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Abstract: A fast and accurate near-field – far-field transformation technique with spherical spiral scanning tailored for 

nonspherical antennas, i.e., radiating systems with two dimensions very different from the third one, is developed in this 

paper. To this end, an antenna with one or two predominant dimensions (e.g., base station antennas and reflectarrays) is 

no longer considered as enclosed in a sphere, but in a prolate or oblate ellipsoid, respectively, thus allowing a remarkable 

reduction of the number of the near-field data to be acquired. Moreover, these source modellings remain quite general and 

contain the spherical one as particular case. Some numerical simulations, assessing the accuracy of the far-field recon-

struction process and its robustness with respect to random errors affecting the data, are reported. 

INTRODUCTION 

 As it is well-known, near-field – far-field (NF–FF) trans-
formation techniques play a significant role in modern an-
tenna measurements [1-3]. As a matter of fact, the pattern 
evaluation from NF measurements allows one to overcome 
those drawbacks which, for electrically large radiating sys-
tems, make unpractical to measure the pattern in a conven-
tional FF range. As suggested in [4], by employing continu-
ous and synchronized movements of the positioning systems 
of the probe and antenna under test (AUT), the time required 
for the acquisition of the NF data can be drastically reduced. 
By following this suggestion, innovative NF–FF transforma-
tion techniques from a nonredundant number of data col-
lected along spirals wrapping the conventional scanning sur-
faces have been recently developed [5-7]. In particular, a 
NF–FF transformation with helicoidal scanning has been 
proposed in [5], a planar spiral arrangement of samples has 
been considered in [6], and a NF–FF transformation with 
spherical spiral scanning has been developed in [7]. In all the 
cases, a nonredundant representation of the voltage data ac-
quired by the measurement probe on the considered scanning 
curve has been developed by applying the theoretical results 
on the nonredundant sampling representations of electro-
magnetic (EM) fields [8] and assuming the AUT enclosed in 
a sphere. This, in addition to the choice of the curve step 
equal to the sample spacing needed to interpolate the data 
along the corresponding meridian curve (generatrix, radial 
line, and meridian), has allowed one to obtain the required 
two-dimensional optimal sampling interpolation (OSI) for-
mula. It has been so possible to recover the NF data needed 
by the NF–FF transformations employing the corresponding 
conventional scannings [3]. At last, a unified theory of the 
spiral scannings has been provided in [9]. As a matter of 
fact, it has been proved that the voltage acquired by a non-
directive probe can be reconstructed on a quite arbitrary rota- 
tional surface from a nonredundant number of its samples 
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lying on a proper spiral wrapping the surface. The only re-
quired condition is that such a surface is obtained by rotating 
a meridian curve always external to the cone having the ver-
tex at the observation point and tangent to the AUT sphere. 
The proof has been attained by revisiting the approach in [8] 
for obtaining the optimal phase function to extract from the 
voltage expression and the parameter to be used for repre-
senting the scanning curve. It is worth noting that the voltage 
can be reconstructed by using the same interpolation scheme, 
even if the spiral lies on geometrically different surfaces. 

 Unfortunately, when considering elongated or quasi-
planar antennas having two dimensions very different from 
the third one, the spherical AUT modelling, even if quite 
general, induces a “volumetrical” redundancy, which implies 
an unnecessary increase in the number of required data. 

 The goal of this paper is just to overcome the above 
drawback by developing fast and accurate NF–FF transfor-
mation techniques with spherical spiral scanning tailored for 
these radiating systems. To this end, an antenna with one or 
two predominant dimensions is no longer considered as en-
closed in a sphere, but in a prolate (Fig. 1) or oblate (Fig. 2) 
ellipsoid, respectively, thus remarkably reducing the number 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Geometry of the problem for elongated antennas. 
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of required data. Moreover, these source modellings remain 
quite general and contain the spherical one as particular case. 
For sake of simplicity, the use of an ideal probe is assumed 
in the following, the extension to the case of a real probe 
being straightforward. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Geometry of the problem for quasi-planar antennas. 

 

THE SPHERICAL AUT MODELLING CASE 

 For reader’s convenience, the main results concerning the 

spherical spiral scanning when using a spherical AUT mod-

elling are summarized in this section. 

