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Abstract: Parameter optimization of water turbine regulating system (WTRS) is decisive in providing support for the power quality
and stability analysis of power system. In this paper, an improved fuzzy particle swarm optimization (IFPSO) algorithm is proposed
and used to solve the optimization problem for WTRS under frequency and load disturbances conditions. The novel algorithm which
is based on the standard particle swarm optimization (PSO) algorithm can speed up the convergence speed and improve convergence
precision with combination of the fuzzy control thought and the crossover thought in genetic algorithm (GA). The fuzzy control is
employed to get better dynamics of balance between global and local search capabilities, and the crossover operator is introduced to
enhance the diversity  of  particles.  Two different  types of  WTRS systems are  built  and analyzed in  the simulation experiments.
Furthermore, the sum of regulating time and another number that is the integral of sum for absolute value of system error and the
squared governor output signal is considered as the fitness function of this algorithm. The simulation experiments for parameter
optimization problem of WTRS system are carried out to confirm the validity and superiority of the proposed IFPSO, as compared to
standard  PSO,  Ziegler  Nichols  (ZN)  algorithm  and  fuzzy  PID  algorithm  in  terms  of  parameter  optimization  accuracy  and
convergence speed. The simulation results reveal that IFPSO significantly improves the dynamic performance of system under all of
the running conditions.

Keywords: Crossover thought, Dynamic performance, Fuzzy control thought, Improved fuzzy particle swarm optimization (IFPSO),
Water turbine regulating system.

1. INTRODUCTION

Hydropower  is  a  kind  of  renewable  and  pollution-free  clean  energy  with  the  advantages  of  low  resources
consumption  and  widespread  distribution;  besides,  it  does  much  less  harm to  the  environment  in  comparison  with
thermal power. The electrical safety and quality are primary considerations for hydropower station operation, which
strongly depend on the stability of water turbine regulating system (WTRS) [1, 2]. What's more, governor parameters
play a crucial role in the performance indicators of WTRS system. As the dominant regulation rule of water turbine
governor [3, 4], PID regulation gets widely applied in engineering practice due to its practicability and robustness, and
the  most  important  problem  with  respect  to  this  regulate  law  is  how  to  optimally  tune  the  parameters  to  obtain
satisfactory control performance. Over the past decades, in order to improve the tuning performance, a great variety of
optimization algorithms have been put forward and successfully applied to the adjustment of PID parameters, which can
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be divided into two main categories: traditional parameter setting methods and intelligent algorithms.

In [5], the principle of root locus was applied to determine the optimal value of parameters in a soft feedback type of
governor according to the requirements of pole assignment. In literature [6], the author introduced a kind of control
parameter optimization method based on orthogonal test, and this method was successfully implemented in a synthesis
test instrument and integrated into a microcomputer-based hydro-turbine governor. In [7], taking the stability of system
as the primary purpose, a strategy was proposed to set turbine governor parameters, which determined KP in accordance
with the given frequency to guarantee the stability of system and curb excessive amount of overshoot produced by
frequency response; besides, KI and KD were determined through the disturbances rejection optimization model. And
then, the optimal control for two modes can be achieved to the maximum extent.

Genetic algorithm was used to optimize parameters of turbine governor [8], and for all cases, the experiment results
took on a good dynamic performance of  system. In literature [9],  differential  evolution algorithm was used for  the
hydraulic servo control system PID parameters tuning, whose simulation results showed that it was an effective strategy
to make the performance of system good. Proposed in [10], an improved algorithm which was based on gravitational
search algorithm was combined with the particles’ memory characteristic and the way of information sharing in PSO
algorithm to optimize the PID parameters for an excitation control system.

