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Abstract: A near-field to far-field transformation technique with helicoidal scanning for elongated antennas, which allows 
the evaluation of the antenna far-field pattern in any cut plane directly from a nonredundant number of near-field data 
without interpolating them, is developed in this paper. It is based on the nonredundant sampling representations of 
electromagnetic fields and employs a flexible source modelling suitable for long antennas to determine the number of 
helix turns. The number of near-field measurements on each turn is on the contrary dictated by the minimum cylinder rule, 
as in the classical cylindrical scanning, in order to reduce the computational burden and to simplify the scanning from the 
mechanical viewpoint. Some numerical and experimental results assessing the effectiveness of the proposed technique are 
reported. 
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1. INTRODUCTION 

 Near-field – far-field (NF–FF) transformation techniques 
with helicoidal scanning, exploiting as suggested in [1] 
continuous and synchronized movements of the positioning 
systems of the probe and antenna under test (AUT), have 
been developed in [2-9] to significantly reduce the 
measurement time, which is currently very much greater than 
that needed to carry out the transformation. Apart from that 
in [2], they rely on the nonredundant sampling 
representations of electromagnetic (EM) fields [10, 11] and 
employ optimal sampling interpolation (OSI) formulas to 
efficiently recover the NF data required by the classical NF–
FF transformation with cylindrical scanning [12, 13] from 
the acquired nonredundant helicoidal ones. Besides the use 
of continuous movements, the drastic measurement time 
saving that characterizes the nonredundant NF–FF 
transformations with helicoidal scanning [3-9] is due to the 
significantly reduced number of needed NF data, which can 
be further lowered if the surface chosen to enclose the AUT 
fits better its actual shape. This occurs, e.g., when 
considering elongated antennas which can be properly 
modelled as enclosed in a prolate ellipsoid [6-8] or in a 
cylinder ended in two half spheres (rounded cylinder) [8, 9], 
instead of the smallest sphere able to contain them [3-5]. 
Moreover, these effective antenna modellings allow the 
employment of scanning cylinders having radius smaller 
than one half the antenna maximum size, thus reducing the 
error due to the scanning area truncation. Indeed, also the  
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probe uncompensated direct NF–FF transformation with 
helicoidal scanning [2], which employs a fast Fourier 
transform (FFT) based algorithm to evaluate the antenna far 
field, allows one to consider measurement cylinders with 
radius smaller than one half the antenna maximum size. 
However, such a technique does not exploit the 
nonredundant representations of EM fields and, accordingly, 
it needs a large amount of NF data. A direct NF–FF 
transformation with helicoidal scanning for volumetrical 
antennas, which allows the evaluation of the antenna far field 
in any cut plane directly from a nonredundant number of NF 
data without interpolating them, has been recently developed 
in [14]. Moreover, it presents the very interesting feature to 
remove the characteristic ripple caused by the discontinuity 
of the near field at the scanning zone edges. Unfortunately, 
this last transformation is not suitable for elongated 
antennas, as it makes use of the spherical source modelling. 
A direct helicoidal NF–FF transformation using a prolate 
ellipsoid to model an elongated AUT has been recently 
proposed [15, 16] in order to overcome the drawbacks 
related to the spherical source modelling. 
 The goal of this paper is to develop and validate both 
numerically and experimentally an even more effective 
direct NF–FF transformation with helicoidal scanning 
suitable for electrically long antennas and requiring a 
nonredundant number of NF measurements. Such a 
technique assumes the AUT as enclosed in a rounded 
cylinder (see Fig. 1) to determine the proper scanning helix 
and the number of its turns, whereas the amount of NF data 
required on each turn is fixed according to the minimum 
cylinder rule, as in standard cylindrical scanning [12, 13]. 
The choice of a rounded cylinder instead of a prolate 
ellipsoid as AUT modelling allows a further reduction of the 
number of NF data and, as a consequence, of the 
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measurement time. As a matter of fact, such a flexible 
modelling allows one to fit better the shape of a lot of actual 
antennas by properly setting its geometric parameters. 

