Eworst (%) 

10 4.30 3.59 25.76 

20 4.26 3.43 25.81 

30 4.27 3.53 25.95 

40 4.24 3.42 26.88 

50 4.21 3.66 26.30 

60 4.23 3.37 26.79 

70 4.23 3.78 23.96 

80 4.19 3.77 24.86 

90 4.19 3.69 25.68 

100 4.20 3.85 25.78 
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value of Fa2 is 1, and the ideal value of MAE, RMSE, FB 
and NMSE is 0. Compared to the conventional interpolation 
schemes, ANNs perform better, as evidenced by Table 7. 

One of the advantages of the proposed ANN technique is 
the ease of using the neural models, which are in the form 

simple input-output equations. From the results obtained 
using the quasi-Newton training algorithm (see Table 5), it 
can be observed that the neural model with 60 hidden neu-
rons gives the least average validation error. For this neural 
model, the outputs of the hidden neurons are given by 

Table 6. Training and Validation Errors of ANN models trained using the Quasi-Newton Algorithm. Based on Table 5, the Number 

of Hidden Neurons is Fixed to be 60 

Validation Error 
% Training Data % Validation Data Training Error (%) 

Eavg (%) Eworst (%) 

90 10 4.23 3.37 26.79 

80 20 4.12 4.31 64.16 

70 30 4.16 4.40 64.17 

60 40 4.80 4.76 64.27 

50 50 4.25 4.78 62.88 

 

 

Fig. (4). A screen-shot of the Neuromodeler software showing the validation data (magenta line) and the radon concentration values as pre-

dicted by the neural model (yellow line). 

Table 7. Performance of ANN Models in Comparison with Several Other Interpolation Techniques, Based on Statistical Measures. 

Here, 90% of Available Data is Used for Training while 10% is Used for Validation. Ideal Value of Eavg is 0 

Interpolation Technique Eavg. MAE Fa2 RMSE FB NMSE 

Kriging .0370 1.441 .8333 2.2625 0.089 .4318 

Radial Basis Function .0376 1.463 .8165 2.3752 0.094 .4736 

Inverse Distance Weighting .0385 1.498 .8095 2.4148 0.089 .4920 

Local Polynomial Interpolation .0343 1.335 .8254 1.9526 0.030 .3412 

Global Polynomial Interpolation .0376 1.465 .7859 2.0226 0.065 .3535 

Artificial Neural Networks .0337 1.312 .8175 1.9556 0.017 .3499 
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where x1 and x2 are latitude and longitude respectively. In the 

above equations, ANN weights after training can also be 

seen. For this neural model, the output can be calculated us-

ing 

6. DISCUSSION AND CONCLUSIONS  

For the first time, this paper demonstrates the use of 
ANNs for modeling radon concentrations in Ohio. The 
available radon concentration data was reformatted to suit 
ANN training, by translating the zipcode information into 
latitude and longitude data. A comparison of the ANN model 
with conventional interpolation techniques shows that the 
proposed technique results in relatively better accuracies. In 
a worst-case scenario, where fewer training data were used 
(e.g. the case of 50% training data of Table 6), validation 
error Eavg is 4.78%, which shows the efficiency of the pro-
posed technique in scenarios representing sparsely available 
radon data (or any other environmental data being modeled). 

The best neural model, i.e. ANN model with 60 hidden 
neurons, trained using quasi-Newton was chosen for the pur-
pose of estimating radon concentrations in zipcodes with no 
available data. From Tables 4 and 6, it can be seen that more 
the training data, lesser the validation error. Based on this 
observation, it is recommended that all available data be 
used for training for being able to accurately predict the ra-
don concentrations in the 231 zip codes with no available 
data. 

In this paper, the fact that radon gas is associated with the 
geologic occurrence of uranium and other radioactive ele-
ments/products has not been considered. Radon is formed 
from uranium by the decay chain shown in Fig. (5). As such, 
houses and other structures built above uranium-bearing 
rocks or sediments may have higher indoor radon levels [5]. 

This fact is corroborated by the uranium concentration map 
of Ohio (Fig. 6) with the radon concentration map (Fig. 2). 
The observation represents knowledge, which in future, 
could be used for further improving ANN model accuracies. 
Future work could also include the use of different hidden 

neuron activation functions, different training algorithms, 
and so forth. 
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LIST OF SYMBOLS 

x = A vector of size n representing ANN input  

y = A vector of size m representing ANN output 

f = Relationship between y and x to be modeled 
employing ANNs 

dp = Desired output of the ANN model when pre-
sented with input xp 

p = Sample index 

N = Number of sample pairs (or training data) used 
to train a given ANN 

 
z(1) = 1.0 / ( 1.0 + exp(-1.0 * (0.993393+x(1)*(4.81768)+x(2)*(-10.8887))))

,

   (17) 

 
z(2) = 1.0 / ( 1.0 + exp(-1.0 * (1.31538+x(1)*(1.42118)+x(2)*(-2.02847)))) ,   (18) 

 
z(3) = 1.0 / ( 1.0 + exp(-1.0 * (-2.28203+x(1)*(-11.249)+x(2)*(-5.96931)))) ,   (19) 

and 

 
z(60) = 1.0 / ( 1.0 + exp(-1.0 * (-0.186061+x(1)*(1.96284)+x(2)*(4.00457)))) ,                    (20) 

  
y(1) = 0.618806+z(1)*(1.96112)+z(2)*(2.59364)......z(60)*(1.71955) (21) 

 

Fig. (5). Decay series of uranium with daughter products and half-lives, showing the formation of radon from uranium. This chain helps us in 

understanding dependency of radon concentrations on those of uranium. 
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w = Weight vector of a neural network 

u0i = Weight parameter representing the bias of the 
i
th

 hidden neuron 

uij = Weight of the link between i
th

 input neuron 
and j

th
 hidden neuron 

v0 = Weight parameter representing the bias of the 
output neuron 

vj = Weight of link between j
th

 hidden neuron and 
output neuron 

E(w) = Error between ANN model outputs y and de-
sired outputs d 

w* = Optimal weight vector determined through a 
process called ANN training 

wnow = Current weights of the neural network 

wnext = Updated weights of the neural network 

 = Step-size during ANN training 

g = Update direction used to iteratively update 
weights w 

zj = Output of the j
th

 hidden neuron 

k = Error between ANN output and desired output 
for k

th
 validation input xk 

Nv = Number of sample pairs (or validation data) 
used to test a trained ANN 

Mn = A quality measure based on the n
th

 norm 

dmax,k = Maximum value of all available dk 

dmin,k = Minimum value of all available dk 

Eavg = Average test error of a trained ANN model 

Eworst = Worst-case error of a trained ANN model 
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