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Abstract: Even if it is an idealization, the band-limited process is widely taken as model in signal processing and in 

communications. The classical Shannon formula is exact for the unit rate sampling and a spectral support of 2 -length. It 

is no longer error-free when one sample is lost and replaced by an estimation, because the set of functions {e
in

, n Z} is 

free and complete in L (- , ). Then, an exact reconstruction can occur only when the process is oversampled. In this con-

text, iterative procedures exist [1], but not analytic formulas, from apart these in [2], which have an uncontrolled conver-

gence. In this paper, we give simple formulas when one or two samples are missing, but which can be generalized to a 

number of erased samples larger than two. We show that the reintroduction of ignored samples can improve the conver-

gence of the formulas. The links with the Lagrange interpolation formula are highlighted. 
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1. INTRODUCTION 

 Let Z={Z(t), t R} be a (real or complex) stationary proc-

ess, owing a regular spectral density s( ), such as [3] 

 
              (1) 

 Such a process can be reconstructed from the series of 

random samples Z´={Z(n), n Z}, because the “Nyquist con-

dition” is fulfilled [2, 4, 5]. For example, by the so-called 

Shannon formula  

         (2) 

 The formula (2) is exact with respect to the mean-square 

distance (m.s convergence) but other kinds of convergence 

can be used [6]. Formula (2) cannot be used when a finite or 

infinite number of samples is lost, but the necessary informa-

tion exists for reconstructing Z(t), as long as the mean num-

ber of remaining samples is sufficient [7]. General exact 

formulas can be given [8], completing the sequence of avail-

able samples by elements whose influence is negligible. 

Also, reconstruction by recursive algorithms is currently 

used [1]. Furthermore, formula (2) belongs to the class of 

Lagrange interpolation formula (LIF) because of the familiar 

equality 

 

 Conditions for applying this kind of formulas are well-
known, but difficult to be applied, apart from rare cases [9].  
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For example, the LIF is divergent when a finite number of 

samples is missing. But, surprisingly, it is possible to have 

convergent and available LIF when an infinite number of 

samples is suppressed. It is the basis of this paper, where we 

construct simple formulas, which are exact when a finite 

number N of samples is erased. Analytic expressions are 

given for N=1 and 2, but the method can be iterated for 

larger values of N. The proofs are given in the Appendix and 

are based on the complex functions theory, widely used in 

sampling theory [5]. 

2. ONE MISSING SAMPLE 

 We are in the case where the power spectrum is inside (-

+a, -a). It is well known that the set of functions {exp[itn 

], n Z} is complete for sets like L (- +a, -a), for instance 

when [7]. 

 

 Therefore, a sufficient amount of information for recon-

structing the process is contained in the set of samples {Z(n), 
n Z- Z}, when l is an integer chosen such as 

            (3) 

 Then, the following sampling formula is available (with 

respect to the mean-square convergence) 

     (4) 

 Where Jl is the set of relative integers k which are not 

multiple of l, i.e k=ql+q´, with q Z, q´ {1,2,…,l-1}. In this 

formula, the lost sample Z(0) is not used, but neither are the 

available samples Z(ql),|q|=1,2,… Obviously, we can take in 
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(4) Z instead of Jl because sin( k/l)=0 outside Jl. The proof is 

given in the Appendix. 

particularly, the lost sample Z(0) verifies the formula 

         (5) 

 This value can be reintroduced in the formula (2). Obvi-

ously, the convergence of (4) or (5) depends on the value of 

l. The larger is l, the slower is the speed of convergence of 

the series sinc( k/l). But, at the same time, the rate of forgot-

ten samples (i.e …Z(-l),Z(0),Z(l),Z(2l)..) decreases, and then, 

also the loss of information. Consequently, a compromise 

has to be found about the value of l. 

 For example, if a=0.11 , we have l 10. For the mini-

mum value l=10, the loss of information is small, but the 

weights of the Z(k) in (5) vary slowly, as shown in the fol-

lowing table 

 

 This shows a slow convergence of the series (5). Obvi-

ously, this fact is explained by a correlation divided between 

too numerous samples. The correlation coefficient between 

Z(0) and Z(1),Z(2),Z(3),Z(4)…. is equal to 

0.12,0.11,0.10,0.09… when the spectrum is uniform. Then, 

distant samples have to intervene in the interpolation for-

mula. 

 If we take a=0.34 , then l 3. For l=3, the loss of the 

samples Z(±3),Z(±6)… is not negligible, but the weights de-

crease as follows (the formula is symmetrical) 

 

 In this case, the samples are more linked with their first 

neighbours. For a uniform spectrum, the first correlations are 

equal to 0.42,-0.20,-0.01,0.11… It seems that the best (the 

less bad?) convergence appears for the smallest value of l 

compatible with the power spectrum (i.e verifying (3)). 

Moreover, it is possible to use several values of l, and to 

compare the results. A higher confidence will be achieved 

when the different estimates do not differ significantly. 

 For a>0.5 , we can take l=2 

         (6) 

 Particularly, Z(0) can be given in function of the Z(2n+1) 

 

 Actually, (6) is a version of the Shannon formula (2) ap-

plied when the sampling period is 2 (with a gap of one unit 

on the sampling times). The loss of information is due to the 

disappearance of the even samples. In this case, to take l=3 

or 4 seems a better solution. But, when l=2, it is possible to 

reintroduce the samples Z(-2) and Z(2) in the interpolation 

formula (see the Appendix). 