2. NONREDUNDANT SAMPLING REPRESENTATION 
OF THE VOLTAGE 

 Let us consider an elongated AUT enclosed in a rounded 
cylinder ! of parameters h! and a! and a nondirective probe 
scanning a proper helix lying on a cylinder of radius d in the 
antenna NF region (Fig. 1). In the following, the spherical 
coordinate system (r, ", #) or the cylindrical one ($, #, z) are 
used to denote an observation point P. Since the voltage V 
measured by such a probe has the same effective spatial 
bandwidth of the field [17], the nonredundant representations 
of EM fields [10] can be applied to it. Accordingly, when 
dealing with the representation of V on an observation curve 
C, it is convenient to adopt a proper analytical 
parameterization r = r(%) for describing C and to introduce 
the “reduced voltage” 

   
%V (!) =V (!) e j" (!)  (1) 

where V is the voltage V1 or V2 measured by the probe or by 
the rotated probe and &(%) is a proper phase function. The 

error, occurring when 
   
%V (!)  is approximated by a 

bandlimited function, is negligible as the bandwidth exceeds 
a critical value W% [10], so that it can be controlled by 
choosing a bandwidth equal to χ! W%, where χ! is a bandwidth 
enlargement factor slightly greater than unity for an 
electrically large antenna [10]. 
 When the curve C is a cylinder generatrix, the bandwidth 

 
W! , the parameterization %, and the corresponding phase 
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where ' is the wave number,  l'  is the length of C! 
(intersection curve between the meridian plane passing 
through P and ! ), R1,2 are the distances from P(d, #, z) to the 
tangency points P1,2  on C!, and s!1,2 are their arclength 
coordinates (see Fig. 2). As shown in [9], it results: 
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Fig. (1). Helicoidal scanning for electrically long antennas. 

 
Fig. (2). Relevant to a generatrix. 
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 According to [8, 9], a two-dimensional OSI expansion to 
reconstruct the probe voltage from a non redundant number 
of its samples acquired along a helix is obtained: i) by 
determining the helix such that its step is equal to sample 
spacing needed for the voltage interpolation along a 
generatrix; ii) by developing a non redundant sampling 
representation of the voltage on the helix. 
 Accordingly, the helix is got by projecting on the 
cylinder a proper spiral wrapping the rounded cylinder that 
models the AUT. The helix step is equal to the sample 
spacing ∆" = 2#/(2N!!+1) needed for the voltage 
interpolation along a generatrix. Note that N!! = Int ($N()+1, 
where Int(x) denotes the integer part of x, $ > 1 is an 
oversampling factor that controls the truncation error [10], 
and N! = Int ($! W")+1. The projection is obtained via the 
curves at % = const [8, 9]. Thus, the parametric equations of 
the helix, when imposing its passage through a point Q0 of 
the generatrix at % = 0, are: 

  

x = d cos(! " !s)

y = d sin(! " !s)

z = d cot[# ($ )]

%

&
'

(
'

  (7)

 
where in ) is the angular parameter that describes the helix, )s is 
the value of ) at Q0, and % = k), with k = ∆%/2* = 1 /(2N!! +1). 
 The nonredundant representation on the helix is got by 
choosing the optimal parameter + describing it equal to &/W+  
times the arclength of the projecting point on the spiral 
wrapping the rounded cylinder and the related phase function 
, coincident with &. The bandwidth W+ is chosen equal to 
&/# times the length of the spiral wrapping ! from pole to 
pole [8]. 
 According to the above results, the reduced voltage at the 
point P(d, #, z) can be recovered via the OSI expansion 
along the generatrix [9]: 
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where 2q is the number of retained samples  
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are the Dirichlet and Tschebyscheff sampling functions [9, 
10], TN(.) being the Tschebyscheff polynomial of degree  
N = N!! - N! and ! = q∆%. 

 The samples   %V (%n) are recovered [9] via a similar OSI 
expansion along the helix: 
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where 
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 with M" = Int(- M!) +1 and M! = Int(- ! W+) +1. The other 
symbols have the same meaning as in (8). 
 Expansions (8) and (12) allow the reconstruction of the 
probe voltage at any point on the scanning cylinder from the 
acquired nonredundant helicoidal samples so that they can be 
properly applied to recover the NF data required by the 
classical cylindrical NF–FF transformation [12] or [13]. 
However, the proposed direct NF–FF transformation avoids 
such an interpolation step, as it will be shown in the next 
section. 

3. THE DIRECT NF–FF TRANSFORMATION 
TECHNIQUE 

 According to [12], the cylindrical wave expansion 
coefficients av and bv of the AUT field are related to: i) the 
two-dimensional Fourier transforms 
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of the probe voltage for two sets of measurements (the probe 
is rotated by 90° in the second set); ii) the wave expansion 
coefficients (cm, dm) and (c!m, d!m) of the field radiated by the 
probe and the rotated probe, when used as transmitting 
antennas. In particular [12], 
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where . = ('2 -/2)1/2, and 

  
H
!

(2)(")  is the Hankel function of 
second kind and order 0. 

