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Abstract: Self-balancing control is the basis for applications of two-wheeled robots. In order to improve the self-balancing of two-
wheeled robots, we propose a hierarchical reinforcement learning algorithm for controlling the balance of two-wheeled robots. After
describing the subgoals of hierarchical reinforcement learning, we extract features for subgoals, define a feature value vector and its
corresponding weight vector, and propose a reward function with additional subgoal reward function. Finally, we give a hierarchical
reinforcement learning algorithm for finding the optimal strategy. Simulation experiments show that, the proposed algorithm is more
effectiveness  than  traditional  reinforcement  learning  algorithm  in  convergent  speed.  So  in  our  system,  the  robots  can  get  self-
balanced very quickly.
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1. INTRODUCTION

The  two-wheeled  self-balancing  robot  [1]  is  an  important  research  topic  in  intelligent  developmental  robots.
Comparing  with  traditional  robots,  the  intelligence  of  this  kind  of  robots  can  develop  dynamically  with  external
environments, and the intelligence comes from an inner system similar to human brain [2]. The self-balancing of two-
wheeled self-balancing robot is controlled by its inner development mechanism, and is reinforced by the intelligence
according to communications with external environment by sensors and executors [3].

Aiming at the self-balancing of two-wheeled robot, researches have proposed a lot of control approaches. Wu et al.
[4] implement the control of an inverted Pendulum according to Q-learning [5] and back propagation neural networks
[6]; Jeong and Takahashi [7] design a balancing controller based on the problem of two-level inverted pendulum, and
they apply the linear quadratic regulator algorithm; Miasa et al. [8] apply a hierarchical fuzzy control model to acquire
the self-balancing. The above algorithms for self-balancing in two-wheeled robots are all based on neural networks, and
they  have  the  advantage  of  high  fault-tolerance.  However,  their  disadvantages  are  weak  learning  ability  and  also
sensitive to external noise, so the controller is hard to reach a stable status.

Reinforcement  learning is  a  unsupervised learning approach,  and is  widely used in  real  time controlling [9].  In
reinforcement  learning,  the  controller  communicates  with  external  environment  according  to  trial-and-error.
Hierarchical reinforcement learning [10] is one of the most important researches in reinforcement learning, and it can
solve the problem of dimensionality curse in status and action spaces. Classical hierarchical reinforcement learning
approaches include Option [11], MAXQ [12], HAM [13].

In  this  paper,  we  study  how  the  two-wheeled  robots  can  get  self-balanced  very  quickly.  Based  on  traditional
reinforcement  learning  algorithm,  we  propose  a  hierarchical  reinforcement  learning  algorithm.  In  our  hierarchical
reinforcement learning  algorithm,  in order to  speed up the  convergence,  we add  a heuristic reward  function in  each
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subgoals.

The rest of the paper is organized as follows. In section 2, we review related works about reinforcement learning
especially on hierarchical reinforcement learning. In section 3, we describe our proposed hierarchical reinforcement
learning approach. Experiments and conclusion are given in section 4 and 5 respectively.

2. RELATED WORKS

In this section, we describe the definition of reinforcement learning, and review related works on reinforcement
learning, especially on hierarchical reinforcement learning.

Reinforcement learning is a unsupervised learning, and it is based on the idea that, if some action of an agent can get
positive reward from environment, then the trend of this action will be reinforced in the future. The basic model of
reinforcement learning can be described in Fig. (1).

Fig. (1). Model of reinforcement learning.

The process of reinforcement learning can be described as a Markov decision process, and the Markov decision
process can be defined by a quadri-tuple < S,A,R,P >, where S is the set of statuses, A is the set of actions,R : S × A → R
is the reward function, and R : S × A → S is the status transition function. In Markov decision process, the reward and
next status only depend on the current status and the selected action, and the objective of an agent is to find the optimal
action strategy and maximize the expected discount reward.