 Let us observe the field radiated by an AUT on a sphere 

of radius d in the NF region and adopt the spherical coordi-

nate system ( , , )r  to denote the point P (see Figs. 1 and 

2). According to [8], if the AUT is modelled as enclosed in 

the smallest sphere of radius a able to contain it and the spi-

ral is described by means of a proper analytical parame-

terization r = r ( ) , the “reduced electric field” 

j ( )( ) ( ) e( )F E r= ,           (1) 

 ( ) being a phase function to be determined, can be closely 

approximated by a spatially bandlimited function. The corre-

sponding bandlimitation error becomes negligible as the 

bandwidth exceeds a critical value W  [8], so that it can be 

effectively controlled by choosing a bandwidth equal to 

' W , ' 1>  being an excess bandwidth factor. 

 According to [8], a nonredundant sampling representa-

tion of the EM field on a spherical spiral with constant angu-

lar step  can be obtained by using the following expres-

sions for the optimal parameterization  and phase function  

 : 
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where r' denotes the source point, s is the arclength of the 

spiral, t̂  is the unit vector tangent to it at the considered 

point Q on the spiral,  is the wavenumber and R̂  is the unit 

vector from the source point to Q. The coordinates of Q are 

given by: 

sin cos

sin sin

cos

x d

y d

z d

=

=

=

            (4) 

wherein  is the parameter describing the spiral. Note that 

the spiral angle ,k=  unlike the zenithal angle , can as-

sume negative values. Moreover, the spiral angle  is always 

continuous, whereas, according to (4), the azimuthal angle  

exhibits a discontinuity jump of  when the spiral crosses the 

poles. Such a curve can be obtained by radially projecting on 

the measurement sphere a proper spiral wrapping the AUT 

sphere. In order to allow the two-dimensional interpolation, 

the angular step of the spiral must be chosen equal to the 

sample spacing required to interpolate the field along a me-

ridian [8, 9]. As a consequence, the parameter k is such that 

the angular step, determined by the consecutive intersections 

( )Q  and ( 2Q + )  of the spiral with the considered merid-

ian, is 2 (2 " 1)N= = + , with " Int( ') 1N N= +  and 

' Int( ' ) 1N a= + . Accordingly, being 2 k= , it fol-

lows that 1 (2 " 1).k N= +  The function Int( )x  gives the in-

teger part of x, and 1>  is an oversampling factor. 

 The extreme values of ˆ ˆR t  in (2) and (3) are determined 

[7, 9] by considering the intersection of the plane defined by 

t̂  and the unit vector r̂  (pointing from the origin to Q) with 

the cone having the vertex at Q and the generatrices coinci-

dent with the tangents to the AUT ball. As shown in [9], it 

results: 
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 As can be seen,  is /W  times the curvilinear abscissa 

along the spiral wrapping the sphere modelling the AUT. 

Since such a spiral is a closed curve, it is convenient to 

choose the bandwidth W  such that the angular like parame-

ter  covers a 2  range when the whole projecting curve is 

described. Therefore, 

2

0

"(2 1)

sin ' d '

N

a
W k k

+

= +
2

          (7) 

 By taking into account the above representation, the OSI 

formula for reconstructing the reduced field at any point Q of 

the spiral is [7, 9]: 
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where 2p is the number of retained samples ( ),
m

F  

0 Int( )/m =  is the index of the sample nearest (on the 

left) to Q, and  

2 2 " 1
m

m m M= = ( + )            (9) 

with " Int( ') 1M M= +  and ' Int( ' ) 1M W= + . Moreover, 
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are the Dirichlet and Tschebyscheff Sampling functions, 

wherein ( )
M

T  is the Tschebyscheff polynomial of degree 

" 'M M M=  and p= . It is worthy to note that, when 

interpolating the field in the neighbourhood of the poles 

( 0=  and = ), it is necessary to increase the excess 

bandwidth factor '  in order to avoid a significant growth of 

the bandlimitation error. This is mainly due to the fact that 

small variations of  correspond to very large changes of  in 

these zones. 

 The OSI formula (8) can be applied to determine the “in-

termediate samples”, i.e., the reduced field values at the in-

tersection points between the spiral and the meridian passing 

through P. Once these last have been evaluated, an analo-

gous expansion along  can be used to reconstruct the field 

at P [9]. It is so possible to get the NF data needed to per-

form the spherical NF–FF transformation [10], as modified 

in [11]. 

EXTENSION TO NONSPHERICAL ANTENNAS 

 The aim of this section is just the extension of the previ-

ously described sampling representation to the case of non-

spherical antennas, i.e., those having one or two predominant 

dimensions. When dealing with such a kind of antennas, it is 

no longer convenient to adopt the smallest sphere as surface 

enclosing them but, as suggested in [8], a proper rotational 

surface  bounding a convex domain. 

