
58 The Open Economics Journal, 2010, 3, 58-63  

 

 1874-9194/10 2010 Bentham Open 

Open Access 

Corruption and Zipf’s Law 

Jang C. Jin*,1, Bharat R. Hazari2 and Thomas S. C. Lau3 

1
Department of Decision Sciences and Managerial Economics, Chinese University of Hong Kong, Hong Kong 

2
Department of Economics and Finance, City University of Hong Kong, Hong Kong 

3
School of Accounting and Finance, Hong Kong Polytechnic University, Hong Kong 

Abstract: Zipf’s law states that the population size of a city is inversely proportional to its population rank of the city. 

This paper examines the applicability of the Zipf’s law to the world rank of corruption. The relationship between 

corruption and its rank is found to be approximately log-linear but less than perfect for Zipf’s law. Due to a slight 

concavity of the relation, either a piecewise regression or a non-linear model provides an extremely convenient tool for 

predicting the degree of corruption across countries. Although limited number of observations, an alternative 

characterization of the corruption ranks appears to obey the Zipf’s law more closely. 
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1. INTRODUCTION 

 It is well established that many empirical distributions 

exhibit the properties of power laws. Zipf’s [1] law is one of 

the most fascinating examples of such behavior in urban 

economics and geography. This law states that the 

population size of a city is inversely proportional to its 

population rank of the city. In contrast to the enormous 

literature in urban economics on Zipf’s law in the form of 

rank-size regularity on city populations, there are few 
applications of this law to other areas of economics. 

Relationships similar to Zipf’s law in economics have been 

originally documented by Pareto [2] and Gibrat [3] on 

distributions of income and firm sizes, respectively. Recent 

examples are Mantegna and Stanley [4] and Ulubasoglu and 

Hazari [5], among others. The former analyses the S&P 

index and the latter tourism. 

 In this paper we pose a question: Can Zipf’s law be 

applied to corruption? Does corruption exhibit some sort of 
rank-size regularity? A positive answer to this question 

would allow us to predict the degree of corruption from a 

country’s ranking. This would provide an excellent guide to 

estimating corruption without involving relative prices, 

income and poverty levels, forms of government, and so on, 

as explanatory variables. A more pressing question in this 

context is that if Zipf’s law holds for corruption then what is 

its explanation? This is an open question for which many 

alternative explanations may be offered with corruption 

emerging from a random distribution that obeys some sort of 

power laws. Another motivation of this paper is to ascertain 

the use of corruption scores for the Zipf’s law that relates 
ranks with frequencies. The frequency that the number of  
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countries appears in each category of corruption ranks is 

further employed to check with the robustness of the results. 

 Our empirical results establish that Zipf’s law strikes 

another area of economics--corruption. The regression 

results show that a linear fit on the data for 163 countries 

explains 87% of the variations in corruption although 

regression coefficients are less than perfect for the Zipf’s 

law. A closer examination of scatter diagrams exhibits a 
concave rank-size plot; once we take into account of this 

concavity, the regression results explain nearly 99% of the 

variations. Corruption is thus generated from a log normal 

distribution that gives rise to a slight concavity. The 

concavity, however, mitigates substantially when a 

frequency (the number of countries) that appears in each 

category of corruption ranks is used. Note, however, that we 

have not followed the practice of truncating the sample to 

generate a better fit. 

 Before presenting our results we would like to make 

some comments on corruption. The Merriam-Webster 

dictionary defines corruption in the following manner: 

Corruption: 1a: impairment of integrity, 

virtue, or moral principle: DEPRAVITY b: 

DECAY. DECOMPOSITION c: inducement to 

wrong by improper or unlawful means (as 

bribery) d: a departure from the original or 

from what is pure or correct. 

Taken from Merriam-Webster online 

 This is an extraordinarily wide ranging definition. It 

encompasses many areas of human life and does not 

specifically pass corruption as belonging to the domain of 

economics. In a very broad sense, corruption also begins 

within a family. The denial of human rights is an example of 

corruption, so sending children into workforce is a corrupt 

behavior. Similarly feticide is also a corrupt behavior. Such 

behavior needs not be necessarily related to economic 
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phenomenon which would identify corruption with 

functioning of markets, relative prices, income levels, and so 

on. We believe that it is the randomness in the occurrence of 

corruption and country specific forces (for example, 

preference for boys over girls, sale of children to 

prostitution) that give rise to Zipf’s law in corruption. 