Compared with intelligent algorithms, traditional PID parameters setting methods are prone to oscillation and the
large amount of overshoot when deal with some complex systems. What's worth mentioning is that the superiority of
particle swarm optimization algorithm is prominent in numerous intelligent algorithms. It was proposed as a kind of
swarm intelligence optimization algorithm by Kennedy and Eberhart in 1995, which was inspired by social behavior of
animals  [11].  Compared  with  some  other  optimization  algorithms,  PSO  can  be  implemented  through  simple
programming, and especially, it often can find the better global optimal value [12 - 15]. Over the past few decades, PSO
algorithm has been successfully applied in many practical engineering problems and got great development.

PSO algorithm converges rapidly in the initial stage of the search, but always slows down considerably in the late
stage  and suffers  the  problem of  being trapped in  the  local  optima [16].  In  order  to  overcome these  shortcomings,
numerous  variants  have  been  introduced  and  reported.  The  local  mean  value  concept  was  introduced  into  PSO  to
increase the particles diversity and avoid algorithm trapping into local optima [17]. Xia et al. [18] put forward three
kinds of strategies to improve the efficiency of algorithm: tabu  detecting,  shrinking and local learning strategies. Wei
et  al.  [19] introduced the choice thought  in genetic  algorithm into PSO, in which particles  with lower fitness were
replaced by those with higher fitness so as to accelerate the algorithm convergence speed. In [20], chaos optimization
movement and crossover thought from the difference evolution algorithm were introduced into PSO to respectively
enhance local exploitation ability and the diversity of particles.

It must be pointed out that the inertia weight, playing an important role in velocity update of particles during the
process  of  iteration,  dominates  the  balance  between the  exploration  capability  in  global  scope and the  exploitation
capability in the local scope for particles. The PSO searching process is a complex and nonlinear process, and in the
standard PSO, the linear decreasing inertia weight strategy only can obtain a linear transition of search capability from
global to local search but does not really reflect the actual searching process of finding the optimal value.

In  order  to  improve  the  performance  of  standard  PSO,  the  inertia  weight  should  be  dynamically,  nonlinearly
changed to  get  better  dynamics  of  balance  between global  and  local  search  capabilities,  so  a  fuzzy  particle  swarm
optimization  (FPSO)  algorithm  is  proposed  in  this  paper,  which  combines  particle’s  normalized  current  best
performance  evaluation  (NCBPE)  with  the  linearly  decreased  inertia  weight  in  standard  PSO to  modify  the  inertia
weight in FPSO with fuzzy rules [21, 22], so as to avoid the disadvantage that inertia weight is only affected by the
number of iteration. Furthermore, as for the problem that particles are easy to being trapped in local optima, based on
the FPSO, the crossover thought in genetic algorithm [23] is also introduced to enhance the diversity of particles, whose
operation is to imitate genetic crossover between any two adjacent particles. On the basis of these facts, an improved
fuzzy particle swarm optimization (IFPSO) algorithm is proposed. The sum of adjusting time with another number
which represents the integral for sum of system error absolute value and the squared governor output is taken as the
fitness function of the proposed algorithm.

And then, the proposed IFPSO, as well as some other algorithms including Ziegler Nichols (ZN) algorithm, fuzzy
PID algorithm and standard PSO, has been examined and tested to optimal tuning of PID parameters for two different
types of WTRS systems, which are the typical WTRS system and a kind of WTRS system with respect to the water
flow inertia effect. The performances of these algorithms have been compared under frequency disturbances and load
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disturbances, and the simulation results reveal that, under all of the running conditions, IFPSO can find the solution
with the highest quality which results in the hydroelectric generating set control system achieving the stable state with
small overshoot and shorter settling time.

The  rest  of  this  paper  is  organized  as  follows.  The  mathematical  models  of  two  types  of  WTRS  system  are
introduced in Section 2. Section 3 describes the proposed IFPSO algorithm with fuzzy and crossover thought and the
proposed fitness function in details. The experiments and results for the WTRS systems are presented in Section 4 and
the conclusions are given in Section 5.

