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Abstract:

Objective:

In this paper, an improved hybrid differential evolution (IHDE) algorithm based on differential evolution (DE) algorithm and particle
swarm optimization (PSO) has been proposed to solve the optimal power flow (OPF) problem of power system which is a multi-
constrained, large-scale and nonlinear optimization problem.

Method:

In IHDE algorithm, the DE is employed as the main optimizer; and the three factors of PSO, which are inertia, cognition, and society,
are used to improve the mutation of DE. Then the learning mechanism and the adaptive control of the parameters are added to the
crossover, and the greedy selection considering the value of penalty function is proposed. Furthermore, the replacement mechanism
is added to the IHDE for reducing the probability of falling into the local optimum. The performance of this method is tested on the
IEEE30-bus and IEEE57-bus systems, and the generator quadratic cost and the transmission real power losses are considered as
objective functions.

Results:

The simulation results  demonstrate that  IHDE algorithm can solve the OPF problem successfully and obtain the better  solution
compared with other methods reported in the recent literatures.

Keywords: Power system, Optimal power flow, Improved hybrid differential evolution algorithm, Particle swarm optimization,
Learning mechanism, Replacement mechanism.

1. INTRODUCTION

Due to the development and extension of the traditional economic scheduling theory, the optimal power flow (OPF)
problem considering the economy and security of the power system has drawn a lot  of  attention,  which is  a multi-
constrained,  non-linear and non-convex optimization problem containing continuous and discrete control  variables.
Since the OPF formulation by Carpentier in 1962, its usefulness is progressively being recognized, and nowadays it
becomes
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the most important tool used in operation and planning of power system [1]. The OPF problem is aimed to give the
optimal settings of determined control variables for optimizing a specific objective function, such as the generation cost
function,  transmission  real  power  losses  and  voltage  deviation,  while  satisfying  some  equality  and  inequality
constraints.  It  can  respect  the  system  static  security  constraints  and  schedule  active  and  reactive  power  [2].

Nowadays, many optimization methods are employed successfully to solve the OPF problem and can be divided
into  two categories:  the  traditional  mathematical  methods and the  intelligent  optimization methods.  The traditional
mathematical  methods include linear  programming method [3],  nonlinear  programming method [4],  and simplified
gradient  method  [5]  and  so  on.  Usually,  these  methods  have  fast  calculation  speed  and  good  convergence
characteristics,  but  some  restrictions  on  the  variables  and  the  objective  functions.  Compared  with  the  traditional
mathematical  methods,  the intelligent  optimization methods based on the combination of computer technology and
biological simulation can be a better way when solving the large-scale, multi-constrained, non-linear and non-convex
OPF problem which contains the discrete and continuous variables. Some of the proposed intelligent methods, such as
Particle Swarm Optimization with an Aging Leader and Challengers (ALC-PSO) algorithm [6], Artificial Bee Colony
(ABC) [7], Lévy Mutation Teaching–Learning-Based Optimization (LTLBO) algorithm [8], Krill Herd (KH) algorithm
[9], Adaptive Real Coded Biogeography-based Optimization (ARCBBO) [10], Moth Swarm algorithm (MSA) [11] and
Differential  Search  algorithm  (DSA)  [12],  have  been  proved  to  be  successful  in  solving  the  OPF  problem.
Therefore,there  is  an  increasing  number  of  studies  about  the  improvement  and  combination  of  algorithms  or
mechanisms.

As a relatively new member of evolutionary algorithms (EAs), DE is also a stochastic model which simulates the
biological evolution and has been widely applied to the optimization problems in the power system. The DE consists of
four operators: initialization, mutation, crossover and selection, and its performance mainly affected by the strategy of
the mutation and control parameters, such as the mutant scale factor F and the crossover factor CR. In the evolutionary
process, the difference among individuals will gradually decreases due to the influence of the greedy selection, which
affects  the  diversity  caused  by  the  mutation  and  leads  the  algorithm  to  fall  into  the  local  optimum.  So  far,  many
modified DE algorithms have been proposed to overcome the shortcomings. The authors in [13] proposed Gaussian
random variable instead of scaling factor and the proposed approach was able to provide better solution compared with
other evolutionary method for economic dispatch. In [14], the proposed MBDE method which used memory mechanism
to modify mutation and crossover operators provided better results. Obviously, parameter modification, the strategies of
mutation and crossover affect the performance of the algorithm to a certain extent. Considering all of the above factors
to aptly modify DE algorithm will be a new direction in the further.

