
42 The Open Electrical and Electronic Engineering Journal, 2007, 1, 42-50  

 
 1874-1290/07 2007 Bentham Science Publishers Ltd. 

An Efficient Approach to Extrapolate the Data Falling in the Zone not 
Covered by Measurements in a Near-Field Spherical Facility 

F. D’Agostino1, F. Ferrara1, C. Gennarelli*,1, R. Guerriero1, G. Riccio1, C. Savarese2 

1D.I.I.I.E - University of Salerno, via Ponte Don Melillo, 84084 Fisciano (Salerno), Italy 

2DIT - University “Parthenope”, via Medina 40, 80133 Naples, Italy 

Abstract: In this paper, a new and efficient technique is developed to estimate the near-field data falling in the blind zone 
of a near-field spherical facility, i.e., the region not covered by the measurements. The proposed approach is based on the 
nonredundant sampling representations of the electromagnetic field and makes use of the singular value decomposition 
method for extrapolating the samples external to the measurement region. This allows a significant reduction of the trun-
cation error occurring in the near field – far field transformation with spherical scanning. Numerical tests assessing the 
effectiveness of the technique are reported. 

INTRODUCTION 

The techniques for the reconstruction of antenna 
radiation patterns from near-field (NF) measurements have 
been widely investigated and used for applications ranging 
from cellular phone antennas to large phased arrays and 
complex multi-beam communication satellite antennas [1-3]. 
They have been proved to be efficient and attractive 
alternatives to conventional far-field (FF) and compact range 
measurements. Commonly, the measured NF data are 
transformed into FF patterns by using an expansion of the 
antenna field in terms of modes, namely, a complete set of 
solutions of the vector wave equation in the region outside 
the antenna. The type of modal expansion employed for 
representing the field is determined by the choice of the NF 
scanning surface. Thus, plane, cylindrical, or spherical 
waves are used when considering planar, cylindrical, and 
spherical surfaces, respectively. The orthogonality properties 
of the modes on such surfaces are then exploited to obtain 
the modal expansion coefficients, which allow the 
reconstruction of the antenna far field. The development and 
the spreading of NF–FF transformation techniques 
employing planar, cylindrical or spherical scanning systems 
are justified from the fact that each approach has its own 
particular advantages, depending on the antenna under test 
(AUT) and the measurement requirements. In particular, the 
NF–FF transformation technique with spherical scanning 
gives the full antenna pattern coverage, even though the data 
processing is considerably more complicated than that 
needed by transformations using planar and cylindrical NF 
facilities. 

 A considerable amount of work has been carried out in 
the past years for solving the problem of the FF re-
construction from NF data collected on a spherical scanning 
surface [4-11]. In this framework, a comprehensive book [8], 
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which deals with the theoretical as well as the practical 
aspects of the spherical NF scanning, was published in 1988 
by J.E. Hansen. 

In [9], the standard NF–FF transformation with spherical 
scanning has been properly modified by taking into account 
the spatial bandlimitation properties of the electromagnetic 
(EM) fields [12]. In particular, the choice of the highest 
spherical wave has been rigorously fixed by the 
bandlimitation properties and the number of data on the 
parallels has resulted to be decreasing towards the poles. In 
the same paper, the non-redundant sampling representations 
of the EM field [13] have been applied to reduce in a 
significant way the number of needed NF data when 
considering antennas having one or two predominant 
dimensions. These results have been obtained by assuming 
the AUT as enclosed in a prolate or oblate ellipsoid, re-
spectively, and by developing an optimal sampling in-
terpolation (OSI) formula, which allows the reconstruction 
of the data required by the above mentioned NF–FF 
transformation. In [10, 11], the ideal probe assumption has 
been removed by proposing an efficient probe compensated 
NF–FF transformation with spherical scanning tailored for 
elongated or quasi-planar antennas. 

Unfortunately, in most of spherical NF facilities, the 
presence of the AUT positioner prevents the possibility to 
carry out the measurements on the whole sphere. Therefore, 
there is a blind zone (shaded area in Fig. 1) wherein the NF 
data cannot be acquired. As a consequence, a truncation error 
affects the NF reconstruction in the zone close to the 
boundary of the measurement region. It is clear that the 
estimation of a proper number of samples falling in the blind 
zone becomes mandatory in order to improve the accuracy in 
such a zone and to obtain an accurate field reconstruction in 
the whole measurement region. 