2. MATHEMATICAL MODELS OF WATER TURBINE REGULATING SYSTEM

WTRS including control system and controlled objects is a non-minimum phase system with complex structure and
strong nonlinearity, which is also an integrated control system combining flow, electrical and mechanical properties etc.
The control system is mainly made up of speed governor and electro-hydraulic servo system, and the controlled objects
consisted of turbine units and generator [1]. The structure of a typical WTRS is illustrated in Fig. (1).

Fig. (1). Mathematical model of a typical WTRS system.

2.1. Model of Turbine Governor

As shown in Fig. (1), c and yn represent the unit speed control instructions and the output signal of PID controller,
respectively; x  is the rotation speed feedback control signal;  e  is the error signal generated by unit speed input and
output  command  signal;  y  is  the  guide  vane  opening  signal.  Hydraulic  turbine  governor  is  composed  of  electro-
hydraulic servo system and the controller which adopts parallel PID regulation law.

The transfer function of PID controller is described as follows [1, 24].

(1)

where  KP  is  the  proportion  adjustment  coefficient,  KI  is  the  integral  adjustment  coefficient  (s  -  1),  KD  is  the
differential  adjustment factor (s),  s  is  the Laplace operator and Tn  represents the differential  time constant,  usually,
Tn=0.1*KD.

As the actuator of water turbine, servomechanism can turn the controller’s output into hydraulic signal. And then
this signal is enhanced gradually through the guiding device, auxiliary servomotor and main reaction servomotor for
producing enough power to drive the turbine guide vane, so as to adjust the speed and power of hydro-turbine generator
unit sets (HGU). The transfer function of the electro-hydraulic servo system is expressed as [1, 24]:

(2)

where Ty is the relay device related time constant (s).

2.2. Model of Penstock System

The water flow and the aqueduct wall of water diversion system are assumed to be rigid if the fluctuation is small,
the transfer function is [1, 24]:
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(3)

where Tw  is  inertial  time constant for water (s),  qt(s)  and ht(s)  are the Laplace transform of water flow qt(t)  and
effective water head ht(t), respectively.

2.3. Model of Hydraulic Turbine System

WTRS system is  a  complicated  system with  serious  nonlinearity,  it's  necessary  to  simplify  it  and  ignore  some
secondary  factors  when  we  build  the  mathematical  model.  And  it  seems  impossible  that  there  exists  a  simulated
experiment  which  can  completely  simulate  the  actual  working  process.  But  only  when  the  system  suffers  small
fluctuation of dynamic process (i.e. the disturbance and the parameter variation are small in the system), the system can
be thought as a linear one.

In this case, the mathematical model of hydraulic turbine can be expressed as [1, 24]:

(4)

where ey, eh, ex, eqy, eqh, and eqx are the turbine transfer coefficients of controlled objects, mt is the generated water
torque.

2.4. Model of Generator System

In this part, the simplified first-order generator model is adopted and the transfer function is deduced as:

(5)

(6)

where mg(s) is the Laplace transform of load disturbance torque mg(t), Ta is the generator inertial time constant (s), eg

is the generator load adjustment coefficient, en is the controlled system self-regulation coefficient.

When the guide vane opening changes quickly, e.g. it decreases rapidly, due to the effect of inertia of water, flow
velocity  increases  with  the  decreasing  of  guide  vane  opening,  which  will  make  the  turbine  torque  increase.  In  the
consideration of this phenomenon, eqx, the transmission coefficient of discharge to speed, is introduced into the typical
model to form the WTRS mathematical model with respect to water flow inertia effect which is shown in Fig. (2).

Fig. (2). Mathematical model of WTRS with respect to water flow inertia effect.

3. THE IMPROVED FUZZY PARTICLE SWARM OPTIMIZATION ALGORITHM

3.1. The Standard Particle Swarm Optimization Algorithm

In PSO algorithm, the population is initialized to a group of random particles and each particle has its own speed
and position which are represented as vi
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m, where m is the number of particles; d = 1, 2, ..., D, D is the dimensions of individual particle. The search process in a
D-dimensional space for a swarm composed of m particles is formed. During this process, the quality of each particle is
evaluated by the fitness function; the position of particle is affected primarily by two factors. One is pbest, the particle’s
personal best position that is represented as pi

t = (pi1
t, pi2

t, …, pid
t), and the other is gbest, global historical best position,

which can be represented as pg
t = (pg1

t, pg2
t,…, pgd

t). Particle’s velocity and position updating formulas are shown below.