 In the classical approach, the Fourier transforms (14) of 
the probe and rotated probe voltages are efficiently evaluated 
via the FFT algorithm and the sample spacings of the NF 
data are: 
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where $! is the radius of the smallest cylinder enclosing the 
AUT (minimum cylinder rule) and ' the wave length. 
 Once the modal coefficients have been determined, the 
FF components of the electric field 
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in the spherical coordinate system (r, ", #) can be efficiently 
evaluated by performing the summations via the FFT 
algorithm. 
 An efficient probe compensated NF–FF transformation to 
evaluate the antenna far field directly from the nonredundant 
helicoidal NF data is now proposed. To this end, by taking 
into account the OSI expansion (8) and relation (1), the 
Fourier transforms (14) are rewritten in the form: 
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where, according to (9), 
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the intersection points between the generatrix at # and the 
helix, Nr is the set of indexes of all used helix turns, and the 
function Q coincides with the function (N, when |%(z) - %n| < 
q∆%, and is equal to 0, otherwise. 
For any fixed #, the integration over z, gives: 
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where zi = z(%n+ q∆%) and zf = z(%n - q∆%). Thus relation 
(21) can be rewritten as 
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 It can be easily recognized that the integration over # in 
this last relation can be efficiently performed via the FFT 
algorithm, if the number of the samples on each helix turn is 
always equal to the smallest integer MH, product of powers 
of 2, 3 and 5 equal or greater than 2[Int(- !'a!)+1]. Note that, 
in such a way, the samples lying on the helix at #m = m∆# = 
2#m/MH with m = 0,…, MH -1 are all aligned and, 
accordingly, it results: 
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where %m.n = %n(#m) = %()s) + k #m + n∆%. The summation in 
(24) can be, obviously, carried out via FFT. Moreover, it is 
worthy to stress that the Gn/ (#m)’s can be calculated, once 
and for all, for given sets of antennas, since they depend only 
on the measurement cylinder radius and on the parameters of 
the AUT modelling. 

 By summing up, the antenna far field can be determined 
by executing the following steps: i) the samples of V1 and  
V 2, acquired at constant angular step ∆# along the helix, are 
multiplied by the phase factor ej1; ii) for each required value 
of ", fixing the corresponding value of / via the relation  
/ = ' cos ", the Gn/ values are evaluated or read, if already 
calculated; iii) for each helix turn, specified by the index n, 
the FFT of the sequence    %V 1,2 ( %m,n) Gn/(#m) is computed; iv) 
then the Fourier transforms Iv

1,2(/) of the probe voltages are 
determined by performing the summations over n )Nr and 
the corresponding values of the modal coefficients av(/) and 
bv(/) are evaluated; v) at last, the FF spherical components of 
the electric field at the considered angle "  are determined by 
evaluating (19) and (20) via the FFT algorithm. 
 In order to reduce the computational effort, it is 
convenient to employ this procedure to evaluate only the FF 
samples required for reconstructing the antenna pattern via 
the OSI expansion in [18], properly modified to deal with an 
even number of samples both along the parallels and the 
meridians: 
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 where in n0 = Int(%/∆%) and m0 = Int(#/∆#n)are the indexes 
of the sample nearest (on the left) to the output point, and 



An Efficient Transformation Technique for the Direct Recovering The Open Electrical & Electronic Engineering Journal, 2013, Volume 7    25 

  
F!," (! ," ) = r e j# r

E!," r,! ,"( )  (26) 

  
!

n
= n"! = n# N

F
" ;

  
!

m,n
= m"!

n
= m# M

n
"  (27) 

  
N

F
"= 2 Int(!N '/2) +1[ ] ;

  
N

F
= N

F
" ! N '  (28) 

  
M

n
"= 2i

! Int ("M '
n
) +1 ;

  
M '

n
= Int !*W" (#

n
)[ ]+1  (29) 

  
W! ("

n
)= #a' sin $ ("

n
)( ) ;

  
Mn= M

n
"! M '

n
 (30) 

  
!* = 1+ ( ! '"1)[sin#($

n
)]"2/3  (31) 

It must be stressed that there is no need to extract the phase 
factor e*j1(%) from the far-field expression, since it is constant 
on the far-field sphere. Moreover, in the considered far-field 
representation, the expression of the optimal parameter % 
becomes simpler [18]: 

   
! = " /l'( ) 1# cos$( )h'+ 2a'$[ ]  (32) 

 It is worth noting that the use of an OSI expansion 
tailored for an even number of samples along the parallels is 
due to the employment of an efficient power of two FFT 
algorithm for computing the FF components of the electric 
field (19) and (20). Moreover, 

  
N

F
"  has been chosen 

according to (28) in order to have FF samples on the equator. 