Numerous studies indicate that a variety of intelligent algorithms show different strength and weakness in solving
some problems and the combination of two or more algorithms can solve the problem more efficiently [15 - 17]. Hence,
a combination of advantages of some algorithms is considered in this paper. Particle swarm optimization (PSO) with
inherent parallel search mechanism is especially suitable for complex optimization fields where traditional methods are
difficult  to  work  [15].  And it  can  be  used  to  improve  the  search  ability  of  DE.  Thus,  the  novel  hybrid  differential
evolution (IHDE) algorithm based on DE and PSO is proposed in this paper. Furthermore, what is greatly significant is
not only to improve the current methods but also to handle constraints on state variables well  simultaneously [18].
Briefly, the contributions of this paper can be summarized as follows:

(1)  An  improved  hybrid  differential  evolution  algorithm considering  the  mutation  and  crossover  strategies  and
parameter values is proposed, namely IHDE. The mutation and crossover strategies of DE are modified by the memory
mechanism of PSO and learning mechanism, respectively. Moreover, the values of the mutant scale factor F, the inertia
weight ω and crossover factor CRi are varied according to evolutionary process. Finally, the replacement mechanism is
designed for reducing the probability of falling into the local optimum.

(2) A novel constraint handing method including greedy selection strategy and penalty function is proposed to keep
the variable within its limits, especially in larger systems.

(3) The OPF problem is implemented on standard IEEE30-bus and IEEE57-bus systems successfully using IHDE
algorithm

In the proposed algorithm, the DE is employed as the main optimizer and the three factors of PSO which are inertia,
cognition,  and  society  are  used  to  improve  the  mutation  for  speeding  up  the  convergence  rate.  Then  the  learning
mechanism and the adaptive control of the parameters are added to the crossover to increase the diversity of population
in some direction. To ensure the optimal solution satisfies the security constraints,  the greedy selection mechanism
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considering the value of penalty function is proposed. Furthermore, the replacement mechanism is added to the IHDE
for reducing the probability of falling into the local optimum. Finally, the IHDE, DE and PSO are tested on the IEEE30-
bus and IEEE57-bus systems, and the generator quadratic cost and the transmission real power losses are considered as
objective functions. The simulation results demonstrate that IHDE algorithm can solve the OPF problem successfully
and obtain better solutions compared with DE, PSO and other methods reported in the recent literatures.

The rest of the paper is organized as follows: Section 2 describes the mathematical formulation of the OPF problem.
Section 3 introduces the DE and PSO briefly. Section 4 proposes an improved hybrid differential evolution (IHDE)
algorithm. Section 5 presents the simulation results and analysis. Finally, the conclusion is drawn in section 6.

2. PROBLEM FORMULATION

As previously mentioned, the objective of the OPF problem is to optimize a specific objective function by finding
the optimal settings of determined control variables while satisfying a range of equality and inequality constraints. The
model of OPF problem contains five parts: control variable, state variable, objective function, equality constraint, and
inequality constraint.

The OPF problem can be mathematically formulated as follows:

(1)

Subject to

(2)

Where  x  and  u  are  the  vector  of  state  variables  and the  vector  of  control  variables,  respectively.  F(x,  u)  is  the
objective function to be minimized. g(x, u) is the set of equality constraints. h(x, u) is the set of inequality constraints.