The goal of this paper is just the extrapolation of these 
samples. The estimation of such data (otherwise equal to 
zero in the application of the OSI algorithm) gives rise to a 
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remarkable reduction of the truncation error in the periphery 
of the scanning region. Moreover, an acceptable 
reconstruction is attained in the whole blind zone or in a 
large part of it. The method is based on the aforementioned 
sampling representation and OSI expansion, and makes use 
of the singular value decomposition (SVD) algorithm [14] 
for determining the NF samples falling in the blind zone. For 
simplicity, the case of an ideal probe will be considered in 
the following, the extension to the case of a real probe being 
straightforward. 
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Fig. (1). Geometry of the problem. 

OPTIMAL SAMPLING REPRESENTATION OVER A 
SPHERE 

Let us consider the field radiated by an elongated AUT 
and observed on a spherical surface of radius d in the NF 
region. An effective source modelling is obtained by 
choosing the surface  (enclosing the AUT) coincident with 
the smallest prolate ellipsoid having major and minor semi-
axes equal to a and b, respectively (see Fig. 1). Since the 
sphere can be represented by meridians and parallels, in the 
following we deal with the field representation on an 
observation curve C described by an analytical 
parameterization ( )r r= . According to [13], it is 
convenient to consider the “reduced electric field”  

( ) ( ) ( )j
 eF E=     (1) 

where ( )  is a proper phase function. The error, occurring 
when approximating F  by a spatially bandlimited function, 
becomes negligible as the bandwidth exceeds a critical value 
W  [13]. Accordingly, such an error can be effectively 
controlled by choosing a bandwidth equal to 'W , 

'  being an enlargement bandwidth factor (slightly greater 
than unity for electrically large antennas). 

When the observation curve C is a meridian, by adopting 
' 2/W = , where  is the free-space wavenumber and '  

is the length of the ellipse  (obtained as intersection 
between the meridian plane and ), we get [13]: 
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In the above equations, E(.|.) denotes the elliptic integral 
of second kind, /f a=  is the eccentricity of C', 2f is its 
focal distance and 1 2 2( ) /u r r f= , 1 2 2( ) /v r r a= +  are the 
elliptic coordinates, 1,2r  being the distances from the 
observation point P to the foci of C' (see Fig. 2). Relation 
(3) is valid for  belonging to the range [0, /2]. The case 
when  belongs to [ /2, ] can be easily handled by 
determining the value '  corresponding to the point 
specified by the angle  and then putting '= .  
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Fig. (2). Ellipsoidal source modelling: prolate case. 

When C is a parallel, due to the symmetry, the phase 
function is constant and it is convenient to use the azimuthal 
angle  as parameter [13]. The corresponding bandwidth is 

( ) sin ( )W b= , where 1sin 2u= +  is the 
polar angle of the asymptote to the hyperbola through P (Fig. 
2). 

According to these results, a spherical component F 
(along  or ) of the electric field at the point P( , ) on the 
meridian fixed by  can be evaluated [9, 13] via the 
following OSI expansion: 

( ) ( ) ( )
0

0 1

, , , , , "

n q

n n

n n q

F F G N N

+

= +

=     (4) 

where F( n , )  are the intermediate samples, i.e., the 
intersections of the considered meridian with the parallels 
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fixed by the n  values, 2q is the number of retained 
samples, 0 Int( / )n =  is the index of the sample nearest 
on the left to P, Int(x) giving the integer part of x, and 

( ) ( ) ( )", , , "n N n N nG N N D=    (5) 

In the above equation, 
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are the Dirichlet and Tschebyscheff Sampling functions, 
respectively, ( )NT  being the Tschebyscheff polynomial of 
degree N, and 0  q= . Moreover, 

2 (2 " 1)n n n N= = +  ; " Int( ') 1N N= +     (8) 

' Int( ' ) 1N W= +  ; " 'N N N=     (9) 

wherein 1>  is an oversampling factor needed to control 
the truncation error. 