In  order  to  find  optimal  action  strategy,  researchers  introduce  the  concept  of  quality  function.  Currently,  the
commonly used quality function is the Q function, i.e. Q-learning. In Q-learning [5], the reward is based on status-
action pair, and the update rule is

(1)

where C is the learning rate, γ is the discount factor, r is the current reward, and s' is the next status.

Traditional reinforcement learning approaches only improve their strategies via experienced rewards, and need very
long time to train, so the convergence speed is very slow. In order to speed up the convergence, Singer and Veloso [14]
propose to solve the new problem via inducing the local features of original problem; Hailu and Sommer [15] discuss
the effects of different bias information on learning speed by introducing environment information. Moreno et al. [16]
propose to to introduce prior in supervised reinforcement learning; Lin and Li [17] build a reinforcement learning model
based on latent bias; and Fernández and Veloso [18] reuse past learnt bias to supervise the solving of similar tasks. The
above  approaches  use  bias  to  supervise  the  selection  of  strategies  from  actions,  can  utilize  the  bias  from  external
environment or past tasks, and thus the learning speed is accelerated. However, whenever the bias is unsuitable, it can
mislead the agent, and then the learning would be not convergent.
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Hierarchical reinforcement learning, e.g. Option [11], MAXQ [12], HAM [13], can speed up the convergence of
learning efficiently, and is widely used in many fields. Many extended approaches are based on Option, MAXQ and
HAM. Mehta et al. [19] propose to denote the reward function as vector of status features, and use the learnt experience
to reward functions (vectors) of the same hierarchies; Schultink et al. [20] propose an economic hierarchical q-Learning
algorithm, which can converge to hierarchical optimums theoretically. Moreover, in finding subgoals in hierarchical
reinforcement learning, Stolle and Precup [21] assume the frequently accessed points be subgoals; Mannor et al. [22]
argue that subgoals should be the points accessed frequently by valid pathes; Şimşek et al. [23] find subgoals using
recent status transition graph according to graph partition; and Wixson [24] applies modularity to find subgoals such
that the algorithm can be scaled to large scale reinforcement learning.

3. HIERARCHICAL REINFORCEMENT LEARNING

In this paper, we propose a hierarchical reinforcement learning algorithm based on heuristic reward function. With
this approach, the two-wheeled robot can learn from environment, and thus keep self-balancing as far as possible.

3.1. Description of Subgoals

Description of subgoals is the hardest part in hierarchical reinforcement learning. In this paper, we describe each
subgoal with an uncertain limited status controller, which is proposed by Dietterich [12].

Given an objective or goal M, we partition M into a subgoal set {M, M1,...,Mn}, and each Mi(0 ≤ i ≤ n) is denoted as
a  triple  <  Ti,  Ai,  Ri  >,  where  Ti  is  the  status  set  in  subgoal  Mi,  Ai  is  the  executable  action  set  in  Mi,  and  Ri  is  its
corresponding reward function in Mi. In this paper, we aim to extend the reward function Ri of subgoal Mi, and then
accelerate the convergence speed. After extending reward function Ri of Mi to Ri', we get a new triple < Ti, Ai, Ri' >.
While Learning all subgoals, the strategy π is partitioned into {π, π1,...,πn}, where πi is the strategy of subgoal Mi, and all
πis are independent with each other. Then, all optimal strategy of subgoals will make up the final optimal strategy of the
goal M, i.e. π* = {π*, π*

1,...,π
*
n}.

3.2. Subgoal Feature Extraction and Reward Function

In order to utilize heuristic reward function, we extract features from subgoals. We use the extracted features to
evaluate the current status, and then design corresponding reward function F. For each subgoal Mi in M, we give the
following definitions.

Definition 1. Mi is the i-th subgoal of M, then the feature vector Ti of subgoal Mi is

(2)

where k is the number of features, and tij (1 ≤ j ≤ k) is the j-th status feature.

Ti is a vector description of status features. For example, extracting features from a polygon can get a feature vector

Ti is an abstraction of status features, and it can’t be used in the learning system directly. In order to apply status
features, we need to quantify each element in the feature vector.