2.1. Control Variable

The  control  variables  of  this  model  are  active  power  generation  PG  at  PV  buses  except  the  slack  bus,  voltage
magnitude VG at PV buses, transformer taps settings T and shunt VAR compensation QC. The control variables can be
expressed as:

(3)

Where NG, NT and NC represent the number of generator buses, the number of regulating transformers and the
number of shunt compensators, respectively.

2.2. State Variable

The state variables of this model are active power generation PG1 at the slack bus, voltage magnitude VL at PQ buses,
reactive  power  output  QG  at  PV  buses  and  transmission  line  loadings  (or  line  flow)  Sl.  The  state  variables  can  be
described as follows:

(4)

Where NL is the number of load buses and NTL is the number of transmission lines; PG1 as the state variable is the
active power generation at the slack bus.

2.3. Equality Constraint

The power balance constraints  are considered as basic equality constraints  and reflect  the physics of  the power
system which can be represented as follows:

(5)
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Where δij=δi-δj.δi and δj are voltage angles at bus i and j, respectively. Ni is the number of buses which are adjacent
to bus i, including bus i. NPQ is the number of PQ buses and NS is the number of system buses excluding slack bus. QGi

and  PGi  represent  the  reactive  power  output  and  the  active  power  generation  at  bus  i  which  belongs  PV  buses,
respectively. QLi and PLi represent the reactive load demand and active load demand at bus i, respectively. Gij and Bij are
the conductance and susceptance between bus i and bus j, respectively. Vi is the voltage magnitude at bus i.

2.4. Inequality Constraint

The operating limits of power system are considered as inequality constraints which guarantee the system security.

(a) Generator constraints

(6)

(7)

(8)

(b) Transformer constraints

(9)

(c) Shunt VAR compensator constraints

(10)

(d) Security constraints

(11)

(12)

2.5. Objective Function

In this paper, two objective functions are considered to evaluate the effectiveness of the proposed algorithm.

2.5.1. Quadratic Cost Function

The objective of the total fuel cost is widely used and it can be formulated by a quadratic curve as follows:

(13)

(14)

Where ai, bi and ci are the cost coefficients of the ith generator.

2.5.2. Transmission Real Power Losses

The function determined by the bus voltage magnitude and angle is the total active power loss of all transmission
lines and can be calculated as:

(15)

Where Gk is the conductance between bus i and bus j.
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3. BRIEF ON DE&PSO

3.1. Difference Evolution (DE) Algorithm

In DE, the forward direction is based on the differences among all the individuals in the population and the diversity
is increased by crossover. Then the greedy selection is used to realize the population evolution. The process of DE
includes four steps: initialization, mutation, crossover and selection.

3.1.1. Initialization

The initial population of NP is randomly selected by uniform probability in the search space of the optimization
problem. Random values are assigned to each D-dimensional individual according to:

(16)

Where xj,min  and xj,max  represent  the lower and upper bounds of the jth decision variable;  g  and NP represent  the
number of the iteration and population size, respectively.

3.1.2. Mutation

The operator is  utilized to generate the mutant vector x′i,g+1  by changing the value of the individual through the
difference of other individuals. Recently, there are many mutation schemes of DE in the literature [19] and the strategy
commonly used is expressed as follows:

(17)

Where xr1,g, xr2,g and xr3,g (r1≠r2≠r3≠i) are randomly chosen from the current population; F [0, 2] is the mutant
scale factor.

3.1.3. Crossover

The operator is utilized to generate a new trial vector x′′
i,g+1 and there are two crossover strategies which include the

binomial crossover and the exponential crossover [20]. In this paper, the binomial crossover is selected for the research
and defined as follows:

(18)

Where CR [0,1] is the crossover factor; m [1,D] is a random integer which ensures x′′
i,g+1 can get at least one

parameter from x′i,g+1.