The intermediate samples ( , )nF  are given by: 
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where ,( , )n m nF  are the samples on the parallel fixed by 

n , 0 Int( / )nm = , and 2p is the number of retained 
samples. Moreover, 

,
"2 (2 1)nm n nm m M= = +/  (11) 

" 'Int( ) 1n nM M= +  ; *' Int ( ) 1
n

nM W= +   (12) 

( ) ( )( )
2/3
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and the other symbols have the same meaning as in (4). Note 
that the variation of the azimuthal excess bandwidth factor 

*  with  is required to ensure a bandlimitation error 
constant with respect to  [9].  

By properly matching the OSI expansions (4) and (10), it 
is so possible to reconstruct the tangential components of the 
electric field at any point on the scanning sphere and, in 
particular, at the points needed by the NF–FF transformation 
with spherical scanning [8] as modified in [9]. 

ESTIMATION OF THE SAMPLES FALLING IN THE 
BLIND ZONE 

In the last years, the nonredundant sampling represen-
tations of EM fields have been widely employed for 
improving the existing NF–FF transformation techniques [9, 
15-18] and for developing innovative ones [19, 20]. In all the  
 

cases, the NF data required to perform the standard NF–FF 
transformations are recovered from a reduced number of 
samples by using proper OSI formulas. In fact, the main 
feature of these representations is to require a nonredundant 
and always finite number of samples also on an unbounded 
surface. 

Obviously, the measurement region is inevitably trun-
cated in the cylindrical and planar scannings, so that a 
truncation error affects the NF data recovery in the zones 
close to the boundary of the scanning region. As a 
consequence, the reconstruction results to be accurate in a 
zone smaller than the measurement one and this reflects in a 
decrease of the angular region wherein an accurate FF 
reconstruction is attained. Therefore, in order to obtain an 
accurate NF reconstruction in the whole scanning region, it 
is necessary to estimate a proper number of samples external 
to it. Such a problem has been tackled and solved, for 
instance, in the case of planar scannings [21-23]. In 
particular, the comparison of the extrapolation procedure 
based on the OSI expansions with that in [21] employing the 
cardinal series ones has shown that the former works better 
[22]. 

Now, although the measurement region in the spherical 
scanning should not be truncated, in the greater part of 
spherical NF facilities, the presence of the AUT positioner 
does not allow to collect the measurements on the whole 
sphere. As a consequence, a truncation error affects the NF 
reconstruction in the blind zone and in the region close to it. 
Accordingly, to get an accurate reconstruction in the whole 
measurement region and to improve the accuracy in the blind 
zone, it is very important, as already stated, to estimate a 
proper number of samples falling in it. And thus, the 
following extrapolation problem arises: estimation of a 
(spatially) bandlimited function outside the measurement 
region from the knowledge of its internal samples collected 
at a rate greater than the Nyquist one. As well-known, this is 
an ill-posed problem widely studied in literature with 
reference to the case of bandlimited signals known only in a 
finite time interval (see [22] for a selected bibliography).  

Let us now focus on the estimation of the data lying in 
the blind zone ( b> ). The knowledge of the NF samples 
on the K parallels at angles ( )k  uniformly distributed in 

1] , ( )]n b  is assumed, n  being the index of the last 
regular parallel inside the scanning region (see Fig. 1). On 
each of these “extra parallels”, the data are assumed known 
at the points specified by minm m= , where min  is 
the spacing between the samples to be estimated on the first 
parallel external to the scanning region. When applying (4) 
on each of these points, which are aligned, only the samples 
falling in the blind zone are unknown, whereas the others 
can be easily determined via the OSI expansion (10). In 
order to exploit the information available on the other side of 
the meridian  beyond  the  south  pole,  it  is  convenient  that  

k  and n  can assume values greater  than .  Accordingly,  
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when 1] , ( )]k n b  and 0 2 bq n n n> +  
( "bn N n=  being the number of parallels lying in the 
blind zone), it results: 
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Whereas, when 1[ 2 ( ), 2 [k b n  and 

0q n n> , we get: 
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 k = K + 1,..., 2K             (16) 

