
 The Open Electrical and Electronic Engineering Journal, 2007, 1, 1-8 1 

 

 1874-1290/07 2007 Bentham Science Publishers Ltd. 

Analysis and Characterization of Power System Nonlinear Oscillations Us-

ing Hilbert Spectral Analysis 

A.R. Messina
*,1

, M.A. Andrade
1
, J.H. Hernández

1
 and R. Betancourt

2
 

1
Graduate Program in Electrical Engineering, Cinvestav, Mexico 

2
Faculty of Electromechanical Engineering, Universidad de Colima, Mexico 

Abstract: In this contribution, a systematic approach to analyze and characterize the temporal evolution of nonlinear, 

time-varying processes in power systems is developed. The method combines the Hilbert-Huang transform and concepts 

from vibrating systems theory and can be used to approximate the dynamic behavior of quasi-stationary oscillations. Us-

ing the notion of empirical mode decomposition, data from transient stability simulations is transformed into a series of 

mono-component signals. A new analytical framework for characterizing and modeling the nonlinear temporal evolution 

of the oscillations is presented and techniques for identifying the modal content of the most dominant motion components 

are developed. Analytical expressions are then obtained that provide approximate solutions to the instantaneous frequency 

and amplitude of the oscillation, and a physical interpretation of the model is provided. The efficiency of this technique 

for capturing the temporal evolution of the modal content of data from transient stability simulations is assessed. Results 

determined from the low-order models are found to be in qualitative agreement with detailed system simulations. 

INTRODUCTION 

 The analysis and characterization of nonlinear, non-

stationary inter-area oscillations has attracted significant 

attention in recent years. Transient oscillations may result 

from the loss of major transmission and generation resources 

and be complicated by control actions, switching events and 

changes in system topology and operating conditions [1-3]. 

Experience with the analysis of wide-area electrical distur-

bances shows that many transient oscillations may manifest 

highly complex phenomena, including nonlinear and non-

stationary behavior [3, 4]. Understanding and characterizing 

the dynamics of these oscillations is a major research chal-

lenge in power systems dynamics. Recent studies suggest 

that in the analysis of complex nonlinear oscillations, such as 

those resulting from major disturbances or sequential faults, 

modal interaction is particularly difficult to characterize be-

cause of the large number of potential modes involved in the 

interaction and the time scales in which they interact [1,2]. 

 An accurate model of transient processes must capture 

dominant temporal features of the observed system dynamics 

such as abrupt changes in modal content and to relate these 

features to specific aspects of interest. This is particularly 

true in the development of wide-area measuring and control 

systems in which the specific impact of devices or events on 

system dynamic behavior must be properly characterized [1, 

4]. 

 A number of methods for the analysis and characteriza-

tion of nonlinear, time-varying oscillatory processes have 

been recently proposed that have the ability to detect large 

and abrupt changes in system performance. Among these 

approaches, time-frequency transformations hold consider- 
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able promise for the analysis of temporal behavior of critical 

system modes. 

 A novel application of the Hilbert Huang method was 

recently reported by Messina et al. [4] who applied the tech-

nique to characterize inter-area oscillations from measured 

data. This approach is capable of explaining the nonlinear 

nature of the observed oscillations and permits tracking the 

temporal evolution of dominant modes. 

 The present work extends earlier efforts made in using 

Hilbert analysis [4-6] by developing a systematic approach 

to analyze and characterize the temporal evolution of nonlin-

ear, time-varying processes in power systems. The technique 

builds on simple concepts from vibrating systems theory and 

is applicable to both, nonlinear and non-stationary processes. 

A new analytical framework for characterizing and modeling 

the nonlinear temporal evolution of the oscillations is pre-

sented and techniques for identifying the modal content of 

the most dominant motion components are developed. The 

goal is to be able to represent the key contents of the data in 

terms of the smallest number of intrinsic mode functions that 

have physical significance. A large case study is presented to 

illustrate the application of the procedures. Results suggest 

that a small number of dominant modes can recover the tem-

poral evolution of complex oscillations. 