2. BASIC RESULTS 

 Fig. (1) shows the world corruption index for the year 

2006. The corruption index ranks 163 countries in terms of 
the degree to which corruption is ‘perceived’ to exist among 

public officials and politicians [6]. The perceived corruption 

scores are the weighted averages of several corruption data 

independently surveyed by varied research institutions all 

over the world, and the country with the highest score is the 

one perceived to be least corrupt. For example, Finland, 

Iceland, and New Zealand rank number one with a score of 

9.6 out of 10, which means that the three countries are 

perceived to be most transparent in public services in the 

world. In general, many developed countries appear in this 

top tier. Relatively small but rich countries like Switzerland 

also enter the higher ranks. After that, the corruption scores 
gradually fall. For low income countries, the high degree of 

corruption (i.e., low corruption indexes in our graph) appears 

to be similar to each other. The most corrupted countries in 

the sample are Iraq, Guinea, Myanmar, and Haiti with all 

less than 2.0 in corruption scores. 

 Fig. (2) shows the line fit of a reciprocal model that 

explains a salient feature of the Zipf’s law. For example, the  
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Fig. (2). Line fit of reciprocal model. Note: A dark blue line 

represents actual data, while a light pink color represents a 
predicted line. 

corruption index in the vertical axis may occur as an inverse 

of the rank measured in the horizontal axis. That is, f =  

(1/r), where f = frequency occurred, and r = ranks. Suppose 
that  = 10 initially as a maximum score of perceived 

corruption. Then, f = 10 for the rank number one, f = 5 for 

the rank number two, f = 3.33 for the third rank, and so forth. 

An attempt to fit the reciprocal model using the corruption 

data gives the following results. 
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Fig. (1). World Corruption Index, 2006. Source: Transparency International (2006). Total 163 countries were included in a graph but country 
names in the horizontal axis appear only in every 6th ranking. 
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CIi = 3.73 + 8.50 (1/Ranki)          (1) 

              (1.05)* 

R2 = 0.288  = 1.822 n = 163 

where CIi is the corruption index (10 for least corrupt, and 0 

for most corrupt), where i = 1, 2, …, 163 countries, and 

Ranki represents the corruption rank for country i. The 

number in parenthesis represents standard error of the 

parameter estimate. The slope coefficient is statistically 

significant at the conventional significance levels, yet the 

estimated R2 is rather low. The estimated regression line 

(light pink color) is depicted together with actual data (dark 

blue color) in Fig. (2). Large deviations are observed 

between actual and predicted values although the parameter 

estimate appears to be significantly different from zero at the 

5% significance level. The standard error estimate of the 
model ( ) appears to be relatively large because the raw data 

were used in levels for estimation of the model (1). 

 Fig. (3) then plots the corruption index against the 

corruption rank in logarithms. The corruption rank is 

assigned, based on corruption scores, from the least corrupt 

to the most corrupt countries. In general, rich countries are 

found in higher ranks (least corrupt), while poor countries 

appear in lower ranks (more corrupt). More specifically, the 

corruption ranks are highly correlated with per capita income 
(approximately r = -0.8). Top-20 least corrupt countries are 

the ones with per capita GDP $20,000-45,000; next twenty 

least-corrupt countries are within the income range between 

$10,000 and $20,000; and so forth. At last, thirty most-

corrupt countries in the bottom ranks have per capita income 

less than $1,000. 
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Fig. (3). Log corruption vs log rank. Source: Transparency 
International (2006). 

 An interesting question that arises is whether these 

graphs obey Zipf’s Law. In other words, is there a linear 

relationship between the log corruption and the log rank? If 

the relationship is exactly linear, it will follow the empirical 

law found in Zipf [1]. Thus, a perfect case of the Zipf’s law 

would be the one that the regression coefficient of a log-

linear model is a minus one, since the corruption index may 
follow  (1/rank), where the maximum corruption index  = 

10. In other words, log (corruption) = 1 – log (rank). 

However, as in Fig. (3), the relation between the two 

variables may not be linear because a diminishing speed of 

the corruption index in higher ranks particularly from the 1st 

to the 16th is slower than the one expected in the Zipf’s law. 

For example, for the three rank-number-one countries (i.e., 

log 1 = 0 on the horizontal axis), the vertical intercept in Fig. 

(3) is close to 1 (more precisely, log 9.6 = 0.98); after that, 

the log corruption falls slowly because the corruption scores 

are similar to each other in higher ranks. In contrast, for the 

corruption ranks lower than the 16th, i.e., log (rank) > 1.2, the 

negative association between the two variables seems to be 
approximately linear. 