(7)

(8)

(9)

where t denotes the current iteration; wt is the inertia weight, normally, wmax = 0.9, wmin = 0.4; tmax is the number of
maximum generation; c1  and c2  are two constants,  which are the learning weights following individual optimal and
global optimal, respectively; r1

t and r2
t are two random numbers drawn from the interval (0, 1).

3.2. Fuzzy Particle Swarm Optimization (FPSO) Algorithm

In the standard PSO, the inertia weight decreases linearly during the process of search. However,  by this linear
decreasing inertia weight strategy, it is hard, if not impossible, to accurately reflect the optimization process for the
following two deficiencies.

At the beginning of iterations, a larger value of weight coefficient contributes to strengthen global exploringi.
ability of particles, but while the particles are very close to the global optimal, the larger speed may lead them to
deviating from the global optimal and straying from the correct direction, thus reducing the search accuracy.
In the late  iterations,  all  particles  being gathered nearby the optimal  value,  it’s  a  smaller  inertial  factor  thatii.
makes particles to do fine search around the optimal scope. But at this moment, the smaller speed caused by the
smaller inertia weight may make solutions trend to be identity and trap in local optimal.

Therefore, it's clear that there exists the deficiency about the choice of the inertia weight based on the number of
iterations in standard PSO. Therefore, in order to improve the performance, the inertia weight should be dynamically,
nonlinearly changed to get better dynamics of balance between global and local search capabilities [21]. In this paper,
the fuzzy thought is introduced into PSO algorithm to solve the problem of selecting inertia weight in different stages of
searching process.

In FPSO algorithm, the inertia weight is influenced by two factors, one is the current linearly decreasing inertia
weight,  and  the  other  is  the  normalized  current  best  performance  evaluation  (NCBPE)  [21].  In  the  minimization
optimization problem, NCBPE can be calculated as Eq. (10).

(10)

where CBPE represents the current best performance evaluation of particles, CBPEmax is the non-optimal CBPE at
the beginning of interations, CBPEmin is the estimated minimum at the end of interations.

Combining NCBPE and linearly decreasing inertia weight wt to modify the weight coefficient wc
t in FPSO. wc

t can
nonlinearly, dynamically change to keep a tradeoff between the particle global exploring ability and local search ability.
That is to say, NCBPE and current linearly decreasing inertia weight wt are selected as the inputs of the fuzzy control
and the revised inertia weight wc

t is the output. In the Table 2, the inputs and output are defined to have the same fuzzy
sets: small (S), medium (M) and large (L). The membership functions and the critical parameters of three variables are

1
1 1

2 2

( )

( )

t t t t t t
id id id id

t t t
gd id

v w v c r p x
c r p x

� � � � � � �

� � � �
     

1 1t t t
id id idx x v� �� �  

    

max max min max( ) /tw w t w w t� � �  

    

min

max min

CBPE CBPE
NCBPE

CBPE CBPE





 



106   The Open Electrical & Electronic Engineering Journal, 2016, Volume 10 Gonggui et al.

list in the Table 1.