THE ANALYTIC SIGNAL 

 Let )(tx be a real-valued signal. The analytic signal, 

)(tz , is a complex function of time defined as [7] 
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is the Hilbert transform of )(tx . The analytic signal repre-

sents a local time-varying wave in the complex 

plane xx ~, [6]. The instantaneous amplitude of the analytic 

signal is defined as the length of the rotating phasor, )(tA , 

namely 

22 )(~)()( txtxtA +=     (2) 

with instantaneous phase given by 

)
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 As time elapses, the phasor rotates in the ( xx ~, ) plane 

and its instantaneous angular speed defines the angular fre-

quency of the complex signal given by )()( tt = . Fig. (1) 

shows a conceptual representation of the analytic signal. 

 

Fig. (1). Rotating phasor in the complex plane representing the 
analytic signal. 

 The extension to this approach to the analysis of multi-

component signals is possible using the concept of empirical 

mode decomposition (EMD) developed by Huang et al. [8]. 

Before presenting the method developed in this paper, a brief 

discussion of this procedure will be given. 

EMPIRICAL MODE DECOMPOSITION 

 The concept of empirical mode decomposition was first 

introduced by Huang et al. [8]. The principle of this tech-

nique is to decompose a signal into a finite number of intrin-

sic mode functions (IMFs) that have the same numbers of 

zero crossings and extrema, and that are symmetric with re-

spect to the local mean. 

 The IMFs are extracted serially, by fitting cubic splines 

to the envelopes of the maxima and minima of the function. 

At each step k of the procedure, the highest frequency oscil-

lation is removed. Following each iteration, a residue kr  

remains containing lower-frequency information. The proc-

ess is repeated on the residue until only a trend remains; this 

results in a local decomposition of the data in which the in-

trinsic functions can be identified. 

 The EMD algorithm can be summarized as follows [5, 8, 

9]: 

 

1. Initialize the procedure. Starting with the original 

signal )(tx , set the initial residue )()( txtro = , 

and 1=k . 

2. Extract the kth IMF using a procedure called sifting. 

3. Obtain an improved residue )(trk . Repeat step 2 with 

1+= kk until the number of extrema in )(trk  is less 

than 2. This defines the trend of the signal. 

 The final result of this procedure is a decomposition of 

the form 
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where n is the total number of IMFs, and nr  is the non-

oscillatory residual at the end of the sifting process. 

 The success of the technique is mainly due to the nature 

of the basis functions. By construction, the IMFs are almost 

orthogonal and form a complete basis (the sum of the indi-

vidual IMFs equals the original signal). Each IMF corre-

sponds to a different oscillatory time scale in the signal and 

is essentially a band-limited function. 

 Once the original signal is decomposed into a set of 

IMFs, the Hilbert transform is applied to each component to 

define the instantaneous characteristics of each component. 

Applying the Hilbert transform to each IMF, the original 

signal can be expressed as the real part of the complex ex-

pansion 
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where kz is the analytical signal associated with the kth IMF, 

and )()( tt kk = . 

 On the basis of the previous discussion, a technique is 

next proposed that enables the extraction of modal contents 

from simulated or measured data. 

MODAL PARAMETER IDENTIFICATION 

 Representation of the observed oscillations by a low-

order dynamic model, allows the efficient analysis of com-

plex processes deriving from non-linear dynamical proc-

esses. Since the IMFs are nearly orthogonal to each other, 

each IMF is considered to be a harmonic oscillator of vari-

able amplitude and frequency. 

 More precisely, consider a nonlinear single-degree-of-

freedom (sdof) system with nonlinear damping, modeled as 

0)()(2 2
=++ yytty oo    (6) 

where )(ty is the displacement of the mass, o  is the un-

damped natural frequency, and  is the dimensionless 

damping coefficient. Applying the Hilbert transform to (6) 

and combining real and imaginary parts yields a differential 

equation for the analytic signal [10]: 
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 Letting 

)()()()()( tittj eeetAtz ==    (8) 

where )(t  is an exponential factor characterizing the time-

dependent decay of the solution [11], it can readily be 

proved that 
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 Substituting (10) into (9) and separating out the real and 

imaginary parts gives 
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 Having determined the instantaneous amplitudes and 

frequencies (phases) from (2),(3), the damping and natural 

frequency of the nonlinear sdof systems can be obtained us-

ing (9). Fig. (2) shows a conceptual representation of the 

identification procedures applied to general data. 