The overdetermined linear equation system (15) and (16) can 
be rewritten in matrix form as 

A x b=                                                                  (17) 

where x is the sequence of the unknown samples ( , )n mF , 
with 1,..., 2 bn n n n= + + , b is the sequence of the known 
terms (those on the right hand side in (15) and (16)), and A  
is the 2 2 bK n  matrix, whose elements are given by the 
weight functions in the considered OSI expansion: 

( ), , , "kn k nA G N N=                                             (18) 

The overdetermined system (17) is ill-conditioned due to 
the presence of the bandlimitation and measurement errors, 
and the use of the SVD technique allows one to find the best 
approximation to the solution in the least squares sense. In 
particular, as already done in [22] with reference to the 
plane-polar scanning case, it is convenient to employ the 
truncated version of SVD algorithm in order to improve the 
accuracy of the solution [14, 24]. 

When the number of samples falling in the blind zone 
grows up, there is no gain to employ the data beyond the 
south pole. Moreover, it is convenient to reduce the number 
of unknowns, cutting away those corresponding to the 
farther sampling points, since only a small number of outside 
samples can be reliably recovered [22]. Accordingly, in such 
a case, k  and n  no longer assume values greater than , 

and the overdetermined linear equation system to be solved 
becomes: 
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 1,...,k K=             (19) 

where it is assumed that bq n  and q q . 

NF–FF TRANSFORMATION WITH SPHERICAL 
SCANNING 

In the following, the key steps of the classical NF–FF 
transformation with spherical scanning [8] as modified in [9] 
are reported for reader’s convenience. 

As well known, the tangential electric field in the FF 
region may be written by means of the truncated spherical 
wave expansion: 

( )
je

, ,
R
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E R

R
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1
1 21 2

1
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n n k
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A f A f
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+
 

                                                                            (20)
 

wherein the spherical coordinate system ( , , )R  has been 
adopted for denoting the FF observation point. 

In the classical approach, the choice of the highest 
spherical wave is usually determined according to the 
following rule-of-thumb: 

( )max Int 10N a= +                                                (21) 

where a is the radius of the smallest sphere enclosing the 
AUT. In the here described approach, the highest spherical 
harmonic is rigorously fixed by the aforementioned 
bandlimitation properties of the radiated EM fields [12]. 
Accordingly: 

( )max Int ' 1N a= +                                               (22) 

The vectorial functions 
1,2

( )
nk

f  are given by: 
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( ) ( )
d jˆ ˆcos cos

d sin

k k

n n

k
P P+                       (24) 

where ( )cos
k

nP  are the normalized associated Legendre 
functions as defined by Belousov in [25]. The expansion 
coefficients in (20) can be evaluated from the knowledge of 
the tangential electric field on the measurement sphere: 
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A
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in which ( )  indicates the inner product, (*) denotes the 
complex conjugate, and 

( ) ( )(2)
1n ng x h x=                                                     (26) 

( ) ( )(2)
2

1 d

dn ng x x h x
x x

=                                        (27) 

( )(2)
nh x  being the spherical Hankel function of second kind 

and order n.  

As shown in [9], the integration over  in relation (25) 
can be efficiently performed by expanding the tangential 
electric field components in Fourier series with respect to , 
namely, 

( ) ( ) j
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m M
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where the number of terms is rigorously determined by the 
azimuthal bandwidth of the AUT, i.e., 

*Int( sin ) 1M a= + . 

In a quite similar way, the remaining integration over  
can be efficiently carried out by expanding the components 
of ( )k

G  and ( )
1,2nk

f  in Fourier series. Accordingly, we 
get: 
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It is worthy to note that, in order to evaluate the Fourier 
series coefficients of the components of ( )

k
G  and 

1,2 ( )
nk

f , it is necessary to extend these components from 
[0, ] on the range [– , ]. This can be easily done by taking 
into account that: 

i) the components of 1,2 ( )
nk

f  are even when k is odd, 
and vice versa; 

ii) the components of ( )
k

G  have the same parity as 
those of 1,2 ( )

nk
f . 