Table 1. The border of membership functions.

zmf trimf smf
NCBPE (0,0.06) (0.05,0.45/2,0.4) (0.3,1)

wt (0.4,0.6) (0.5,1.3/2,0.8) (0.7,0.9)

wc
t (0,0.3) (0.2,0.5,0.8) (0.7,1)

Several rules need to be considered in the process of rule’s setting, which are as followings and as Table 2:

During  the  initial  stage  of  iterations,  at  the  moment  that  the  value  of  wt  is  larger,  if  NCBPE  is  also  large,i.
particles  are  deemed  to  be  far  away  from  the  optimal  value,  and  then  particles  need  to  speed  up  and  do  a
comprehensive exploration in the global scope; on the contrary, if NCBPE is medium at this moment, it means
that the distance between the particles and optimal value is medium, wc

t should be set to an appropriate value;
and if NCBPE is small, it represents the particles are close to the optimal value and wc

t should be given a smaller
value to avoid the speed too fast at the same time.
During the middle stage of iterations, the value of wt is medium, and if NCBPE is large or medium at this point,ii.
wc

t should be taken to a medium value; contrarily, if NCBPE is small, it means the particles are very close to the
optimal value and wc

t should be set to a small value, which contributes to increase the possible of fine searching
near the optimal solutions.
During the late stage of iterations, wt is given a small value. At this moment, if NCBPE is large or medium, wc

tiii.
should be taken to a large value to speed up for the sake of finding the optimal value; rather, if NCBPE value is
small, wc

t should be set to a medium value.

Table 2. The fuzzy control rules.

 
S
 

 
M
 

 
L
 

S M L L
M S M M
L S M L

3.3. Improved Fuzzy Particle Swarm Optimization (IFPSO) Algorithm

PSO can fast convergence in the early iterations, however convergence speed gradually slows down along with
iteration process and the loss of diversity leads particles to tend to be identity; hence, they are easy to fall into local
optimal  at  late  iterations.  In  order  to  maintain  the  diversity  of  population  and  enhance  the  global  search  ability  of
particles,  in  this  article,  the  crossover  thought  in  genetic  algorithm  (GA)  is  introduced  into  FPSO,  increasing  the
diversity of swarm to let it step out the local optimal through the genetic exchange between adjacent particles.

Combining  the  fuzzy  thought  and  crossover  thought,  an  improved  fuzzy  particle  swarm  optimization  (IFPSO)
algorithm is proposed, whose update formulas of particle's velocity and position are as below.

(11)
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(13)

where,

where alfa and rand(n) are two random numbers within the interval (0, 1). Pc is the crossover probability, which will
affect the convergence efficiency. A larger one will increase the possibility that particles generate new individuals,
which renders convergence process more efficient. However, if the crossover probability is too large, the optimal value
that has been found may be lost, generally Pc =0.8. vmax is the boundary value of speed. xmax and xmin are upper limit and
lower limit, respectively.

By the means of above two strategies added in the standard PSO, the proposed IFPSO can be summarized as the
following.

Randomly initialize the particles position and velocity and set the various parameters of population.1.
Calculate the fitness, and update pbest and gbest.2.
Evaluate the value of NCBPE according to Eq. (10), and set the fuzzy control parameters and fuzzy rules.3.
Update the particle velocity and position according to Eqs. (11) and (12).4.
Judge whether the velocity and position are beyond the boundary. The velocity and position are limited within5.
the range, if they are against the boundary.
Calculate particle fitness again, if the current particle fitness is better than pbest, then replace pbest with current6.
fitness; If the current global optimal value is superior to global optimal, then replace gbest with the current global
optimal.
If iterations have reached to the maximum, stop searching and output the global optimal, otherwise, return to7.
step 3.

3.4. IFPSO Algorithm Fitness Function

Fitness is the particle quality evaluation standard, with which we can seek to find the optimized PID values. The
optimized  controller  should  make  the  system  obtaining  good  performance,  such  as  faster  response  speed,  smaller
overshoot and lower settling time, in the process of dynamic response and make the steady-state error converging to
zero finally. The sum of adjusting time with another number which is the integral of sum of system error absolute value
and the squared governor output is taken as the fitness function of the proposed algorithm. Moreover, once the system
appears overshoot, the overshoot part will be taken as a part of fitness function.

(14)
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(15)

where yn (t) is the output of PID controller; tr is regulating time; p1, p2, p3 and p4 are the weight coefficients, and p4 is
much larger than p1; Ts represents the simulation time.