3.1.4. Selection

The operator is utilized to choose a better vector between the trial vector x′′
i,g+1 and the target vector xi based on

fitness values. f (x) is the fitness function value of x. Therefore the selection criterion is expressed as follows:

(19)

3.2. Particle Swarm Optimization (PSO)

In PSO, each particle represents a potential solution for the specific issue and varies with its position and velocity in
the  feasible  space.  At  iteration  g,  the  D-dimensional  position  vector  and  velocity  vector  of  the  particle  i  can  be
represented as xi,g=(xi1,g,…,xiD,g) and vi,g=(vi1,g,…,viD,g), respectively. The individual best position of the particle i achieved
and the global best position of the whole swarm based on fitness values up to the current iteration can be represented as
pbesti=(pbesti1,…,pbestiD)  and gbest=(gbest1,…,gbestD),  respectively. There exist  three components that have an impact on the
velocity of a particle, namely inertia, cognition, and society [18]. The particle tries to modify its position according to
the current velocity and it can be formulated as:
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(20)

(21)

Where ω is the inertia weight; c1 and c2 are positive constants and considered as acceleration coefficients to make
the particle accelerate toward the best position; r1 and r2 are uniformly distributed random variables between 0 and 1.

4. PROPOSED EFFICIENT APPROACH

In this section, an efficient approach is proposed to enhance the search ability of the DE and PSO, which named
improved hybrid differential evolution algorithm (IHDE).

4.1. Mutation

The mutation strategy of IHDE algorithm contains the effect of other individual difference and the impact on the
velocity of a particle, namely, inertial, cognitive, and social, which can be described as follows:

(22)

(23)

Where xpbest is randomly selected from the excellent individuals rather than the individual best position of the particle
i  and  the  excellent  individuals  are  the  best  (p×NP)  individuals  in  the  population  based  on  the  fitness  value;  xGbest

represents the global best solution. The larger the values of F and ω are, the stronger the exploration capability will be,
which may lead to slower convergence. On the contrary, the exploitation capability will be stronger, which may lead to
premature convergence. Therefore, the improvement of the parameters should be implemented, which directly affect the
search precision and convergence speed. In IHDE algorithm, both the mutant scale factor F and the inertia weight ω are
varied in its range aimed to perform a global search firstly and then perform a local search, which can be expressed as:

(24)

(25)

4.2. Crossover

The learning mechanism is added to the crossover which can be formulated as follows:

(26)

Where xlearnij is generated by the target vector xi,g and the mutant vector x′i,g+1 through the learning mechanism and
expressed as:

(27)

Where r3 and r4 are uniformly distributed random variables between 0 and 1.The crossover factor CRi is generated
according to a normal distribution of mean μi and standard deviation 0.1 which can be defined as follows:

(28)
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Where cr is a positive constant between 0 and 1; meanC() is the arithmetic mean of CR; μi is initialized to be 0.5 and
CR represents the set of all crossover factors which successfully obtained a better solution at generation g.

4.3. Selection

In order to find the solution in the feasible space, the algorithm proposes a greedy selection strategy considering the
constraint condition. If only one of the two solutions’ penalty functions is zero, the section is performed as follows:

(30)

Otherwise, the selection criterion is defined as DE as follows:

(31)

The penalty function will be explained in detail in section 4.5.

4.4. Replacement Mechanism

The mechanism replaces the individual which is not improved by a predetermined number of trials with a new one,
and its steps are summarized as follows:

Step 1: Set the un-updated number, u=0.

Step 2: Check whether the individual has been updated.

Step 3: If the individual is not updated, the un-updated number adds one, u=u+1. On the contrary, the number is
changed to zero.

Step 4: Check whether the individual has not updated for predefined limit trails. If exists, replace it with a new one
by Eq.(16) and change the un-updated number to zero.