 The linear relationship is further investigated using a 

simple linear regression model: 

log (CI)i = 0 + 1 log (Rank)i + i.          (2) 

where i is white noise residuals. The dependent and 

independent variables are taken as logarithms and thus a 
heteroscedasticity problem — residuals are relatively large in 

higher-rank countries and smaller in lower ranks — may not 

be serious in this case because the log-linear model normally 

mitigates the measurement scale of the raw data. The first 

equation in Table 1 uses the corruption index of the year 

2006 as a dependent variable and provides evidence that the 

linear relationship is explained approximately 87% although 

the regression coefficient appears to be less than perfect for 

the Zipf’s law. Standard error estimates ( ) are relatively 

small in this log-linear model. The results are, in general, 

consistent with the Zipf’s law in which the log of corruption 
in the vertical axis is approximately linearly related with the 

log of ranks measured in the horizontal axis. 

 The second model in Table 1 uses a four-year average of 

the corruption indexes over the period 2003-2006. For the 

robustness of the results, the third model employs another 

four-year average over earlier years 2000-2003. The last one 

uses a seven-year average over the entire sample periods 

2000-2006. For all different measurements of the corruption 

index, little variation is found in parameter estimates, as well 

as in R2. The results are generally robust across different 
measurements of the corruption index. This also indicates 

that people’s perception on a country’s degree of corruption 

changes little over time. 

 Fig. (4) plots the line fits that correspond to the four 

regression results discussed in Table 1. As noted earlier, the 

predicted regression lines do not perfectly fit the actual data. 

Large error estimates are observed in higher ranks, perhaps 

due to small differences in least-corrupt countries. A 

piecewise linear regression model will fit the data even better 
if the regression lines are divided into two different parts 

based upon the degree of corruption. 

3. ALTERNATIVE REGRESSION MODELS 

3.1. Piecewise Linear Regression 

 A careful examination of Fig. (4) shows that there is one 

linear relationship up to a certain rank and another one after 

that rank. More specifically, the corruption index falls 

approximately linearly until the threshold rank 16, after 

which it also decreases linearly but at a much steeper rate. 

Thus, we construct and run a piecewise linear regression that 
consists of two linear segments. A threshold rank is assumed 
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to be the 16th, and the technique of dummy variables is used 

to estimate the two different slopes of the two segments 
within a model. We obtain the following results. 

log CIi = .981 - .029 log Ranki - .605 Di (log Ranki – 1.2041)    (3) 

    (.009)*     (.012)* 

 R2 = 0.992  = 0.0178 n = 163 

where a dummy variable Di = 1 if log Ranki > 1.2041 (i.e., 

log 16 = 1.2041) and 0 otherwise. The values in parentheses 
are the estimated standard errors. This piecewise or spline 

regression improves the fit of the model to 99%, and 

standard error estimates are significantly reduced to 0.0178. 

Parameter estimates show correct signs and they are all 

statistically significant at the conventional significance 

Table 1. Regression Results 

 

Model: log (corruption index) = 0 + 1 log (corruption rank) + i 

 

Corruption Index 0 1 obs R
2
  

Corruption index year 2006 1.342 -.441(.014) 163 .868 .073 

Average index 2003-2006 1.400 -.485(.016) 132 .874 .075 

Average index 2000-2003 1.374 -.491(.028) 82 .789 .101 

Average index 2000-2006 1.368 -.484(.027) 82 .798 .097 

Note: Standard errors are in parentheses. 

 

  

  
Fig. (4). Line fit plots. 
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levels. The slope of the first segment is -0.029, while the 

slope of the second segment is -0.634. The difference 

between the two slopes (-0.605) appears to be statistically 

significant at the 5% significance level. The two different 

slopes are portrayed in the first panel of Fig. (5). 