4. THE SIMULATION EXPERIMENTS AND RESULTS

Regarding the hydraulic turbine regulating system, the main goals of governor parameters setting are to ensure unit
frequency can fast track the given frequency value accurately and eliminate the effects on the frequency of unit caused
by load disturbances. Therefore, in the process of parameters optimization, it's two kinds of transition processes that
need to be considered. One is the transition process caused by the excitation of given frequency, generally, which is
produced  by  a  frequency  step  signal  in  the  simulation  test.  And  the  other  is  caused  by  load  disturbance  which  is
generated by a load disturbance step signal.

4.1. Experimental Data

In this paper, the two WTRS systems, as illustrated in Figs. (1 and 2), are tested in simulation experiments, which
are set as case 1 and case 2, respectively. And the required data of WTRS systems are listed in Table 3. The parameters
setting of the proposed algorithm is shown in Table 4. In Table 5, the values of CBPEmax and CBPEmin for two cases are
listed.

Table 3. Parameters of two different types of WTRS systems.

Case No. Parameters of water turbine regulating system
Ty(s) Ta(s) Tw(s) ey eh eqx eqy eqh eg ex en

1 0.3 5.72 0.83 1.40 0.35 - 1.23 0.13 - - 0.45
2 0.3 5.72 0.83 0.7212 1.5505 -0.0322 0.8730 0.5708 0 -0.8771 -

Table 4. Parameters setting for IFPSO.

Parameters Values Parameters Values
m 30 wmin 0.4

tmax 100 Pc 0.8
c1 2 p1 0.999
c2 2 p2 0.001

wmax 0.9 p3 2
xmax 10 p4 100
xmin 0

Table 5. Values of CBPEmax and CBPEmin for two cases.

Case 1 Case 2
CBPEmax CBPEmin CBPEmax CBPEmin

5% frequency-disturbance 18.0 6.0 67.0 20.0
10% frequency-disturbance 26.0 10.0 100.0 35.0

5% load-disturbance 6.0 4.0 45.0 20.0
10% load-disturbance 10.0 5.0 60.0 30.0

4.2. Comparison of Optimization Methods Under No-load Frequency Disturbance Condition

In order to verify the performance of the proposed algorithm when it is applied to optimize the turbine governor
parameters, the simulation experiments for hydro-generator units under 5% and 10% frequency disturbance are carried
out.  The  step  disturbances  of  given  speed  with  corresponding  amplitudes  are  employed  to  excite  the  systems.  The
average best fitness of IFPSO and PSO are compared in Figs. (3, 5, 7, 9), both of which are repeated for 50 trials for
overcoming the randomness of the heuristic algorithms. In addition, the traces of turbine speed deviation obtained by
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IFPSO, standard PSO, ZN algorithm and fuzzy PID algorithm are compared in Figs. (4, 6, 8, 10), respectively. Some
results considering best fitness (Best F), the standard deviation of Best F (STDEV), overshoot (Overshoot) and settling
time (ts) are listed in Tables 6 and 7.

Fig. (3). Average best fitness under 5% frequency disturbance (case 1).

Fig. (4). Speed deviation under 5% frequency disturbance (case 1).

Fig. (5). Average best fitness under 10% frequency disturbance (case 1).
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Fig. (6). Speed deviation under 10% frequency disturbance (case 1).

Fig. (7). Average best fitness under 5% frequency disturbance (case 2).

Fig. (8). Speed deviation under 5% frequency disturbance (case 2).
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Fig. (9). Average best fitness under 10% frequency disturbance (case 2).

Fig. (10). Speed deviation under 10% frequency disturbance (case 2).

Table 6. Simulation results of case 1 under frequency disturbance.