4.5. Constraint Handing Method

In  this  method,  the  inequality  constraints  of  state  variables  which  contain  real  power  generation  at  slack  bus,
reactive power generation at PV buses, load bus voltage magnitude and line loading are incorporated into the objective
function using a penalizing strategy to keep the variables within its limits. The strategy introduces a penalty function
which can be formulated as:

(32)

Where  KV‚KQ‚KP  and  KS  are  the  penalty  factors  of  the  state  variable,  respectively.  Xlim  depended  by  the
corresponding  state  variable  can  be  expressed  as  follows:
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Where KFg represents the penalty factor at the generation g; KFmin and KFmax are the lower and upper bounds of the
penalty factor, respectively. At the beginning of the optimization, the penalty is smaller aimed to pick out the solution
with better function value and then it increases gradually as the iteration to obtain the solution which satisfies security
constraints.  The penalty  function and the original  objective function form a new fitness  function to  avoid the state
variable violating the limits, which can be formulated as:

(35)

On  the  other  hand,  the  control  variable  is  self-constrained.  When  the  independent  variable  violates  limits,  the
position of the individual will be adjusted as follows:

(36)

Where xj.best is the corresponding variable of the best individual, r1 and r2 are uniformly distributed random variables
between 0 and 1.

4.6. Implementation of IHDE Algorithm

The proposed IHDE algorithm for solving OPF problem is summarized as follows:

Step 1: Establish the OPF problem model and enter power system date and algorithm parameters.

Step 2: Initialize the population by Eq.(16) and set the iteration number, g=1.

Step  3:  Evaluate  the  penalty  function  value  and  the  fitness  value  of  the  population  and  select  the  excellent
individuals and the global best solution.

Step 4: Update the mutant scale factor F, the inertia weight ω and the crossover factor CRi.

Step 5: Apply the mutation and the crossover of IHDE algorithm to generate a new trial vector x′′
i,g+1

Step 6: Evaluate the penalty function value and the fitness value of x′′
i,g+1.

Step 7: Apply the selection of IHDE algorithm between x′′
i,g+1 and xi,g.

Step 8: Update the population, the excellent individuals and the global best solution.

Step 9: Apply replacement mechanism.

Step 10: Stop and memorise the global best solution if the iteration number g reaches the maximum, else set g=g+1
and go back to Step 4.

5. SIMULATION RESULTS and DISCUSSION

In this section, model systems and simulation analysis are represented. The IHDE algorithm has been applied to the
IEEE 30-bus and IEEE 57-bus for solving the OPF problem and compared with DE, PSO and the simulation results of
other methods presented in the recent literatures. In addition, 3 different cases are studied which summarized in Table 1.
The simulations were performed in matlab2014 on a personal computer with 3.30GHz processor and 8.00GB for RAM.

Table 1. Summary of the studied cases.

Test system Control variables Name Objective function Constraints
IEEE 30 24 Case 1 Quadratic cost function Equality and non-equality
IEEE 30 24 Case 2 Transmission real power losses Equality and non-equality
IEEE 57 33 Case 3 Quadratic cost function Equality and non-equality

As mentioned before, there are many control parameters of DE, PSO and IHDE need to be set. Here, the population
sizes (Np), maximum iteration number (gmax) and so on are given in the Table 2. For each case 30 runs are conducted to
get  the  solution  quality.  The lower  limit  of  the  penalty  parameters  are  all  chosen as  10,  and the  upper  limit  of  the
penalty parameters are chosen as 100 in IEEE 30-bus system while 1000 in IEEE 57-bus.
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Table 2. Parameters of the three algorithms.

Algorithm Np gmax F CR ω c1 c2

DE 30 500 0.3/0.8 0.8 -- -- --
PSO 30 500 -- -- 0.4/0.9 2 2

IHDE 30 500 0.3/0.8 -- 0.4/0.9 2 2

5.1. IEEE 30-Bus System

The system has 6 generators, 41branches, 9 shunt VAR compensations and 4 transformers, which also has 2.834p.u.
for the active power demand and 1.262p.u. for the reactive power demand on base of 100MVA. In addition, the detailed
line  date,  the  bus  date  and  the  cost  coefficients  are  given  in  [21]and  [2].  The  minimum  and  maximum  limits  of
transformer taps are 0.9p.u. and 1.1p.u., respectively. The lower and upper limits of bus shunt capacitors are 0.0p.u. and
0.05p.u., respectively. Furthermore, the voltage magnitudes of generator buses are assumed to vary in the range [0.95,
1.1] p.u. and the lower and upper limits of load buses are considered to be 0.95p.u. and 1.05p.u., respectively.