 It is also of interest to determine the instantaneous energy 

of each oscillator. Using (8) the instantaneous energy of the 

sdof oscillator can be approximated in terms of the instanta-

neous amplitude and phase by 

2)(22
)()( tete k

tk
kk     (12) 

 Equations (11) and (12) completely characterize the mo-

dal behavior of the time series and the accuracy of the ap-

proximation can be assessed by comparing the contribution 

of successive coefficients. 

 While this procedure accurately represents the time evo-

lution of the transient process, a global model is also needed 

that identifies dominant temporal features, and enables char-

acterization of global attributes such as the instantaneous 

amplitude and frequency of the signal. 

 Based on the above model, a low-dimensional dynamic 

representation is proposed which allows us to approximate 

the dynamic behavior of quasi-oscillatory processes by a 

combination of a selected subset of the IMFs. 

QUASI-HARMONIC BEHAVIOR 

 Low-dimensional models offer a compact description of 

the system dynamics, and they are potentially useful in ana-

lyzing, simulating and characterizing complex oscillations. 

In this section, a low-dimensional representation of temporal 

quantities is derived that enables to extract dominant modal 

information. 

 

Fig. (2). Conceptual representation of the proposed technique. 

 Following Feldman [12, 13], assume that the observed 

signal, )(tx , can be approximated by family of p oscillatory 

functions, with time-varying amplitudes jA , and phases, j  

in the form =
=

p
j jj ttAtx 1 ))((cos)([)(  where the )(tj  

can be amplitude and/or frequency modulated. 

 Taking the Hilbert transform of this expression gives 
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where p  is the number of modal components, and 

)(t , =
t

dttt
0

)()(  are the instantaneous frequency and 

phase to be solved for. 

 In terms of these variables we write the amplitude and 

frequency of the composite oscillation as 
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 Based on these assumptions, we next derive a procedure 

for assessing the significance of modal components in sys-

tem behavior. Our approach follows Feldman’s treatment of 

nonlinear freely vibrating systems [12]. 

 An interesting particular case arises when, for a physical 

system, the system response can be approximated by a few 

slowly varying functions or modal components. 

 Setting 0)(tAj  in (16), and using the above relations 

one obtains, 
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where )()()( 1221 ttt = . 

 Equation (17) defines a nonlinear and nonstationary fre-

quency (amplitude)- modulated signal. Slightly more com-

plicated expressions can be derived for the case of n modal 

components and are not included here. 

 By systematically including third and higher order inter-

actions, the quality of the approximation can be improved up 

to the desired order of accuracy. In the limit, when pn = , 

the signal can be fully reconstructed using (5). 

 In implementing the method, the instantaneous phases 

are obtained by unwrapping the phase angles )(tj ; the in-

stantaneous frequencies are then computed using a third-

order differential filter [14]. 

 The high degree of accuracy offered by the proposed 

technique is next demonstrated by application to data from 

transient stability simulations in power system stability stud-

ies. 

APPLICATION 

 Data from transient stability simulations of a large model 

of the Mexican interconnected system is used to examine 

characteristics of quasi-stationary processes. Reference [5] 

provides specific details of the study system and the contin-

gencies under consideration. 

 Two contingency scenarios are selected for study: 

Case A.  Outage of Laguna Verde (LGV) unit #1. This case 

assumes the outage without fault of unit # 1 (650 

MW) of the LGV nuclear power station, one of 

the two largest units in the system. 

Case B. Simultaneous line outage without fault of one cir-

cuit of the 400 kV line from MMT to JUI and the 

400 kV line from Temascal (TMD) to PBD on the 

400 kV network of the southeastern system. 

 These are the same contingencies used by the authors in 

previous studies [5]. 