Conditions 5% frequency disturbance 10% frequency disturbance
Algorithms ZN Fuzzy PID PSO IFPSO ZN Fuzzy PID PSO IFPSO

Best F - - 6.7981 6.5089 - - 11.0601 10.7856
STDEV - - 0.9613 0.0048 - - 0.3215 0.0031

Overshoot 0.5824 0.4314 0.0302 0 0.4461 0.1206 0.0500 0.0061
ts(s) 5.6300 6.1400 4.0700 3.7200 6.5800 4.1300 4.0400 2.0300
KP 8.7993 - 5.6364 5.1669 7.5444 - 5.8973 5.0805

KD(s) 2.6006 - 1.0825 1.1979 2.3503 - 1.3968 1.1833

KI(s
-1) 7.4432 - 0.5439 0.3901 6.0544 - 0.5555 0.4568

From the profile  of  average best  fitness,  it  is  obvious that,compared with  standard PSO, IFPSO acquires  better
convergence results based on the proposed fitness function with faster convergence speed. The final average best fitness
obtained by IFPSO is smaller than that obtained by PSO, which means that the particles are easier to jump out from
local optimal to find the better global optimal within the global range at the late iterations of the search process by using
IFPSO.

Table 6 shows that, for the typical WTRS system model (case 1), whether under 5% or 10% frequency disturbance
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conditions,  the  system  dynamic  performance  obtained  by  IFPSO  algorithm  outperforms  than  those  by  other  three
algorithms, which presents a shorter settling time and smaller overshoot, although, sometimes the system has a slower
response  speed  when  under  IFPSO  based  tuning.  Table  7  shows  the  compared  results  of  the  aforementioned  four
algorithms for the WTRS with respect to water flow inertia effect (case 2). It is found that IFPSO-based strategy obtains
the best performance in terms of settling time and overshoot.

Table 7. Simulation results of case 2 under frequency disturbance.

Conditions 5% frequency disturbance 10% frequency disturbance
Algorithms ZN Fuzzy PID PSO IFPSO ZN Fuzzy PID PSO IFPSO

Best F - - 21.7863 20.4705 - - 36.5761 35.1762
STDEV - - 3.1841 5.9931 - - 2.4346 0.0016

Overshoot 0.1724 0.1927 0.0369 0.0066 0.1708 0.1646 0.0919 0.0195
ts(s) 12.0100 8.9800 7.7100 6.6400 12.2400 12.1900 8.8300 8.0800
KP 3.7707 - 3.5182 3.0671 3.8967 - 3.6798 3.4562

KD(s) 1.4497 - 1.8396 1.1373 1.7818 - 1.7644 1.7436

KI(s
-1) 0.6129 - 0.5002 0.4271 0.6392 - 0.5202 0.4933

From the above it is observed that, when compared with PSO algorithm, ZN algorithm and fuzzy PID algorithm, the
proposed IFPSO can obtain better overshoot and settling time, thereby justifying the rationality and superiority of the
proposed algorithm for optimization tuning of WTRS systems under frequency disturbance conditions.

4.3. Comparison of Optimization Methods Under Load Disturbance Condition

In  order  to  assess  the  validity  and  robustness  of  the  proposed  algorithm,  load  disturbance  condition  is  also
considered. Different step disturbances of load are adopted to excite systems. The experiments for systems under 5%
and 10% load disturbance conditions are performed within 20 s and repeated 50 times.

From the compared results for fitness function convergence situations of IFPSO and PSO shown in Figs. (11, 13,
15,  17),  we  can  find  that,  the  final  average  best  fitness  value  obtained  by  IFPSO  is  smaller  than  that  by  PSO.  It
illustrates that IFPSO possesses superior ability in obtaining higher-quality optimal value with faster convergence speed
compared with PSO algorithm in the searching process and it is capable of stepping out the local optimal.

Fig. (11). Average best fitness under 5% load disturbance (case 1).
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Fig. (12). Speed deviation under 5% load disturbance (case 1).

Fig. (13). Average best fitness under 10% load disturbance (case 1).

Fig. (14). Speed deviation under 10% load disturbance (case 1).



114   The Open Electrical & Electronic Engineering Journal, 2016, Volume 10 Gonggui et al.

Fig. (15). Average best fitness under 5% load disturbance (case 2).