5.1.1. Case 1: Minimization of Quadratic Cost Function

The objective function of minimization of quadratic cost is defined as Eq.(13) and Eq.(14). The optimal control
variables of IHDE, DE, and PSO for case 1 are shown in Table 3.  In order to verify the efficiency of the proposed
algorithm, the results are compared with other methods reported in the literatures and their details are shown in Table 4.
As shown in the tables, the minimization of quadratic cost obtained by IHDE, DE, and PSO are 800.4152 $/h, 800.5409
$/h and 800.6488 $/h, respectively. And the result of IHDE is better than DE, PSO, ARCBBO [10], MGBICA [22],
MSA [11] and ABC [7].  Although the results  obtained from GSA [23] and BBO [24] get  less cost  but the optimal
solutions  violate  system security  constraints  mentioned  before.  Moreover,  Fig.  (1)  shows  the  optimal  convergence
curves and Fig. (2) shows the results in 30 independent simulations of IHDE, DE, and PSO for case 1. It can be seen in
Fig. (2) that IHDE has a stronger robustness.

Table 3. Optimal solutions for case 1 and case 2 on IEEE 30 system.

Control variables
Case 1 Case 2

IHDE DE PSO IHDE DE PSO
P1(MW) 177.2248 177.1034 177.3276 51.48791 51.55068 51.54542
P2(MW) 48.74866 48.68600 48.67364 79.99838 79.99396 79.99778
P5(MW) 21.39375 21.48266 21.44029 49.99992 49.99714 49.99992
P8(MW) 21.07999 21.20626 21.19052 34.99997 34.99712 34.99697
P11(MW) 11.96386 11.94555 11.84440 30.00000 29.99629 30.00000
P13(MW) 12.00000 12.00841 12.00239 39.99947 39.99320 39.99238
V1(p.u.) 1.083017 1.079011 1.082761 1.061236 1.061394 1.060080
V2(p.u.) 1.063646 1.059780 1.062633 1.057166 1.057288 1.056278
V5(p.u.) 1.032327 1.028427 1.030119 1.037699 1.037502 1.036530
V8(p.u.) 1.036608 1.033294 1.032159 1.043903 1.044415 1.043915
V11(p.u.) 1.093351 1.063881 1.068400 1.085657 1.095213 1.075596
V13(p.u.) 1.048811 1.071938 1.056255 1.055954 1.059464 1.063790
T11(p.u.) 1.040000 1.020000 1.000000 1.070000 1.040000 1.050000
T12(p.u.) 0.930000 0.920000 0.980000 0.900000 0.950000 0.930000
T15(p.u.) 0.970000 1.010000 1.000000 1.000000 1.000000 1.010000
T36(p.u.) 0.970000 0.960000 0.950000 0.970000 0.980000 0.970000

QC10(p.u.) 0.000000 0.005000 0.004000 0.001000 0.004000 0.050000
QC12(p.u.) 0.001000 0.005000 0.029000 0.000000 0.012000 0.016000
QC15(p.u.) 0.039000 0.041000 0.038000 0.040000 0.048000 0.044000
QC17(p.u.) 0.050000 0.050000 0.049000 0.050000 0.048000 0.050000
QC20(p.u.) 0.038000 0.038000 0.041000 0.040000 0.036000 0.038000
QC21(p.u.) 0.050000 0.050000 0.050000 0.050000 0.050000 0.050000
QC23(p.u.) 0.029000 0.025000 0.021000 0.030000 0.028000 0.022000
QC24(p.u.) 0.050000 0.050000 0.035000 0.050000 0.050000 0.050000
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Control variables
Case 1 Case 2

IHDE DE PSO IHDE DE PSO
QC29(p.u.) 0.023000 0.009000 0.000000 0.019000 0.026000 0.022000

Fuel cost ($/h) 800.4152 800.5409 800.6488 967.6228 967.6734 967.7104
Power loss (MW) 9.011081 9.032239 9.078871 3.085644 3.128384 3.132461

Table 4. Comparison of the simulation results for Case 1 on IEEE 30 system ($/h).