 Detailed transient stability simulations for the above con-

tingencies were performed to generate the datasets. From 

these simulations, the real power signal of the 400 kV trans-

mission line from QRO to SLM (Case A) on the western 

system, and the 400 kV transmission line from TMD to PBD 

on the southeastern part of the system (Case B) were selected 

for study. The time series are presented in Fig. (3a); the cor-

responding power spectra are shown in Fig. (3b). 

 

 

 
Fig. (3). Datasets. Top: Stability swing curves. Bottom: Fourier 
spectra. 

 Case A is an example of quasi-harmonic behavior whilst 

Case B exhibits a complex time-evolving frequency compo-

sition due to the control action of major system devices. 

 In the present simulations a time step of 0.016 s is used. 

Each of the above data sets consists of 2373 data points, cor-

responding to 30s of data. 
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 For case A, the Fourier spectrum shows the presence of a 

dominant mode at about 0.77 Hz. Two other participations 

are also noted at about 0.32 Hz and 0.50 Hz. The analysis of 

case B, on the other hand, reveals three dominant modes at 

about 0.29 Hz, 0.50 Hz, and 0.77 Hz. 

Analysis of Case A 

 Following the approach in [5], the real power signal was 

decomposed into two IMFs and a trend. Fig. (4) shows the 

two dominant IMFs extracted using this procedure. For 

comparison, the approximate reconstructed signal obtained 

using the two dominant components (IMF1+IMF2) is also 

shown. The notable feature of both IMFs is periodicity with 

a frequency approximately equal to the frequencies in the 

Fourier spectra. These results clearly show that the time evo-

lution of the observed signal can be approximated by the 

reduced order model (17),(18). 

 
Fig. (4). Intrinsic mode functions. Case A. 

 Further insight into the nature of system behavior can be 

obtained from the study of instantaneous attributes in Fig. 

(5). The dominant IMF (IMF1) exhibits a nearly constant 

variation centered around 0.77 Hz, whilst the second IMF is 

centered around 0.32 Hz. In both cases the periodicity of the 

signals suggests that each components can be expressed as 

)(cos)()()( ttAtCtIMF jjjj == . 

 To gain fundamental insights into the physics of the os-

cillations we computed the instantaneous attributes of the 

dominant IMFs. Of particular interest are the amplitude 

)(tAj , frequency )(tj , and phase )(tj , which are plot-

ted as a function of time for the two dominant IMFs, in Fig. 

(5). 

 The bottom panel of Fig. (5) shows the instantaneous 

phase together with the detrended instantaneous phases. This 

approach can be used to examine dynamic trends and phase 

relationships between key system signals. 

 A wealth of useful information can be obtained from Hil-

bert analysis of the observed behavior, as detailed in the fol-

lowing discussion. As observed in the lower panel of Fig. 

(5), the phase evolutions show increasing magnitudes. Sim-

ple theoretical considerations show that the slope of the in-

stantaneous phases gives the frequency of oscillation; the 

greater the slope, the greater the frequency of the IMF. For 

the particular case under study, the temporal phases, )(tk , 

3,,1=k  exhibit a relatively well behaved linear trend over 

the entire period of study thus revealing the monocomponent 

nature of the simulated oscillations. 

 Interestingly, simulation results in Fig. (5) suggest that 

IMF1 and IMF2 exhibit some degree of phase coherence 

(locking) in which 21  is approximately constant, i.e. 

IMF1 and IMF2 are in phase, near the end of the record. This 

fact has an important consequence in the interpretation of 

results as discussed below. 

 To further illustrate the potential usefulness of the 

method, we computed the instantaneous attributes of the 

signal. Fig. (6) shows the time evolution of the instantaneous 

amplitude of IMF1. Appropriate comparisons to both the 

second-order and third-order approximations instantaneous 

frequency and amplitude estimations, computed by using the 

analytical approximations in (17), (18) demonstrate that low-

dimensional representations provide an accurate approxima-

tion to system behavior over the entire simulation. 

 Some interesting features of system dynamic behavior 

can be observed by examining the evolving frequency con-

tent and amplitude of the IMFs. As shown in Fig. (6), IMF1 

is seen to provide a good approximation to system behavior 

especially for the final part of the record (15-30s). This coin-

cides with the period of time in which the amplitude of IMF2 

becomes negligible at about 20s (refer to the upper panel of 

Fig. (5)). 