To take advantage of the numerical efficiency of the 
standard FFT algorithm, the number of NF parallels to be 
considered in the NF–FF transformation and the number of 
samples on them must be the first power of two greater or 
equal to maxN  and 2M , respectively. 

From a computational viewpoint, it is convenient to 
invert the summation order in (20), so that it can be rewritten 
in the form: 
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                                                                                           (30) 

which allows an efficient evaluation of the antenna far field 
at the considered elevation angle  by performing the 
summation via FFT.  

It is worthy to note that, for computer time saving, it is 
convenient to apply the described FF reconstruction process 
to evaluate only the strictly needed FF samples. This allows 
one to recover accurately the FF components everywhere, by 
applying an OSI expansion properly modified to deal with an 
even number of samples on the FF parallels [9]. 

NUMERICAL RESULTS 

Two sets of simulations are reported in the following. 
The former is relevant to a case occurring when the number 
of parallels falling in the blind region allows one to take 
advantage of the information available on the other side of 
the meridian. Whereas, the latter refers to a case when such a 
number is increased so much that it is no more possible to 
estimate all the unknown samples and, as a consequence, 
there is no gain to employ the data beyond the south pole. 

In the first case, the numerical tests refer to a uniform 
planar array of 0.7  spaced elementary Huygens sources 
polarized along the z axis and lying in an elliptical zone on 
the plane y = 0, with major and minor semi-axes equal to 9  
and 4 , respectively (  being the wavelength). The radius d 
of the scanning sphere is 20 . It is assumed that, due to the 
presence of the AUT positioner, the scanning region is 
limited to the angle 165b = ° . According to the sampling 
representation, the last regular parallel inside the scanning 
region is at 162.8= ° , the number bn  of parallels lying in 
the blind zone is 4, and 6K =  extra parallels have been 
considered, thus the computational effort to perform the 
SVD is negligible. Moreover, 19q =  has been assumed in 
(15) and (16), whereas p = 13 has been adopted in (10) for 
obtaining the involved known samples. Note that, as already 
stated, the  values specifying the extra parallels have been 
chosen uniformly spaced in  and belong to the  range 
]159.4 , 165° ° ], (159.4° corresponds to the penultimate 
“regular parallel”). Fig. 3 shows the amplitude of the NF  
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Fig. (3). Array 1. Amplitude of the NF -component at  = 90°. 
Solid line: exact. Crosses: reconstructed without estimated samples. 
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Fig. (4). Array 1. Amplitude of the NF -component at  = 90°. 
Solid line: exact. Crosses: reconstructed with estimated samples. 

 
-component (the most significant one) on the meridian 

at  = 90°. It has been reconstructed without using the 
extrapolation process. As can be seen in Fig. 4, by using the 
here proposed estimation procedure, the reconstruction is 
very accurate not only in the whole measurement region, but 
also in an extended zone outside it, which practically covers 
the whole blind region. The same comments hold also for the 
following Figs. 5 and 6, which refer to the meridian at 
 = 45°. To assess the effectiveness of the approach in a 

more quantitative way, the maximum and mean-square 
reconstruction errors have been evaluated by comparing (in 
the measurement zone) the exact values and those 
reconstructed with and without the estimated outside 
samples. Fig. 7 shows such errors, normalized to the 
maximum field value on the sphere, versus the p = q values 
used in the final interpolation step. As can be seen, the errors 
evaluated by taking into account the estimated samples 

decrease until very low levels are reached, whereas those ob-
tained without considering them saturate quickly. The 
proposed technique has been applied to recover the data 
needed for the classical NF–FF transformation with spherical 
scanning as modified in [9]. Figs. 8 and 9 report the AUT 
pattern in the E-plane, reconstructed by means of the NF–FF 
transformation without and with the estimated outside 
samples, respectively. As can be seen, the FF reconstruction 
obtained by considering the estimated samples is accurate in 
a remarkably wider angular range. It is useful to note that the 
number of the acquired NF data is 4 385 (the extra data are 
212), less than that (32 514) needed by the NF–FF 
transformation [8]. 