Algorithms Min
IHDE 800.4152

DE 800.5409
PSO 800.6468

ARCBBO [10] 800.5159
MGBICA [22] 801.1409

MSA [11] 800.5099
ABC [7] 800.6600
GSA [23] 798.6751a

BBO [24] 799.1116a

a Infeasible solution.

5.1.2. Case 2: Minimization of Transmission Real Power Losses

The objective function of minimization of transmission real power losses is defined as Eq.(15). The optimal control
variables of IHDE, DE, and PSO for case 2 also are shown in Table 3 and the comparison of the results obtained from
other methods reported in the literatures are shown in Table 5. As shown in the tables, the minimization of transmission
real  power  losses  obtained  by  IHDE,  DE,  and  PSO  are  3.085644  MW,  3.128384  MW  and  800.3.132461  MW,
respectively. And the result of IHDE is better than DE, PSO, ABC [7], DSA [12], MSA [11] and MGBICA [22]. On the
other hand, the result of HS [25] is less than IHDE’s and defined as infeasible solution because it doesn’t satisfy the
security constraints. Furthermore, Fig. (3) shows the optimal convergence curves and Fig. (4) shows the results in 30
independent simulations of IHDE, DE, and PSO for case 2. Fig. (3) demonstrates that IHDE has better convergence.

Fig. (1). The optimal convergence curves for Case 1 of IEEE 30-bus system.
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Fig. (2). The results' distribution for Case1 of IEEE 30-bus system.

Table 5. Comparison of the simulation results for Case 2 on IEEE 30 system (MW).

Algorithms Min
IHDE 3.085644

DE 3.128384
PSO 3.132461

ABC [7] 3.1078
DSA [12] 3.0945
MSA [11] 3.1005

MGBICA [22] 4.937
HS [25] 2.9678 a

a Infeasible solution.

Fig. (3). The optimal convergence curves for Case 2 of IEEE 30-bus system.
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5.2. IEEE 57-Bus System

The system has 7 generators, 3 shunt VAR compensations and 15 transformers, which also has 12.508 p.u. for the
active power demand and 3.364 p.u. for the reactive power demand on base of 100MVA. All detailed line date, the bus
date and the cost coefficients are given in [26]. The minimum and maximum limits of transformer taps are 0.9p.u. and
1.1p.u.,  respectively.  The  lower  and  upper  limits  of  bus  shunt  capacitors  are  0.0p.u.  and  0.3p.u.,  respectively.
Furthermore, the voltage magnitudes of generator buses are assumed to vary in the range [0.9, 1.1] p.u. and the lower
and upper limits of load buses are considered to be 0.94p.u. and 1.06p.u., respectively. In this system, the maximum
iteration number gmax is set as 1000.

Fig. (4). The results' distribution for Case2 of IEEE 30-bus system.

5.2.1. Case 3: Minimization of Quadratic Cost Function

The objective function is defined as case 1. The optimal control variables of IHDE, DE, and PSO for case 3 are
shown in Table 6 and the comparison of the results obtained from other methods reported in the literatures are shown in
Table 7. As shown in the tables, the minimization of quadratic cost obtained by IHDE, DE, and PSO for case 3 are
41667.99 $/h, 41699.16 $/h and 41702.78 $/h, respectively, and the result of IHDE is better than DE, PSO, ABC [7],
ICBO [1], DSA [12] and MSA [11]. The Table 6 demonstrates IHDE algorithm can get less cost than other intelligent
algorithms in  the  feasible  space.  Moreover,  Fig.  (5)  shows the  optimal  convergence  curves  and Fig.  (6)  shows the
results in 30 independent simulations of IHDE, DE, and PSO for case 3.