3.2. Non-Linear Regression 

 To capture the non-linearity displayed in Fig. (4), we 

further estimate a non-linear regression model that includes 

the square of the log rank; that is, instead of using a linear 

form, the relation between the log corruption and the log 

rank is now quadratic. 

log CIi = .974 + .209 log Ranki - .236 (log Ranki)
2        (4) 

             (.014)*          (.005)* 

  R2 = 0.992  = 0.0186 n = 163 

 The estimated coefficient of the linear term appears to be 

significantly positive, while the estimated square term is 

negative and significant. The negative coefficient on the 

square term indicates that the force toward the positive 

relation between the log corruption and the log rank 

mitigates as the rank falls. In other words, the relations are 

initially positive for higher ranks but become negative for 
lower ranks. The positive coefficient of the linear term found 

in (4) is due to a nearly flat and small variation in higher 

ranks. Once we dropped the first 16 countries in higher ranks 

from the sample, all coefficients were found to be 

significantly negative for both linear and non-linear terms (-

0.24 and -0.11, respectively).1 Therefore, if we move from 

least-corrupt to more-corrupt countries, the log corruption 

index decreases slowly in higher ranks but it decreases at an 

increasing rate in more corrupt countries. This implies a 

slight concavity of the non-linear relation, as shown in the 

second panel of Fig. (5). 

 

 

                                                
1 The results are available upon request. 

4. FURTHER CHARACTERIZATION OF 
CORRUPTION RANKS 

 The findings of concave non-linear relationships between 

corruption and its rank have used the original corruption 

index that assigned 0s to most corrupt countries and 10s to 

least corrupt countries. Alternatively, corruption ranks are re-

characterized as number one (most corrupt countries) if the 
corruption scores are less than or equal to 2 points. The 

corruption rank goes down further to number two, number 

three, and so on if less corrupted. The bottom rank is 8th 

place with the corruption scores that are between 9 to 10 

points (least corrupt countries). For each category of 

corruption ranks, the number of countries included is 

counted as a frequency. This would be another way of 

ranking corruption.2 In this way, we find that there are a 

large number of high-corrupt countries and very few low-

corrupt ones, a distribution similar to Zipf’s law. 

 To examine the Zipf-like version, we further estimate the 

log-linear model that uses the new ranking of corruption. 

The result is obtained as follows. 

log Freqi = 1.811 – 1.15 log Ranki         (5) 

            (0.12)* 

  R2 = 0.93  = 0.10 

where Freqi is the number of countries in each category of 

corruption ranks, and Ranki represents the new ranking of 

corruption (i.e., 1 for most corrupted countries and 8 for least 

corrupted ones). The number in parenthesis represents 

standard error of the parameter estimate. We find a nearly 

perfect fit, as is the case of Zipf’s. The slope coefficient 

appears to be close to minus one and statistically significant 

at the conventional significance levels. Standard error 

estimates are also very small. The results are in general  
 

 

                                                
2 This method was suggested by an anonymous referee of this journal. 
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Non-linear Regression
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Fig. (5). Alternative regression models. 
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consistent with the Zipf’s law in which the log of a 

frequency in the vertical axis is approximately linearly 

related to the log of corruption ranks measured in the 

horizontal axis. Fig. (6) plots the line fit that corresponds to 

the regression result in equation (5). The predicted 

regression line nearly perfectly fits the actual data, except for 

a few observations in lower ranks. Other than that, the 

association appears to be approximately linear. Therefore, 

the frequency-based corruption ranks are broadly consistent 
with Zipf’s law. 
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Fig. (6). Further characterization of corruption ranks. 

5. CONCLUSION 

 A key finding from the regression results is that Zipf’s 

law holds approximately for the world rank of corruption. 

Estimation of log-linear models provides evidence that a 

negative relationship between the log of corruption and the 

log of ranks is approximately linear although the regression 

coefficient appears less than perfect for the Zipf’s law. The 

model fit is improved to 99% with the use of a piecewise 

regression model, and a non-linear regression model that 

includes a quadratic term also shows a slight concavity of the 

relation between log corruption and log ranks. The log 

normal distributions are mainly due to a diminishing speed 

of the corruption index that differs across countries. The 

concavity of the relation, however, mitigates significantly 

when a frequency (the number of countries) that appears in 

each category of corruption ranks is used. 

 While there may well be other interpretations of this 

relationship between corruption and its rank, one explanation 

for this finding would be the Zipf’s law that strikes another 

area of economics -- corruption. The degree of corruption is 

highly correlated with per capita income. Most-corrupt 

countries in bottom ranks have per capita income less than 

$1,000, whereas least-corrupt countries are in general rich 

and developed economies. Developed countries also have a 

much higher level of education which in principle may 

reflect negative attitudes against corruption. However, there 
are very few low-corrupt countries in the world; most 

developing countries and many underdeveloped countries are 

highly corrupted. The shape of the distribution is a hyperbola 

type, which lends support to the Zipf’s law regarding the 

rank-size regularity on corruption. 
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