 A key advantage of this approach is that the approximate 

analytical expressions filter the often partial or uninforma-

tive motion of the individual IMFs and isolate the most 

dominant motion components. This allows the periods of 

influence of each temporal mode to be clearly identified and 

characterized. 

 Fig. (7) shows the corresponding instantaneous frequen-

cies. In each of the two panels of Fig. (7), the natural fre-

quency of the fictitious oscillators determined using (11) and 

the mean instantaneous frequency (MIF) defined as the 

weighted average of the instantaneous frequencies 

=
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were also plotted to facilitate physical interpretation. 

 As expected from previous considerations, a second or-

der approximation to the instantaneous frequency accurately 

replicates system behavior. The physical interpretation of the 

IMFs is clear; the frequency of the first IMF coincides with 

the natural frequency, o , of the equivalent oscillator. Simi-

lar conclusions hold for other IMFs. We further observe that, 

as time evolves, the frequency of IMF1 approaches that of 

the second – and third-order approximations to the instanta-

neous frequency, )(t , in agreement with previous findings. 

 These results demonstrate that the observed oscillations 

behave as a nonlinear sdof system in the frequency range of 

interest. As stated in our general conclusions, the use of a 

low-dimensional representation greatly simplifies the analy-
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sis of the observed time series and allows us to concentrate 

on the dominant modal behavior. 

 

 
Fig. (5). Instantaneous attributes. Top: Amplitude and frequency. 
Bottom: Phase and detrended phase. 

 The quality of the model’s prediction is indicative of the 

soundness of the model. 

 
Fig. (6). Instantaneous amplitude. 

Analysis of Case B 

 The analysis for this data set reveals a more complicated 

dynamics than in the previous case. Fig. (8) shows the domi-

nant IMFs from EMD analysis. Note the strong nonlinear 

trend in the signal, )(tx . For comparison, the original signal 

is also plotted along with the reconstructed signal using the 

first two IMFs. (IMF1+IMF2); the remaining two modes 

show uninteresting behavior and are not studied here. 

 Upon visual inspection of the plots, the signal can be 

divided into two parts with different time scales, each exhib-

iting a quasi-stationary behavior. As observed in Fig. (8), 

IMF2 captures the dominant temporal evolution of the data 

for time window 2 (0-12s), while IMF1 is seen to capture 

system dynamics for time window 1 (12-25s). 

 

 
Fig. (7). Instantaneous frequency. Top: Oscillator 1. Bottom: Oscil-
lator 2. 

 Also noticeable in Fig. (8) is the presence of small riding 

waves which account for higher frequencies in the signal. 

Using this analysis, the exact arrival of the temporal modes 

can be identified which can be of importance to trigger con-

trol actions. Comparison of the time evolution of the original 

signal, )(tx , with the time evolution of the reconstructed 

signal (lower plot) shows that the EMD decomposition accu-

rately reproduces the dynamic behavior for the entire obser-

vation period. The analysis also suggests that a low-

dimensional representation enables accurate tracking of tran-

sient characteristics. 

 
Fig. (8). Intrinsic mode functions. Case B. 

 On this basis, a detailed study of the ability of the pro-

posed technique to extract the temporal behavior of the 

dominant modes was performed. Plots of the instantaneous 

parameters for IMFs 1 through 3 are shown in Fig. (9). 
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 The top panel of Fig. (9) shows the instantaneous energy, 

calculated from (12). The middle panel shows the corre-

sponding time-dependent amplitudes and frequencies of the 

IMFs. Finally, the bottom panel shows the unwrapped (and 

detrended) instantaneous phases. 

 
Fig. (9). Instantaneous attributes: Top: Energy, Middle: Phase. Bot-
tom: Amplitude and frequency. 