 The parameterization  to be used for describing a merid-

ian and the corresponding phase function  can be derived 

by taking into account that the extreme values of the inner 

product in (2) and (3) occur (see Fig. 3) at the two tangency 

points 1,2P  on 'C  (intersection curve between the meridian 

plane   and ). Accordingly, by choosing ' 2W =  

( ' being the length of 'C ), it results [8]: 

1 2 1 2
'

' 'R R s s= + +          (12) 

1 2 1 2
2

''R R s s= + +          (13) 

where 1 2,'s  are the arclength coordinates of 1,2P  and 1,2R  the 

distances from P to 1,2P  (Fig. 3). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Relevant to an observation meridian. 

 

 Some intriguing questions now arise. What are the equa-

tions of the spiral and the optimal expressions of  and , 

which allow to obtain a nonredundant representation along 

such a curve? 

 According to a heuristic reasoning, by paralleling the 

procedure of the previous section, the spiral can be obtained 

by projecting on the observation surface a proper spiral that 

wraps around the surface  modelling the AUT. The step of 

such a spiral is equal to the sample spacing 

2 (2 " 1)N= +  needed to interpolate the field along a 

meridian. It is worthy to note that, as before, 

" Int( ') 1N N= + , but now ' Int( ' ) 1.N W= +  The projec-

tion is obtained via the curves at  = const that, in such a 

case, take the role of the radial lines of the spherical model-

ling. Accordingly, the parametric equations of the spiral be-

come: 

sin ( ) cos

sin ( ) sin

cos ( )

x d

y d

z d

=

=

=

         (14) 

wherein (2 " 1).k N= = +  

 Again a heuristic reasoning allows the determination of 

the parameter  and phase factor  for obtaining a nonredun-

dant sampling representation along the spiral. In particular, 

by generalizing the corresponding relations for the case of 

spherical modelling (see (5) and (6)),  coincides with the 

phase function  relevant to a meridian, and  is /W  

times the arclength of the projecting point that lies on the 

spiral wrapping the surface . Moreover, W  is chosen equal 
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to /  times the length of the spiral wrapping the surface   

from pole to pole. Namely, the spiral,  and  are such that 

they coincide with those relevant to the spherical modelling, 

when  leads to a sphere.  

 The OSI expansion (8) can be still employed to recover 

the intermediate samples. Once these samples have been 

evaluated, the field at any point P on the observation sphere 

can be reconstructed via the following OSI expansion: 

( ) ( ) ( ) ( )

0

0

"

1

( ),

n q

n N n N n

n n q

F F D

+

= +

=       (15) 

where " ',N N N=  [ ]0 0Int ( ) )/n = , 2q is the num-

ber of the retained intermediate samples ( ) ,
n

F  

0( )n n k n n= = + = +             (16) 

and all the other symbols have the same or analogous mean-

ing as in (8). 

 Let us now briefly discuss the reasons for applying a heu-

ristic approach. First of all, the rigorous analytical determi-

nation of the optimal spiral and the evaluation of the corre-

sponding phase factor and parameterization become much 

more difficult or impossible, since some analytical consid-

erations are no longer valid when adopting a modelling dif-

ferent from the spherical one. On the other hand, the heuris-

tic approach gives an easy to handle tool for determining 

them. Moreover, it can be easily applied to different AUT 

modellings, as those proposed in [12, 13] with reference to 

the plane-polar and cylindrical scanning case, respectively. 

ELLIPSOIDAL AUT MODELLING CASES 

 An effective modelling for an elongated AUT is obtained 

by considering it as enclosed in the smallest prolate ellipsoid 

having major and minor semi-axes equal to a and b (see 

Figs. 1 and 4), whereas an appropriate modelling for a quasi-

planar source is got by enclosing it in an oblate ellipsoid 

(Figs. 2 and 5). In these cases, the optimal expressions for 

the bandwidth ,W  the phase factor  and parameterization 

 relevant to a meridian become [8]: 

( )24
2/

a
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u
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where  is the wavelength, 1 2( ) 2/u r r f=  and 

1 2( ) 2/v r r a= +  are the elliptic coordinates, 1 2,r  being the 

distances from P to the foci and 2f the focal distance of '.C  

Moreover, /f a=  is the eccentricity of 'C  and E( | ) de-

notes the elliptic integral of second kind. It is worth noting 

that, in any meridian plane, the curves  = const and  = 

const (see Figs. 4, 5) are ellipses and hyperbolas confocal to 

',C  instead of circumferences and radial lines of the spheri-

cal source modelling. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Ellipsoidal source modelling: prolate case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Ellipsoidal source modelling: oblate case. 