 

            (7) 

 The coefficients linked to the Z(n) decrease like n
-3

, 

which shows a fast convergence. Note that it is an exact for-

mula, which is not the case for interpolations based on 

splines or wavelets. The first coefficients are  

 

 It is also possible to reintroduce the samples Z(±4). In 

this case, the first coefficients become 

 

 The reintroduction of the samples Z(±3) can also be made 

when l=3, to improve the convergence. Note that the series  

 

is a LIF (Lagrange Interpolation Formula) applied to the set 

Z
*
, which converges only if the bn converge to zero fast 

enough. It is not the case when bn=Z(n) because of the sta-

tionarity. At the opposite, it is easy to verify that (4) is a 

(convergent) LIF applied to the set Jl, because, if 

f(t)=sin t/sin( t/l), we have the equalities 

 

 Finally, when one sample is lost, it is possible to give 

exact formulas of reconstruction, with convergence in n
-q 

, 

with arbitrary q. 

3. TWO MISSING SAMPLES 

 We assume that Z(0) and Z(b) are lost. If the integer l 

verifies (3) and if b  lZ
*
, then the formulas (4) and (5) are 

true. Moreover, we have (when b=ml) 

      (8) 

 When |b| is too small, it is not possible to have simulta-

neously b  lZ
*
 and l> /a. In this situation, we will take l such 

as 
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 (9) 

 Then, the following formula is available (see the Appen-

dix) 

 

      (10) 

where Kl is the set of integers, which do not cancel the prod-

uct sin( z/l)sin( (z-m )/l), i.e different from kl and of kl+m . 

Particularly, the lost samples are retrieved from 

 
            (11) 

 The convergence of (11) is poor. To improve it, we can 

reintroduce few samples, as explained in the case N=1. For 

example, let us place ourselves in the case a=0.51 with a flat 

power spectrum. Let assume that the samples Z(0) and Z(1) 

are lost. We can take l=4 (it is a minimum), with m=0, 

m =1. The coefficients in the (asymmetrical) first formula of 

(11) are 

 

and they decrease like n
-1

 (from the high value 1.27). If Z(-3) 

and/or Z(±4) are reintroduced (the nearest to Z(0) suppressed 

sample(s)), then the coefficients will decrease in n
-2

 (or n
-3

 or 

n
-4

), but the weights of the nearest used samples increase 

surprisingly. For example, if only Z(-3) is added, the coeffi-

cients become 

 

 As in the case N=1, the application of these formulas to 

the unused samples can allow to verify them. Furthermore, 

the method can be iterated as long as the set of erased sam-

ples remains finite. Of course, the formulas become more 

and more complicated. As in the case N=1, (10) is a conver-

gent LIF. 

 When available samples are not reintroduced to improve 

the convergence of interpolations, we are in a sampling 

scheme, which was used for example in [10-12], where the 

used samples are members of some sets in the form {nl+l , 

n Z}. 

 

4. CONCLUSION 

 The recovery of missing samples is a problem, which can 

be treated separately [1] or inside the frame of the irregular 

or nonuniform sampling [8]. In this paper, we study ban-

dlimited stationary processes, with sampling rate above the 

Nyquist bound. The problem is to reconstruct exactly the 

process when a finite number of samples are erased. In a 

similar way, we have to find the exact value of the missing 

samples in a (linear) function of the available samples. We 

notice that it can be worthwhile to construct interpolation 

formulas which do not take into account periodic sequences 

of samples containing erased samples. This method has at 

least three benefits: (theoretically) exact reconstruction, pos-

sible verification with unused samples, or by using different 

formulas. This last aim can be reached by changing the pe-

riod of unused samples, and /or adding samples. Actually, 

the obtained formulas are Lagrange interpolations, which are 

not true when all available samples are used. 

5. APPENDIX 

1) We look at the complex function f(z) defined by  

 

 f(z) is integrated on the square Cn , n large enough, with 

horizontal sides at the ordinates ±(nl+ ) and centred at the 

origin. Using the theorem of residues [13], we obtain (with 

order one poles on Jl ) 

 
            (12) 

 If we take into account the behaviour of f(z) on Cn : 

 

and if we suppose that  [- (l-1)/l, (l-1)/l] then 

         (13) 

 From (12) and (13) we deduce the equality 

 

 The interval [- (l-1)/l, (l-1)/l] contains [- +a, -a], be-

cause of (3). The familiar isometry between functional 

spaces yields (4), replacing in this formula e
i t

 by Z(t ) [3]. 

2) Let assume that N=1, a> /2, l=2. With the same kind of 

integration contour, we consider the complex function 
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 Where the poles ±2 reappear. With such f(z), we obtain, 

for   [- /2, /2] 

 

 

then (7) for t=0. 

3) When two samples are lost, we take f(z) as 

 

 Where m  {1,2,…,l-1}. The singularities of f(z) are real 

poles of order one at the integers different of kl and kl+m , k 

 Z. The theorem of residues leads to 

 

 Where the sequence Cn goes through the abscissa axis at 

appropriate points. 

4) If N>2 samples are lost, we will take l>N /a, and the cor-

responding sampling times tk will be noted 

 

assuming that the m k are different (it is not difficult to with-

draw this hypothesis). 

 We apply the residue’s theorem to the complex function 

 

 Therefore, we generalize (10) to 

 

 Where Kl =Z- Uk=1…N(lZ+m k) is the set of order one poles 

of f(z). Like soon explained, the convergence rate is im-

proved, reintroducing samples. 
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