Definition 2. Feature vector Ti can be quantified to be a feature value vector Ni, which is

(3)

where nij is the feature value corresponding to feature tij in subgoal Mi.

In a reinforcement learning system, each feature belongs to a certain value scope, and this value scope is determined
by concreting applications. In addition, each feature has different effectiveness on learning process, so each feature
must have its own weight.

Definition 3. The weight vector Wi of the feature value vector Ni is

(4)
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where wij is the weight of the j-th feature value nij.

In Wi, the value of its element wij can be positive, zero or even negative. When wij > 0, this feature is encouraged in
learning, when wij = 0, this feature can be ignored, and when wij < 0, this feature should be penalized. Based on the
above three definitions, we define an additional function for the heuristic reward function.

Definition 4. The additional function Fi for the heuristic reward function is

(5)

where Wi
T is the transpose of Wi.

In equation 5, the value of Fi can also be positive, zero or even negative. When Fi > 0, the environment gives some
reward to the heuristic function, and when Fi < 0, the environment punishes the heuristic function. Finally, the reward
function for a generalized Markov Decision Process is defined as follows.

Definition 5. The reward function for a generalized Markov Decision Process is

(6)

where Ri is the reward function in a standard reinforcement learning.

In order to make the learning algorithm converge, Ri must be bounded. In addition, because the elements in Wi and
Ni are constants and the number of status features is limited, i.e. k < ∞, Fi is also bounded. So, Fi

' is also a bounded
reward function, which is the basis for an learning algorithm to converge.

3.2.1. Optimal Strategy

The goal of reinforcement learning is to find an optimal strategy, and this can be done by continuous iterations. Let
V πi (i, s) be the value of status s in strategy πi in subgoal Mi, then the Bellman equation is

(7)

By continuous iterations, we can get the optimal function of the i-th subgoal under the optimal strategy π*. That is

(8)

where  P  a
ss'  and  (Ri')  a

ss'  are  the  transition  probability  and  heuristic  reward  value  from status  s  to  status  s'  while
executing action a, and γ is the discount factor.

In equation 8, we present the optimal Bellman equation with status-value function In order to implement an online
control algorithm, the Bellman equation is usually represented with an action-value function. In subgoal Mi, the current
status is s, if we act with action a according to strategy πi, then the acquired Q value is

(9)

where λ is the parameter of step number, γ is the discount factor. Then, the corresponding action-value function
Bellman equation is
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(10)

In order to assure the algorithm be convergent, it only needs to select the actions greedily. So during the execution
of algorithm, we use the follow equation to update the Q value.

(11)

3.3. Hierarchical Reinforcement Learning Algorithm
Algorithm 1: HRLearning algorithm

Partition M into {M , M1 , … , Mn} ,such that for each i(0 ≤ i ≤ n), Mi = <Ti , Ai , Ri>
Randomly initialize π = {π , π1 , … , πn}
For each Mi in M do
    repeat
       Extract features and get Ti and Ni ;
       Randomly initialize Wi ;
       Let s ← s ;
       repeat
       Select an action a for s from strategy of Q
       Execute action a computer r, s' and R' = r + F'
       Let Q(i, s, a) ← Q(i, s', a') + α(R' + γmaxaϵA(s))
    Until s ϵ Ti ;
  Until Mi is finished;

Partition [Trial mode]  into [Trial mode],  such that for each [Trial mode]  ([Trial mode]), [Trial mode][Trial
mode][Trial mode][Trial mode]M[Trial mode]  in [Trial mode] [Trial mode]  is finished extract features and get
[Trial mode] and [Trial mode][Trial mode]W[Trial mode][Trial mode]s[Trial mode][Trial mode] s [Trial mode]
select  an  action  [Trial  mode]  for  [Trial  mode]  from  strategy  of  [Trial  mode][Trial  mode]a[Trial  mode]r[Trial
mode]s’[Trial mode]R’ = r+F’[Trial mode]Q(i,s,a)[Trial mode][Trial mode]s[Trial mode] and [Trial mode][Trial
mode]

Based on the above subsections, we propose a hierarchical reinforcement learning in algorithm 1. The algorithm
first partitions the goal into subgoals, and then learns strategies for each subgoals. Each subgoal iterates the Q value
according to the Q-learning algorithm. When all subgoals converge to the optimal values, the goal is convergent to the
optimal  value  too.  The  proposed  reward  function  can  learn  from  environment  heuristically,  and  accelerates  the
exploration  of  unknown  environment,  so  the  convergence  is  speeded  up.