 

NF–FF TRANSFORMATION WITH SPHERICAL 

SCANNING 

 The key steps of the classical NF–FF transformation with 

spherical scanning [10] as modified in [11] are reported in 

this section. 

 According to [10], the tangential electric field in the FF 

region can be expressed in terms of the following truncated 

spherical wave expansion: 

( )
je

, ,
R

t
E R

R
=  

max

1
1 21 2

1

jj ( ) j ( ) e
nk nknk nk

N n

n n k

n k n

A f A f+

= =

+       (20) 
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where the spherical coordinate system ( , , )R  has been 

adopted to specify the FF observation point. 

 The choice of the highest spherical wave to be considered 

is determined in the classical approach according to the fol-

lowing rule-of-thumb: 

( )max
Int 10N a= +          (21) 

where a is the radius of the smallest sphere enclosing the 

AUT. Whereas in the approach [11], the highest spherical 

harmonic is rigorously fixed by the aforementioned ban-

dlimitation properties of the radiated EM fields [8]. Accord-

ingly: 

( )max
Int ' 1N a= +           (22) 

 The vectorial functions 
1,2

( )
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f  are given by: 

( )1

1
( )

2 1nk

k
k

f
k n n

=
+

 

( ) ( )
j dˆ ˆcos cos

sin d

k k

n n

k
P P+        (23) 

( )2

1
( )

2 1nk

k
k

f
k n n

=
+

 

( ) ( )
jd ˆ ˆcos cos

d sin

k k

n n

k
P P+        (24) 

( )cos
k

nP  being the normalized associated Legendre func-

tions as defined by Belousov in [14]. The modal expansion 

coefficients 1,2nk
A  in (20) can be determined from the 

knowledge of the tangential electric field on the scanning 

sphere: 
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where (*) denotes the complex conjugate and 

( ) ( )(2)
1n ng x h x=          (26) 

( ) ( )(2)
2

1 d

dn ng x x h x
x x
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( )(2)
nh x  being the spherical Hankel function of second kind 

and order n.  

 As shown in [11], the integration over  in relation (25) 

can be efficiently carried out by expanding the tangential 

electric field components in Fourier series with respect to , 

i.e., 

( ) ( ) j
, ,, , e

m

M

m

m M

E d G

=
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where *Int( sin ) 1M a= + , *  being the azimuthal 

excess bandwidth factor [11]. In a quite similar way, the re-

maining integration over  can be efficiently performed by 

expanding the components of ( )k
G  and ( )

1,2nk
f  in 

Fourier series. Accordingly, 
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 It is worthy to note that, in order to evaluate the Fourier 

series coefficients of the components of ( )
k

G  and 

1,2 ( )
nk

f , it is necessary, as described in [11], to extend 

 

 

 

 

 

 

 

 

 

 

Fig. (6). Amplitude of the electric NF -component on the merid-

ian at  = 90°. Solid line: exact. Crosses: interpolated. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7). Phase of the electric NF -component on the meridian at  

= 90°. Solid line: exact. Crosses: interpolated. 
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these components from [0, ] to the range [– , ]. Moreover, 

to take advantage of the numerical efficiency of the standard 

FFT algorithm, the number of NF parallels and the number 

of samples on them must be the first power of two greater or 

equal to 
max

N  and 2M , respectively. 

NUMERICAL RESULTS 

 Two sets of simulations are reported in the following. 

The former (from Figs. 6 to 13) refers to an elongated AUT, 

whereas, the latter (from Figs. 14 to 17) is relevant to the 

case of a quasi-planar antenna. 

 In the first case, the numerical tests refer to a spiral 

wrapping a sphere having radius 35d =  and to a uniform 

planar array of elementary Huygens sources polarized along 

the z axis and spaced by 0.5 . These sources cover an ellip-

tical zone in the plane 0,y =  with major and minor semi-

axes equal to 25  and 6 , so that the antenna can be very 

well fitted by a prolate ellipsoid. Figs. (6 and 7) show the 

reconstruction of the amplitude and phase of the electric NF 

-component on the meridian at  = 90°. As can be seen, 

there is an excellent agreement between the exact field and 

the reconstructed one. It is useful to note that, in the zones of 

the spiral determined by the 60 samples around the poles, we 

have adopted an excess bandwidth factor such that the sam-

ple spacing is reduced exactly by a factor 9. The accuracy in 

the NF interpolation is also confirmed by the values of the 

maximum and mean-square errors (normalized to the field 

maximum value on the sphere) reported in Figs. (8 and 9) for 

p = q  ranging from 3 to 9, ' 1.20=  (save for the polar 

zones), and 1.10, 1.15, 1.20, 1.25.=  As expected, they 

decrease up to very low values on increasing the oversam-

pling factor and/or the number of retained samples. The ro-

bustness of the algorithm has been investigated by adding 

random errors to the exact samples. These errors simulate a 

background noise (bounded to a in amplitude and with ar-

bitrary phase) and an uncertainty on the field samples of 

± ar in amplitude and ±  in phase. As shown in Figs. (10 

and 11), the interpolation algorithm works well also in pres-

ence of error affected data. The reconstructions of the an-

tenna FF pattern in the principal planes are shown in Figs. 