 Hilbert analysis identifies significant temporal variability 

in the frequency content of IMF1. Both, amplitude and fre-

quency modulation are observed. As would be expected 

from our previous analysis, IMF2 is seen to have a dominant 

contribution for the first part of the record, whilst IMF1 is 

seen to dominate the middle part of the oscillation. Clearly, a 

third-order approximation is needed to fully replicate system 

behavior especially for the initial (0-10s) and the final part 

(20-30s) of the record. It is also interesting to observe that 

the instantaneous energy and amplitude of IMF1 indicate 

that the associated temporal mode becomes unstable near the 

end of the record in agreement with the behavior observed in 

Fig. (3). This is an important conclusion since the analysis 

suggests that this information might be used to trigger ap-

propriate control actions. 

 Of special interest, the temporal phase of IMF1 shows 

abrupt slope changes at about 10s and 25s representing 

changes in the frequency content of the signal. This behavior 

coincides with variations in the frequency content of IMF1 

(Bottom panel of Fig. (9)). In fact, our experience with the 

analysis of complex system oscillations indicates that routine 

estimation of temporal phase deviations provides critical 

information on the source mechanisms of oscillations and 

can be used to identify key relationships between system 

signals. 

 In an effort to verify the accuracy of the model, and to 

uncover the physical process underlying the oscillations, we 

computed the instantaneous attributes using a quasi-

harmonic approximation. Fig. (10) compares the instantane-

ous amplitudes and frequencies obtained using the first two 

IMFs, with those obtained from the second and third-order 

estimates in (15) and (16). 

 

 
Fig. (10). Instantaneous amplitude and frequency. Top: Amplitude, 

Bottom: Frequency. 

 For direct comparison to the analytical estimates, the 

trend was removed from the signal, )(tx . 

 The results confirm that second and third-order approxi-

mations provide accurate characterization of transient behav-

ior for the entire simulation period. It is interesting to note 

from the upper panel of Fig. (10) that, for time window 2 (0-

12s), IMF2 behaves as the mid-amplitude around which the 

second and third-order approximations are centered. In con-

trast with this, for time window 1 (12-25s), IMF1 coincides 

with the low-dimensional instantaneous amplitude predic-

tions indicating an essentially monocomponent behavior. 

 In turn, the frequency traces, depicted in Fig. (10), dem-

onstrate significant variability. As is apparent from the lower 

panel of Fig. (10), the first IMF captures the dynamic behav-
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ior of time window 1, while IMF2 captures the dynamic be-

havior of the system for time window 2. For both periods, 

the analytical amplitude and frequency estimates provide an 

accurate representation of system behavior thus avoiding 

subjective interpretation of the modal content extracted from 

the behavior observed. 

 Finally, for the final part of the record, the approximate 

instantaneous frequency approaches the weighted average of 

that of IMFs 1 and 2. As noted in our previous discussion, 

the IMFs coincide with the natural frequency of the equiva-

lent fictitious oscillators. This analysis provides a complete 

picture of the observed phenomena that is not easily avail-

able from the individual IMFs. Moreover, these results 

clearly indicate the efficacy of the procedure in extracting 

both local and average modal information. By judicious ap-

plication of this technique, we can characterize complex os-

cillations in terms of critical, physically meaningful modes. 

CONCLUSIONS 

 A new method of temporal representation of nonlinear, 

non-stationary processes in power systems has been pre-

sented. The analytical framework permits consideration of 

complex oscillatory processes and is applicable to both non-

linear and non-stationary processes. 

 The proposed technique was used to identify and extract 

temporal dominant features from relevant system variables. 

It is shown that observed oscillations can have a relatively 

simple dynamic behavior which only depends on a relatively 

small number of temporal modes. Such a model can be used 

for many purposes including reduction of system complex-

ity, extraction of dominant features and wide-area monitor-

ing and control. While the procedure has been illustrated for 

simulated data, the present method is quite general and ex-

tends readily to measured data. The use of this technique in 

conjunction with measured data from phasor measurement 

units appears promising for both, model validation and real 

time wide area post-disturbance analysis of system dynam-

ics. 

 Techniques to improve the capacity of the proposed 

technique to extract rapid fluctuations from measured data as 

well as to characterize synchrony between multiple signals 

are under development. 

 Further work is also needed to improve the analytical 

approximations, especially for characterization of abrupt 

changes in system behavior. 
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