4. EXPERIMENTS

The control system in two wheeled self-balancing robots is unstable. If the two wheeled self-balancing robots want
to do other behaviours, they must keep themselves self-balanced, so self-balancing is the basis of the action controller.
In order to validate the effectiveness of the proposed algorithm, we do some simulation analysis for controlling the self-
balancing of two-wheeled robots.

During  the  reinforcement  learning  process,  the  input  statuses  are  the  displacement,  dip  angle  and  the  angular
velocities  of  both  wheels,  and  the  output  is  the  control  variable.  During  the  evaluation  process,  the  inputs  are  the
displacement, dip angle, the angular velocities of both wheels, and the control variable. In every experiment, when the
trail number is larger than 1000 or the step number needed by self-balancing is larger than 20000, we stop the learning
process and restart the experiment. After each fail trail, we randomly initialize the statuses and weights in the system,
and restart the learning process.
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(a) Displacement 

 
(b) Dip angle 

 
(c) Left angular velocity 
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Fig. (2). Observed status convergence.

In the simulation experiments, we observe the displacement, dip angle and the angular velocities of both wheels,
and the convergence of these status features are in Fig. (2). In addition, we also observe the evaluation function and the
error along with the step number, and these results are in Figs. (3 and 4) respectively. From these simulation results we
can see that, under an unknown environment without any disturbance, the controller needs about 350 steps to be stable,
and the convergence speed is very fast.

Fig. (3). Simulation result of evaluation function.

Fig. (4). Simulation result of error.

We compare the evaluation function between our proposed hierarchical reinforcement learning (HRLearning) with

 
(d) Right angular velocity 
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the traditional reinforcement learning (RLearning) algorithm, and the result is in Fig. (5). As can be seen from the figure
that, our proposed HRLearning converges much faster than RLearning, and is also much more robust than RLearning.

Fig. (5). Comparison of evaluation functions.

We compare the learning curves of the two algorithms, and the results are in Fig. (6). Comparing Fig. (6a) and Fig.
(6b)  we  can  see  that,  RLearning  implements  self-balanced  after  108  failure  trails,  and  our  proposed  HRLearning
algorithm only needs 84 failure trails. So, our algorithm has quicker learning speed and better dynamics than traditional
reinforcement learning, and thus has better abilities of self-learning and self-balancing.

 

(a) Traditional RLearning algorithm 
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Fig. (6). Comparison of learning curves.

Finally, we compare the angular velocities of both wheels, and the results are in Fig. (7). From the figure we can see
that,  our  proposed algorithm has  less  angular  velocities  than  the  traditional  reinforcement  learning  algorithm.  This
illustrates that, in order to keep self-balanced, the wheels in our system moves gently, and rough moves in RLearning
will lead the wheels much more imbalanced.

 

(b) Our HRLearning algorithm 

(a) Angular velocity of left wheel 
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Fig. (7). Comparison of angular velocity.

CONCLUSION

In  this  paper,  we  study  the  problem  of  self-balancing  in  two-wheeled  robots,  and  propose  a  hierarchical
reinforcement learning algorithm. In order to speed up the convergence of learning algorithm, we add a heuristic reward
function in each subgoals. After describing the subgoals of hierarchical reinforcement learning, we extract features for
subgoals,  define  a  feature  value  vector  and  its  corresponding  weight  vector,  and  propose  a  reward  function  with
additional subgoal reward function. Simulation experiments show that, the proposed algorithm is more effectiveness
than  traditional  reinforcement  learning  algorithm  in  convergent  speed.  So  in  our  system,  the  robots  can  get  self-
balanced very quickly.
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