 It can be useful to point out that, by applying the OSI 
expansion (25), it is possible to reconstruct the antenna far 
field in any cut plane at # = constant and not only in those 
attainable by performing the evaluation of (19) and (20) via 
FFT. At last, it must be stressed that, as shown in [14], the 
proposed direct NF–FF transformation with helicoidal 
scanning exhibits the very interesting feature to eliminate the 
ripple due to the near field discontinuity at the edges of the 
scanning zone. This is due to the different method employed 

to evaluate 
  
I
!

1,2 . As a matter of fact, in the standard 
transformation technique, they are computed via FFT by 
taking into account only the NF data falling in the scanning 
area so that the integration over z is truncated to the 
measurement cylinder height. Whereas, in the proposed 
approach, the effect of each NF sample is considered (see eq. 
(22)) in the range [zi, zf], so that the peripheral samples affect 
the evaluation even far from the scanning area boundaries. 
Thus, the effect due to the field discontinuity at the scanning 
zone edges is intrinsically eliminated. 

4. NUMERICAL SIMULATIONS 

 The following simulation refers to a uniform planar array 
of '/2 spaced elementary Huygens sources, polarized along 
the z axis and covering a zone in the plane y = 0, formed by a 
rectangle ended in two half-circles. The sizes of the rectangle 
are: 2a! = 14' and h! = 46'. The helix wraps a cylinder with 
radius d = 14' and height h = 160 '. An open-ended WR-90 
rectangular waveguide, at the frequency of 10 GHz, is 
chosen as measurement probe. 
 The reconstruction of the antenna far-field pattern in the 
principal planes obtained by employing the proposed direct 
NF–FF transformation with helicoidal scanning is shown in 
Figs. (3 and 4). As can be seen, in both the planes, the exact 
and reconstructed patterns are indistinguishable, thus 
assessing the effectiveness of the developed transformation 
technique. In order to show the previously claimed capability 
of the technique to accurately recover the antenna far field in 
any cut plane, the reconstructions of the amplitudes of both 
the far-field components in the plane at # = 60° are reported 
in Figs. (5 and 6). 
 It worth noting that the number of employed samples is 
20 213, significantly less than that (34 668) required by the 
standard cylindrical NF–FF transformation [12, 13] and by 
the half-wavelength helicoidal scanning [2], to cover the 
same measurement area. 

 
Fig. (3). E-plane pattern. Solid line: exact. Crosses: recovered via the direct NF–FF transformation with helicoidal scanning. 
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Fig. (4). H-plane pattern. Solid line: exact. Crosses: recovered via the direct NF–FF transformation with helicoidal scanning. 

 
Fig. (5). Amplitude of the far-field "-component at # = 60°. Solid line: exact. Crosses: recovered via the direct NF–FF transformation with 
helicoidal scanning.  

 
Fig. (6). Amplitude of the far-field #-component at # = 60°. Solid line: exact. Crosses: recovered via the direct NF–FF transformation with 
helicoidal scanning. 
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Fig. (7). Photo of the E-plane monopulse antenna. 

 
Fig. (8). E-plane pattern of the AUT 1. Solid line: reference. Red solid line with crosses: recovered via the direct NF–FF transformation with 
helicoidal scanning. 
 

5. EXPERIMENTAL TESTS 

 The experimental tests on the proposed direct helicoidal 
NF–FF transformation have been carried out in the anechoic 
chamber of the Antenna Characterization Lab of the 
University of Salerno, where an advanced cylindrical NF 
scanning system supplied by MI-Technologies is available. 
The NF data have been acquired by an open-ended WR-90 
rectangular wave guide along a helix wrapping a cylinder 
with radius d = 19.6 cm and height h = 240 cm. A vectorial 
network analyzer has been employed to perform the 
amplitude and phase measurements. 
 Two different monopulse antennas operating at 10 GHz 
in the sum mode have been employed in the experimental 
tests. They have been obtained by properly assembling two 
pyramidal horns (8.9 + 6.8 cm sized), a hybrid tee, and two 
straight and two curved rectangular waveguides. The former 
(AUT 1) is an E-plane monopulse antenna (see Fig. 7), 
wherein the distance between the centers of the pyramidal 
horns is 26.5 cm. The latter (AUT 2), on the contrary, is a H-