(12 and 13). As can be seen, the reconstructions are very 

accurate. It is worthy to note that the number of samples on 

the spiral is 14 852, significantly less than that (66 940) re-

quired by the approach proposed in [9]. In particular, the 

number of “regular samples” at spacing  is 12 932, 

whereas the number of “extra samples” at reduced spacing is 

1 920. Moreover, the number of employed samples results to 

be much less than that (130 562) needed by the classical NF–

FF transformation with spherical scan [10]. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (9). Normalized mean-square errors in the reconstruction of the 

electric NF -component. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (10). Amplitude of the electric NF -component on the merid-

ian at  = 90°. Solid line: exact. Crosses: interpolated from error 

affected data. 

 The second set of figures refers to a spiral wrapping a 

sphere having radius 35d =  and to a uniform planar circu-

lar array with radius 19.8 ,  lying in the plane z = 0. Its ele-

ments (elementary Huygens sources linearly polarized along 

the y axis) are radially and azimuthally spaced by 0.5 .  The 

considered array has been modelled as enclosed in an oblate 

ellipsoid having a = 20  and b = 3 . An example of NF 

reconstruction relevant to the meridian at 90= °  is re-

ported in Fig. (14). Again, a very accurate reconstruction 

results. Fig. (15) confirms the algorithm accuracy by show-

 

 

 

 

 

 

 

 

 

 

 

Fig. (8). Normalized maximum errors in the reconstruction of the 

electric NF -component. 
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ing the normalized maximum and mean-square errors for 

p q=  ranging from 3 to 10 and ' 1.20= = . Note that, 

also in such a case, it has been necessary to increase '  

when interpolating nearby the poles. In particular, we have 

adopted, in the zones of the spiral determined by the 20 sam-

ples around the poles, an excess bandwidth factor such that 

the sample spacing is reduced by a factor 13. The reconstruc-

tion of the antenna FF pattern in the E plane is shown in Fig. 

(16). As can be seen, the exact and recovered fields are prac-

tically indistinguishable, thus assessing the effectiveness of 

the developed NF–FF transformation. Also in such a case, it 

can be interesting to compare the NF data required by the 

different techniques. The number of samples on the spiral is 

now 23 763, significantly less than that (42 700) required by 

the approach in [9]. In particular, the number of regular sam-

ples is 22 803, whereas the number of extra samples is 960. 

Moreover, the number of used samples results to be much 

less than that (130 562) needed by the NF–FF transformation 

[10]. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (14). Amplitude of the electric NF -component on the merid-

ian at  = 90°. Solid line: exact. Crosses: interpolated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (15). Normalized errors in the reconstruction of the electric NF 

-component. 

 

 A further example, which assesses the stability of the 
proposed NF–FF transformation technique, is reported in 
Fig. (17). It refers to the FF reconstruction obtained from 
error affected NF data.  

 

 

 

 

 

 

 

 

 

 

 

Fig. (11). Phase of the electric NF -component on the meridian at 

 = 90°. Solid line: exact. Crosses: interpolated from error affected 

data. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (12). E-plane pattern. Solid line: exact. Crosses: reconstructed 
from NF data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (13). H-plane pattern. Solid line: exact. Crosses: reconstructed 
from NF data. 
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Fig. (16). E-plane pattern. Solid line: exact. Crosses: reconstructed 

from NF data. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (17). E-plane pattern. Solid line: exact. Crosses: reconstructed 

from error affected NF data. 

 

CONCLUSIONS 

 A fast, accurate and stable NF-FF transformation tech-
nique with spherical spiral scanning tailored for nonspherical 
antennas has been developed in this paper. To this end, an 
AUT with one or two predominant dimensions has been con-
sidered as enclosed in a prolate or oblate ellipsoid, respec-
tively. By using these effective modellings, instead of the 

previously adopted spherical one, it is possible to remarkably 
reduce the number of the required NF data. Although, the 
optimal spiral, the corresponding phase factor and param-
eterization have been determined by applying a heuristic 
approach, the proposed techniques work very well as widely 
assessed by the numerical simulations. 
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