Fig. (16). Speed deviation under 5% load disturbance (case 2).

Fig. (17). Average best fitness under 10% load disturbance (case 2).

Figs. (12, 14, 16, 18) show the speed deviation transient process of the two WTRS systems by using the optimal
solutions of IFPSO algorithm and other three optimization approaches. Obviously, from these figures, it can be found
that with the regulation of IFPSO based controller, the fluctuation caused by the load disturbance is fast weakened and
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gradually disappear, and then achieve the steady state as desired soon.

Fig. (18). Speed deviation under 10% load disturbance (case2).

Some experimental simulation results under different load conditions are listed in Tables 8 and 9. It is seen that
compared with the other three approaches, the proposed IFPSO gets a great improvement in terms of settling time with
smaller overshoot.

Table 8. Simulation results of case 1 under load disturbance.

Conditions 5% load disturbance 10% load disturbance
Algorithms ZN Fuzzy PID PSO IFPSO ZN Fuzzy PID PSO IFPSO

Best F - - 4.1738 4.1636 - - 5.8695 5.6146
STDEV - - 0.0009 0.0207 - - 0.8329 0.0126

Overshoot 0.0057 0.0051 0.0049 0.0047 0.0113 0.0104 0.0099 0.0096
ts(s) 12.5400 6.0700 8.4800 8.4300 12.2100 11.9700 8.7300 7.6400
KP 4.8256 - 9.8860 9.9833 5.0064 - 8.7795 9.4568

KD(s) 1.8765 - 2.3138 2.3321 1.8885 - 2.8263 2.2297

KI(s
-1) 3.1024 - 8.3454 8.2046 3.3180 - 10.0000 7.5664

Table 9. Simulation results of case 2 under load disturbance.

Conditions 5% load disturbance 10% load disturbance
Algorithms ZN Fuzzy PID PSO IFPSO ZN Fuzzy PID PSO IFPSO

Best F - - 20.9655 20.6289 - - 33.3868 30.9531
STDEV - - 0.4532 0.0003 - - 1.5011 1.4187

Overshoot 0.0177 0.0173 0.0171 0.0159 0.0373 0.0337 0.0358 0.0337
ts(s) 17.2500 17.2500 12.1100 11.6600 16.7300 13.9500 15.5700 11.8600
KP 3.8440 - 4.0978 4.7395 3.8503 - 3.6976 4.6691

KD(s) 2.8429 - 1.7578 2.0493 1.3824 - 1.0000 2.2135

KI(s
-1) 1.2994 - 1.2566 1.3759 1.3405 - 0.9642 1.4748

Besides, under all of the running conditions, the overshoot level obtained by IFPSO based controller is lower than
those  obtained  by  other  three  algorithms  based  controllers.  Obviously,  the  lower  overshoot  results  in  the  better
performance of WTRS, therefore the IFPSO based controller is confirmed to be more suitable for the tuning of WTRS
system.
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CONCLUSION

In  this  paper,  the  challenge of  parameter  optimization of  WTRS system is  studied.  An improved fuzzy particle
swarm  optimization  (IFPSO)  algorithm  is  proposed  by  incorporating  the  fuzzy  control  thought  and  the  crossover
thought in genetic algorithm (GA) based on the standard PSO. The simulation results indicate that the proposed IFPSO
outperforms standard PSO on convergence speed and precision based on the proposed fitness function. And the IFPSO
algorithm has been proven to be more effective for solving parameter optimization problem by experiments for two
different  types  of  WTRS  systems  when  compared  with  standard  PSO,  Ziegler  Nichols  algorithm  and  fuzzy  PID
algorithm. Furthermore, the experiment results reveal that, both under frequency and load disturbance conditions, the
proposed IFPSO could lead to the best quality solutions. And under the optimized solutions obtained by IFPSO, the
dynamic transition process of system is stable with smaller overshoot and shorter settling time.
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