Table 6. Optimal solutions for case 3 on IEEE 57 system.

Control variables
Case 3

IHDE DE PSO
P1(MW) 142.6683 143.2926 148.6137
P2(MW) 88.85812 88.70183 91.71634
P3(MW) 45.05665 45.06715 40.88899
P6(MW) 72.40753 68.82424 63.90829
P8(MW) 460.4850 459.7235 468.2037
P9(MW) 96.94107 98.92860 100.0000
P12(MW) 359.3236 361.7904 353.3791
V1(p.u.) 1.064728 1.024065 1.046639
V2(p.u.) 1.062703 1.021103 1.044469
V3(p.u.) 1.056291 1.012882 1.040994
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Control variables
Case 3

IHDE DE PSO
V6(p.u.) 1.061397 1.026209 1.060628
V8(p.u.) 1.072778 1.041820 1.072790
V9(p.u.) 1.047832 1.011943 1.038355
V12(p.u.) 1.050065 1.008183 1.031182
T4-18(p.u.) 1.035900 1.035200 0.956400
T4-18(p.u.) 0.920300 0.910300 1.046200
T21-20(p.u.) 1.016100 1.021000 1.051500
T24-25(p.u.) 0.979300 1.099900 1.099300
T24-25(p.u.) 1.054800 0.982600 0.957100
T24-26(p.u.) 1.026000 1.033100 1.044100
T7-29(p.u.) 0.996500 0.965000 1.023800
T34-32(p.u.) 0.972800 0.972400 0.980600
T11-41(p.u.) 0.904800 0.905200 0.952500
T15-45 (p.u.) 0.981100 0.941700 0.975100
T14-46(p.u.) 0.965900 0.923900 0.970800
T10-51(p.u.) 0.975700 0.938600 0.978900
T13-49(p.u.) 0.929600 0.900200 0.935900
T11-43(p.u.) 0.973100 0.930800 0.972200
T40-56(p.u.) 1.018300 1.020200 1.016700
T39-57(p.u.) 0.956700 0.971500 0.990800
T9-55(p.u.) 0.993100 0.972600 0.993300
QC18(p.u.) 0.002000 0.129400 0.093600
QC25(p.u.) 0.139900 0.163200 0.092400
QC53(p.u.) 0.125600 0.140200 0.132600

Fuel cost ($/h) 41667.99 41699.16 41702.78

Fig. (5). The optimal convergence curves for Case 3 of IEEE 57-bus system.

(Table 6) contd.....

0 200 400 600 800 1000
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

5

Iterations

C
os

t (
$/

h)
 

 

 
IHDE
DE
PSO



190   The Open Electrical & Electronic Engineering Journal, 2017, Volume 11 Chen et al.

Table 7. Comparison of the simulation results for Case 3 on IEEE 57 system ($/h).

Algorithms Min
IHDE 41667.9900

DE 41699.1600
PSO 41702.7800

ABC [7] 41693.9589
ICBO [1] 41697.3324
DSA [12] 41686.8200
MSA [11] 41673.7231

Fig. (6). The results' distribution for Case3 of IEEE 57-bus system.

CONCLUSION

An improved hybrid differential evolution algorithm (IHDE) based on DE and PSO has been proposed in this paper
to solve the optimal power flow problem which is a large-scale, multi-constrained and nonlinear optimization problem.
In order to show the practicability of the proposed algorithm, the generator quadratic cost and the transmission real
power losses objective functions are considered for the OPF problem. Then the IHDE, DE and PSO are tested on the
two systems: IEEE30-bus system and IEEE57-bus system. Furthermore, the results obtained from the IHDE algorithm
are compared with DE, PSO and other methods reported in the recent literatures. As the simulation results indicated, the
IHDE algorithm can solve the OPF problem successfully and has better robustness and convergence characteristics
while getting the solutions with high quality.
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