plane monopulse antenna with a distance between the horns 
centers of 26 cm. The apertures of both antennas are located 
in the plane y = 0 of the adopted reference system. A 
rounded cylinder of parameters h! = 33.3 cm and a! = 4.95 
cm has been adopted to model the former antenna, whereas 
the latter has been considered as enclosed in a rounded 
cylinder with h! = 36 cm and a! = 4.5 cm. 
 The direct NF–FF transformation incorporates the probe 
characterization. Accordingly, in a previous paper [19], we 
have characterized the used probe according to [20] as done 
in the software package MI-3000 implementing the standard 
probe compensated NF–FF transformation [13], and verified 
that practically identical results are obtained when the same 
NF data are transformed by using the MI-Technologies 
software and our version of the probe compensated NF–FF 
transformation technique [12]. 
 In the next Figs. (8 to 11), the FF patterns in the principal 
planes E and H reconstructed via the direct NF–FF 
transformation are compared with those (references) 
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obtained by using the MI software from NF data measured 
on the classical cylindrical grid. In particular, Figs. (8 and 9) 
are relevant to the AUT 1, whereas Figs. (10 and 11) refer to 
the AUT 2. As can be seen, a very good agreement results, 
thus further assessing the effectiveness of the proposed 
technique. It is worth noting that the ripple caused by the 
discontinuity of the near field at the edges of the scanning 
surface, clearly visible in the E-plane pattern obtained from 
the NF data measured on the classical cylindrical grid when 
considering the AUT 1 (see Fig. 8), is thoroughly eliminated 
in the FF pattern reconstructed by using the direct NF–FF 
transformation. Such a ripple is not visible in Fig. (10), since 
the near field level at the edges of the scanning area when 
considering the latter antenna is about 20 dB lower than for 
the former one. 
 It can be interesting to compare the number of NF data 
needed by the here proposed direct helicoidal NF–FF 

transformation with those required by the other 
transformation techniques (see Table 1). 
 As regards the time needed to acquire the NF data, the 
helicoidal scanning technique proposed in [2] is certainly 
quicker than the classical cylindrical one [12, 13], since the 
acquisition is carried out by means of continuous and 
synchronized movements of the positioning systems. In light 
of the above consideration, it is enough to compare the here 
proposed technique only with the one in [2]. In such a case, 
it can be easily realized that the measurement times are 
directly proportional to the numbers of required samples. 

6. CONCLUSIONS 

 A direct NF–FF transformation with helicoidal scanning 
for electrically long antennas has been developed and 
assessed both by means of numerical simulations and experi- 

 
Fig. (9). H-plane pattern of the AUT 1. Solid line: reference. Crosses: recovered via the direct NF–FF transformation with helicoidal 
scanning. 

 
Fig. (10). H-plane pattern of the AUT 2. Solid line: reference. Crosses: recovered via the direct NF–FF transformation with helicoidal 
scanning. 
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Fig. (11). E-plane pattern of the AUT 2. Solid line: reference. Crosses: recovered via the direct NF–FF transformation with helicoidal 
scanning. 
 
Table 1. Data Required by the Different NF–FF Transformation Techniques 

NF–FF Transformation Technique AUT 1 Ndata AUT 2 Ndata 

Standard cylindrical scanning [12, 13] or half-wavelength helicoidal scanning [2] 6 440 5796 

Direct helicoidal scanning using a prolate ellipsoidal modelling [15] 2 202 1 986 

Here proposed approach  2 048 1 954 

 
mental tests. It makes possible the evaluation of the antenna 
far field in any cut plane directly from the acquired 
helicoidal NF data without interpolating them. Moreover it 
exhibits the appealing characteristic to eliminate the ripple 
due to the discontinuity of the near field at the edges of the 
scanning area. The number of helix turns is determined by 
the rounded cylinder AUT modelling, whereas the number of 
data on each of them is fixed by the minimum cylinder rule, 
as in the standard cylindrical scanning, thus simplifying the 
scanning from the mechanical view point. Although the 
number of needed NF data is slightly greater than the one 
required when applying the nonredundant sampling 
representation on the helix, it results remarkably smaller 
with respect to that required by the standard cylindrical 
scanning or by the half-wavelength helicoidal scanning. 
With respect to the direct helicoidal NF–FF transformation 
developed in a previous paper and using a prolate ellipsoid to 
model the AUT, the here proposed one allows generally a 
further reduction of the NF data and, as a consequence, of 
the measurement time. As a matter of fact, the rounded 
cylinder modelling allows one to fit better the shape of a lot 
of actual antennas by properly setting its geometric 
parameters. In any case, since there is no practical difference 
between these two techniques from the computational and 
accuracy viewpoints, the choice depends only on the 
modelling which better fits the actual AUT geometry. 
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