The latter set of simulations refers to an electrically 
larger antenna and is representative of the case when it is not 
convenient to employ the data beyond the south pole. The 
radius d of the scanning sphere is now 35 , and the AUT is 
a uniform planar array of 0.6  spaced elementary Huygens 
sources polarized along the z axis and lying in an elliptical 
zone on the plane y = 0, with major and minor semi-axes 
equal to 20  and 6 . In such a case, 164b = ° , 7bn = , 
and K = 9 extra parallels have been considered. Moreover, 

bq n=  and q =19  have been assumed in (19), whereas 
p = 13 has been adopted in (10) for obtaining the involved 
known samples. Figs. 10 and 11 show the amplitude of the 
NF -component on the meridian at  = 90°, reconstructed 
without and with the estimation of the samples falling in the 
blind region. As can be seen, the reconstruction obtained by 
taking into account the estimated samples is very accurate 
also in a portion of the zone not covered by the 
measurements. The effectiveness of the approach is also 
confirmed by the values of the maximum and mean-square 
reconstruction errors reported in Fig. 12. As in the previous 
simulation, they have been obtained by comparing (in the 
measurement zone) the exact values and those reconstructed 
with and without the estimated outside samples. As 
expected, the errors evaluated by taking into account the 
estimated samples decrease until very low levels are reached. 
The algorithm stability has been investigated by corrupting 
the exact samples with random errors, which simulate a 
background noise (bounded to a in amplitude and with 
arbitrary phase) and an uncertainty on the data of ± ar in 
amplitude and ±  in phase. As shown in Fig. 13, the 
technique gives satisfactory results also in presence of errors. 
Note that, in such a case, we have adopted q = 13 and p = 9 
in the extrapolation procedure to reduce the propagation of 
errors from high to low field regions. Figs. 14 and 15 report 
the FF pattern in the E-plane, recovered without and with the 
estimation of the samples falling in the blind region. In order 
to improve the readability of the results, each figure has been 
split into two parts. In the former,  ranges from 90° to 
180°, whereas the latter is relevant to the -range [180°, 
270°]. Also in such a case, the FF reconstruction obtained by 
taking into account the estimated samples is accurate in a 
significantly wider angular range. 
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Fig. (5). Array 1. Amplitude of the NF -component at  = 45°. 
Solid line: exact. Crosses: reconstructed without estimated samples. 
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Fig. (6). Array 1. Amplitude of the NF -component at  = 45°. 
Solid line: exact. Crosses: reconstructed with estimated samples. 
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Fig. (7). Array 1. Reconstruction errors of the NF -component. 
Dashed line: without estimated samples. Solid line: with estimated 
samples. 
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Fig. (8). Array 1. FF pattern in the E-plane. Solid line: exact. Dots: 
reconstructed from NF data without estimated samples. 
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Fig. (9). Array 1. FF pattern in the E-plane. Solid line: exact. Dots: 
reconstructed from NF data with estimated samples. 
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Fig. (10). Array 2. Amplitude of the NF -component at  = 90°. 
Solid line: exact. Crosses: reconstructed without estimated samples. 
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Fig. (11). Array 2. Amplitude of the NF -component at  = 90°. 
Solid line: exact. Crosses: reconstructed with estimated samples. 
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Fig. (12). Array 2. Reconstruction errors of the NF -component. 
Dashed line: without estimated samples. Solid line: with estimated 
samples. 
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Fig. (13). Array 2. Amplitude of the NF -component at  = 90°. 
Solid line: exact. Crosses: reconstructed from error affected data 
with estimated samples. 
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Fig. (14a). Array 2. FF pattern in the E-plane (  ranging from 90° 
to 180°). Solid line: exact. Dots: reconstructed from NF data 
without estimated samples. 
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Fig. (14b). Array 2. FF pattern in the E-plane (  ranging from 180° 
to 270°). Solid line: exact. Dots: reconstructed from NF data 
without estimated samples. 
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Fig. (15a). Array 2. FF pattern in the E-plane (  ranging from 90° 
to 180°). Solid line: exact. Dots: reconstructed from NF data with 
estimated samples. 
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Fig. (15b). Array 2. FF pattern in the E-plane (  ranging from 180° 
to 270°). Solid line: exact. Dots: reconstructed from NF data with 
estimated samples. 
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